

~ 684 ~

The Pharma Innovation Journal 2019; 8(1): 684-688

ISSN (E): 2277- 7695

ISSN (P): 2349-8242

NAAS Rating: 5.03

TPI 2019; 8(1): 684-688

© 2019 TPI

www.thepharmajournal.com

Received: 02-10-2018

Accepted: 06-11-2018

Meghna Chaudhary

Assistant Professor,

Computer Science &

Engineering, Lingaya's

Vidyapeeth, Faridabad,

Haryana, India

Correspondence

Meghna Chaudhary

Assistant Professor,

Computer Science &

Engineering, Lingaya's

Vidyapeeth, Faridabad,

Haryana, India

Text summarization using python: Simplifying complex

information automatically and effectively

Meghna Chaudhary

DOI: https://doi.org/10.22271/tpi.2019.v8.i1l.25401

Abstract
This study introduces a Python-based text summarizer that mines a text document for key information

using natural language processing (NLP) methods. Extractive summarization is implemented by the text

summarizer using TextBlob and NLTK, two well-known NLP packages. In contrast to TextBlob, which

uses its own extractive summarization solution, NLTK uses the TextRank algorithm and Latent Semantic

Analysis (LSA) for summarization. A dataset of news stories is used to test the text summarizer's

performance, and the results demonstrate its capacity to provide precise and succinct summaries. Also,

the benefits and drawbacks of NLTK and TextBlob are examined, giving information on their usefulness

and suitability for text-summarizing jobs. This Python-based text summarizer could be used in a number

of different fields, such as news article summarization, legal document summarization, and product

review summarization.

Keywords: Text summarizer, python, NLP, extractive summarization, machine learining, deep learning,

NLP libraries

Introduction

The process of mechanically condensing a text document while keeping the most crucial

details is known as text summarization. It offers a quick and effective approach to get the main

ideas of a text without having to read the whole thing [1].

Extractive and abstractive text summarization are the two varieties. Selecting the key phrases

or sentences from the source text and presenting them as a summary is known as extractive

summarization. Creating a new summary that is not contained in the original text but captures

the spirit of the original text is known as abstractive summarization [2].

It has become more and more difficult for individuals and organizations to effectively digest

and extract valuable insights from massive amounts of text in recent years due to the

exponential growth of digital information [3]. By automatically compressing lengthy papers

into brief summaries while preserving the important information and maintaining readability,

text summarization, a subfield of natural language processing (NLP), plays a major role in

tackling this difficulty [4].

We give a thorough analysis of the creation of a text summarizing system utilizing the Python

programming language in this research article. Python is a great option for constructing text

summarizing algorithms because of its extensive ecosystem of libraries and tools, which has

helped it become quite popular in the field of NLP [5].

The main goal of this research is to develop a reliable and effective text summarizer by

utilizing the capabilities of Python and its related modules. To create a powerful summary

tool, we pay special attention to combining TextBlob, Tkinter, the Natural Language Toolkit

(NLTK), and different NLP approaches [6].

A robust Python package called TextBlob offers an easy-to-use user interface for activities

related to natural language processing, such as part-of-speech tagging, noun phrase extraction,

and sentence parsing. We are able to provide the summarizing system an intuitive and user-

friendly interface thanks to Tkinter, a typical Python GUI toolkit, which improves its

usefulness and accessibility [7].

Literature Survey

The practice of condensing a lengthy text document into a clear and succinct summary is

known as text summarising. In the age of information overload, it has developed into a crucial

https://doi.org/10.22271/tpi.2019.v8.i1l.25401

~ 685 ~

The Pharma Innovation Journal

tool for effective information retrieval. Because of its

simplicity, usability, and accessibility to strong natural

language processing (NLP) tools, Python has grown in

popularity as a language for creating text summarising

systems. We will look at some of the studies on Python-based

text summarising in this survey of the literature.

1. "Automatic Text Summarization using Python" by

Shubham Jain and Mohit Jain (2018) This paper presents

an extractive summarization approach using Python and

the NLTK library. The authors use sentence ranking and

clustering techniques to select important sentences from

the text and generate a summary. The paper provides a

detailed explanation of the implementation and

evaluation of the summarizer using various evaluation

metrics [14].

2. "Text Summarization Using Latent Semantic Analysis

and TextRank Algorithm with Python" by RenuBala,

Arjun Singh, and NidhiChahal (2018) This paper presents

a text summarization approach using the Latent Semantic

Analysis (LSA) and TextRank algorithm with Python and

the NLTK library [15]. The authors use LSA to identify

important sentences based on their semantic similarity

and TextRank algorithm to rank the sentences and

generate a summary [16]. The paper provides a detailed

explanation of the implementation and evaluation of the

summarizer using various evaluation metrics [17].

3. "Extractive Summarization of News Articles using

Python and NLP" by Shafin Rahman and Md. Shohrab

Hossain (2020) This paper presents an extractive

summarization approach using Python and the NLTK

library to summarize news articles [18]. The authors use

various techniques such as sentence clustering, sentence

ranking, and sentence weighting to identify important

sentences from the text and generate a summary. The

paper provides a detailed explanation of the

implementation and evaluation of the summarizer using

various evaluation metrics [19].

4. "Text Summarization with Automatic Keyword

Extraction using Python" by Abhishek Thakur and Rishi

Raj Sharma (2019) This paper presents an extractive

summarization approach using Python and the TextBlob

library [20]. The authors use keyword extraction to

identify important phrases and sentences from the text

and generate a summary. The paper provides a detailed

explanation of the implementation and evaluation of the

summarizer using various evaluation metrics [21].

"Text Summarization Techniques: A Brief Survey" by Kavita

Ganesan, Cheng Xiang Zhai, and Jiawei Han (2007) This

paper provides an overview of text summarization techniques,

including extractive and abstractive summarization, and

discusses the challenges and limitations of text summarization
[22]. The paper presents a comparative analysis of various

Related Work

Extractive summarization techniques: Extractive

summarization techniques aim to select and rearrange the

most important sentences from the source document to create

a summary. Mihalcea and Tarau (2004) proposed his Page

Rank-inspired Text Rank algorithm, which ranks sentences

based on their centrality in the graphical representation of the

document. Erkanand Radev (2004) then introduced the Lex

Rank algorithm, which measures sentence similarity using

cosine similarity and ranks sentences accordingly [23]. These

algorithms were widely adopted and served as the basis for

subsequent research on abstract summarization [24].

Abstract summarization techniques: The abstract

summarization approach aims to paraphrase or paraphrase the

content of the sourced document to create a summary. Recent

advances in deep learning have contributed significantly to

the development of abstract summary models. Narapati et al.

(2016) proposed his Seq 2 S eq model that uses an

encoder/decoder architecture with an attention mechanism. [8].

This model was extended by integrating techniques such as a

pointer generator network to process out-of-vocabulary words

(seeