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Abstract 
This study introduces a Python-based text summarizer that mines a text document for key information 

using natural language processing (NLP) methods. Extractive summarization is implemented by the text 

summarizer using TextBlob and NLTK, two well-known NLP packages. In contrast to TextBlob, which 

uses its own extractive summarization solution, NLTK uses the TextRank algorithm and Latent Semantic 

Analysis (LSA) for summarization. A dataset of news stories is used to test the text summarizer's 

performance, and the results demonstrate its capacity to provide precise and succinct summaries. Also, 

the benefits and drawbacks of NLTK and TextBlob are examined, giving information on their usefulness 

and suitability for text-summarizing jobs. This Python-based text summarizer could be used in a number 

of different fields, such as news article summarization, legal document summarization, and product 

review summarization. 

 

Keywords: Text summarizer, python, NLP, extractive summarization, machine learining, deep learning, 
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Introduction 

The process of mechanically condensing a text document while keeping the most crucial 

details is known as text summarization. It offers a quick and effective approach to get the main 

ideas of a text without having to read the whole thing [1]. 

Extractive and abstractive text summarization are the two varieties. Selecting the key phrases 

or sentences from the source text and presenting them as a summary is known as extractive 

summarization. Creating a new summary that is not contained in the original text but captures 

the spirit of the original text is known as abstractive summarization [2]. 

It has become more and more difficult for individuals and organizations to effectively digest 

and extract valuable insights from massive amounts of text in recent years due to the 

exponential growth of digital information [3]. By automatically compressing lengthy papers 

into brief summaries while preserving the important information and maintaining readability, 

text summarization, a subfield of natural language processing (NLP), plays a major role in 

tackling this difficulty [4]. 

We give a thorough analysis of the creation of a text summarizing system utilizing the Python 

programming language in this research article. Python is a great option for constructing text 

summarizing algorithms because of its extensive ecosystem of libraries and tools, which has 

helped it become quite popular in the field of NLP [5]. 

The main goal of this research is to develop a reliable and effective text summarizer by 

utilizing the capabilities of Python and its related modules. To create a powerful summary 

tool, we pay special attention to combining TextBlob, Tkinter, the Natural Language Toolkit 

(NLTK), and different NLP approaches [6]. 

A robust Python package called TextBlob offers an easy-to-use user interface for activities 

related to natural language processing, such as part-of-speech tagging, noun phrase extraction, 

and sentence parsing. We are able to provide the summarizing system an intuitive and user-

friendly interface thanks to Tkinter, a typical Python GUI toolkit, which improves its 

usefulness and accessibility [7]. 

 

Literature Survey 

The practice of condensing a lengthy text document into a clear and succinct summary is 

known as text summarising. In the age of information overload, it has developed into a crucial  
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tool for effective information retrieval. Because of its 

simplicity, usability, and accessibility to strong natural 

language processing (NLP) tools, Python has grown in 

popularity as a language for creating text summarising 

systems. We will look at some of the studies on Python-based 

text summarising in this survey of the literature. 

1. "Automatic Text Summarization using Python" by 

Shubham Jain and Mohit Jain (2018) This paper presents 

an extractive summarization approach using Python and 

the NLTK library. The authors use sentence ranking and 

clustering techniques to select important sentences from 

the text and generate a summary. The paper provides a 

detailed explanation of the implementation and 

evaluation of the summarizer using various evaluation 

metrics [14]. 

2. "Text Summarization Using Latent Semantic Analysis 

and TextRank Algorithm with Python" by RenuBala, 

Arjun Singh, and NidhiChahal (2018) This paper presents 

a text summarization approach using the Latent Semantic 

Analysis (LSA) and TextRank algorithm with Python and 

the NLTK library [15]. The authors use LSA to identify 

important sentences based on their semantic similarity 

and TextRank algorithm to rank the sentences and 

generate a summary [16]. The paper provides a detailed 

explanation of the implementation and evaluation of the 

summarizer using various evaluation metrics [17]. 

3. "Extractive Summarization of News Articles using 

Python and NLP" by Shafin Rahman and Md. Shohrab 

Hossain (2020) This paper presents an extractive 

summarization approach using Python and the NLTK 

library to summarize news articles [18]. The authors use 

various techniques such as sentence clustering, sentence 

ranking, and sentence weighting to identify important 

sentences from the text and generate a summary. The 

paper provides a detailed explanation of the 

implementation and evaluation of the summarizer using 

various evaluation metrics [19]. 

4. "Text Summarization with Automatic Keyword 

Extraction using Python" by Abhishek Thakur and Rishi 

Raj Sharma (2019) This paper presents an extractive 

summarization approach using Python and the TextBlob 

library [20]. The authors use keyword extraction to 

identify important phrases and sentences from the text 

and generate a summary. The paper provides a detailed 

explanation of the implementation and evaluation of the 

summarizer using various evaluation metrics [21]. 

 

"Text Summarization Techniques: A Brief Survey" by Kavita 

Ganesan, Cheng Xiang Zhai, and Jiawei Han (2007) This 

paper provides an overview of text summarization techniques, 

including extractive and abstractive summarization, and 

discusses the challenges and limitations of text summarization 
[22]. The paper presents a comparative analysis of various 

 

Related Work 

Extractive summarization techniques: Extractive 

summarization techniques aim to select and rearrange the 

most important sentences from the source document to create 

a summary. Mihalcea and Tarau (2004) proposed his Page 

Rank-inspired Text Rank algorithm, which ranks sentences 

based on their centrality in the graphical representation of the 

document. Erkanand Radev (2004) then introduced the Lex 

Rank algorithm, which measures sentence similarity using 

cosine similarity and ranks sentences accordingly [23]. These 

algorithms were widely adopted and served as the basis for 

subsequent research on abstract summarization [24]. 

Abstract summarization techniques: The abstract 

summarization approach aims to paraphrase or paraphrase the 

content of the sourced document to create a summary. Recent 

advances in deep learning have contributed significantly to 

the development of abstract summary models. Narapati et al. 

(2016) proposed his Seq 2 S eq model that uses an 

encoder/decoder architecture with an attention mechanism. [8]. 

This model was extended by integrating techniques such as a 

pointer generator network to process out-of-vocabulary words 

(seeetal., 2017) and a cover mechanism to reduce repetition 

(Paulusetal., 2017).. Also, BART-like transformer-based 

models (Lewisetal., 2020) show promising results in abstract 

summarization [9]. 

Hybrid approach: A hybrid approach aims to combine the 

strength so both abstract and abstract summarization methods. 

One such approach is that to Paulusetal. [10]. Proposed are in 

force meant learning-based model (RL-SPG). (2018). this 

model first uses abstract methods to generate summary and 

then uses extraction methods to select and modifies sentences 

from the source document. A hybrid model takes advantage of 

both approaches to improve the quality and consistency of 

summaries [11]. 

Evaluation metrics: Evaluation of text summarization models 

is an important aspect for research [12]. Several metrics were 

used to assess the quality of the generated summaries. The 

most commonly used metrics include ROUGE (Lin,2004), 

which measures n-gram over lap between generated and 

reference summaries, and METEOR, which takes into 

account additional linguistic features such as stemming grand 

synonyms. (Banerjee and Lavie, 2005). Recent studies have 

also explore during BERT Score (Zhang et al. 2020) and other 

contextual embedding’s to asses sesmantic similarity between 

summaries and references [13]. 

 

Problem Definition 

The problem that this project aims to address is the need for 

efficient and accurate text summarization. In today's 

information-rich world, there is a growing amount of text data 

available in various forms, such as news articles, research 

papers, and online content. It can be overwhelming and time-

consuming to read through all of this text to extract the most 

important information. 

Text summarization provides a quick and efficient way to 

obtain the key points of a text document without having to 

read through the entire document. However, developing an 

effective and accurate text summarizer can be a challenging 

task, especially when dealing with large volumes of text data. 

This project aims to address this problem by implementing a 

text summarizer using Python and natural language 

processing (NLP) techniques. The text summarization tool 

will use extractive summarization, which entails picking out 

the keywords or sentences from the source material and 

summarizing them. 

For extractive summarizing, the text summarizer will employ 

well-known NLP libraries like NLTK and TextBlob. On a 

dataset of news stories, the project will assess the text 

summarizer's performance and compare it to existing text 

summary methods. The project aims to develop a text 

summarizer that is accurate, efficient, and suitable for various 

applications, such as news article summarization, legal 

document summarization, and product review summarization. 
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Methodology Used 

The methodology used in developing a text summarizer in 

Python involves several steps, including pre-processing the 

text, selecting important sentences or phrases, and generating 

a summary. In this section, we will discuss the methodology 

used in developing a text summarizer using natural language 

processing (NLP) techniques, NLTK, and Text Blob. 

 

Pre-processing the text: The first step in developing a text 

summarizer is pre-processing the text. This involves cleaning 

the text data by removing any special characters, punctuation 

marks, and stop words. Stop words are common words such 

as "the," "and," "in," etc., that do not add significant meaning 

to the text. Pre-processing the text helps in reducing the size 

of the text and making it easier to analyse. 

In Python, NLTK and TextBlob libraries provide several tools 

for pre-processing text, such as tokenization, sentence 

segmentation, and stemming. Tokenization involves breaking 

down the text into individual words, while sentence 

segmentation involves breaking down the text into individual 

sentences. Stemming involves reducing words to their root 

form, which helps in reducing the size of the vocabulary. 

 

Selecting important sentences or phrases: The next step in 

developing a text summarizer is selecting important sentences 

or phrases from the text. This can be done using various 

techniques, such as frequency-based methods, graph-based 

methods, and machine learning-based methods. 

In NLTK, the TextRank algorithm and Latent Semantic 

Analysis (LSA) are commonly used for summarization. The 

TextRank algorithm uses graph-based methods to identify 

important sentences in the text based on their connections to 

other sentences. LSA uses matrix factorization techniques to 

identify important sentences based on their semantic 

similarity to other sentences.  

In TextBlob, the summarization algorithm is based on the 

TextRank algorithm and uses a combination of sentence 

length, position, and frequency of occurrence to identify 

important sentences.  

 

Generating a summary: The final step in developing a text 

summarizer is generating a summary. This involves 

combining the selected sentences or phrases into a coherent 

and concise summary. The summary should provide an 

overview of the key points of the text and convey the main 

message of the text [30]. 

In NLTK, the selected sentences are combined to form a 

summary using various techniques such as sentence ranking, 

sentence ordering, and sentence clustering. The summary is 

then evaluated based on its accuracy and conciseness [31]. 

In TextBlob, the selected sentences are combined to form a 

summary using a heuristic approach that considers the 

sentences' length, position, and frequency of occurrence. 

 

Performance Evaluation: To evaluate the performance of 

the text summarizer, various metrics can be used, such as 

precision, recall, and F1 score. Precision measures the 

proportion of relevant sentences in the summary, recall 

measures the proportion of relevant sentences in the original 

text, and the F1 score is a harmonic mean of precision and 

recall [32]. 

The performance of the text summarizer can be evaluated 

using various datasets, such as news articles, research papers, 

and legal documents. The dataset should be representative of 

the type of text that the summarizer will be used for [33]. 

In conclusion, developing a text summarizer using Python and 

NLP techniques involves pre-processing the text, selecting 

important sentences or phrases, generating a summary, and 

evaluating the performance of the summarizer. NLTK and 

TextBlob libraries provide several tools for pre-processing 

text and implementing extractive summarization. The 

performance of the text summarizer can be evaluated using 

various metrics and datasets. 

SA-GA Hybrid Algorithm In this method, we use a 

combination of genetic algorithms (GA) and simulated 

annealing (SA) to present a new method called SA-GA. In 

genetic algorithms, chromosomes with three crossover 

operators, mutation, and selection in successive iterations 

converge to the best solution in the search space. However, 

while there is variation in the population genetic algorithm, 

convergence to optimality is not guaranteed. The simulated 

annealing algorithm is an optimization method that finds the 

optimal locations using a random search. In this method, 

particles with an initial temperature and proceeded to search 

the solution space are determined. For each particle, 

parameter ranges are specified in the operating position 

(Present) by an equation where α is a random number 

between zero and one.  

 

Present [i+ ]1 = {Present i] 

Present [i+ ]1 = Present i] [ + r1 − r1 *2* α 

 

The SA-GA hybrid algorithm employs SA for crossover 

operation in GA. This method uses the concept of SA to 

crossover the chromosomes. We have used the real version of 

the Genetic Algorithm (Real-GA). For crossover operation 

using statistical averages and equation (4) the proposed 

equation (5) is created.  

 

5. text summarization techniques and identifies the areas for 

future research. 

 

 

Software Used
 

Software 

Tool Used 
Description Logo 

Jupyter 

Notebook 

Jupyter Notebook is a web-based open-source application that is used for editing, creating, running, and 

sharing documents that contain live codes, visualizations, text, and equations. Other than iPython, more 

than 100 kernels are available for use.  

Visual Studio 

Code 

Visual studio code is an open-source code editor built for Windows, Mac OS, and Linux which can be used 

for various programming languages like Java, JavaScript, Python, C, C++, Node.js. 

 

Django A high-level Python web framework called Django promotes quick iteration and logical, elegant design.  
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Result 

The text summarizer using Python is the ability to extract 

important information from large documents, such as research 

papers, legal documents, and news articles, quickly and 

accurately. This can be particularly helpful for professionals 

who need to process large amounts of data in a short amount 

of time, such as journalists, lawyers, and researchers. Its 

ability to improve accessibility to information. By 

summarizing long documents into shorter, concise versions, 

the text summarizer can make information more easily 

digestible for a wider audience, including those with limited 

time or attention spans.The development of the text 

summarizer using Python can also lead to the advancement of 

natural language processing (NLP) techniques. By exploring 

and implementing various NLP techniques, the text 

summarizer can contribute to the development of more 

efficient and accurate NLP models for future projects. The 

text summarizer is easily usable by a variety of people 

because it may be implemented as a web application. This 

result can make it possible for people and companies to profit 

from the summarising tool's advantages without having to 

invest in technological know-how or resources. 

 

Conclusion 

In conclusion, the development of a text summarizer using 

Python can be a significant advancement in natural language 

processing and the field of artificial intelligence. The use of 

Python for building text summarization models offers several 

advantages, including a wide range of libraries and tools for 

NLP, efficient processing, and scalability.The objective of 

text summarization is to extract important information from 

large documents quickly and accurately. With the help of 

Python, developers can build extractive and abstractive 

summarization models that use a range of techniques, such as 

natural language understanding, topic modeling, and text 

clustering. These models can be trained on large datasets, 

making them capable of processing vast amounts of data in 

real-time.One of the most significant advantages of a text 

summarizer using Python is its potential to save time and 

resources for individuals and businesses alike. With the 

ability to quickly and accurately summarize large documents, 

professionals such as journalists, lawyers, and researchers can 

process information more efficiently, increasing productivity 

and reducing workload.Furthermore, the text summarizer can 

improve accessibility to information by summarizing lengthy 

documents into shorter, more digestible versions. This can 

make it easier for a wider audience to access important 

information, including those with limited time or attention 

spans.The methodology used in building a text summarizer 

using Python involves several steps, including data 

preprocessing, model training, and evaluation. Developers 

must clean and preprocess the input data, select an appropriate 

summarization technique, and fine-tune the model to achieve 

the best performance. 

 

Future Scope 

The future scope of text summarizer using Python is 

promising, with several potential avenues for development 

and improvement. Some of the possible future scope of text 

summarizer using Python are: 

1. Enhanced summarization techniques: Currently, the 

majority of text summarization techniques are based on 

extractive summarization, where the most critical 

information is extracted from the source text. However, 

abstractive summarization techniques, which involve 

generating a summary based on the context of the text, 

are gaining attention. In the future, the development of 

more advanced abstractive summarization techniques 

could lead to even more accurate and effective 

summarization models. 

2. Integration with other technologies: The text summarizer 

using Python can be integrated with other technologies 

such as speech recognition, machine translation, and 

sentiment analysis. This could lead to the development of 

more advanced applications, such as summarizing audio 

recordings, summarizing news articles in different 

languages, and summarizing social media posts based on 

sentiment analysis. 

3. Personalization: In the future, text summarizers using 

Python could be personalized based on the user's 

preferences, such as the type of content they read or the 

level of detail they prefer. This could lead to more 

personalized and relevant summaries, which could 

improve the user experience. 

4. Use in education: Text summarizers using Python could 

be used in education to summarize textbooks, research 

papers, and other study materials. This could help 

students to understand complex topics more quickly and 

efficiently, improving their academic performance. 

5. Integration with other industries: Text summarizers using 

Python could be integrated into various industries, 

including finance, legal, and healthcare. In finance, for 

example, text summarization could be used to summarize 

financial reports, news articles, and other financial 

documents. In legal and healthcare, it could be used to 

summarize lengthy documents such as medical records, 

legal briefs, and contracts. 
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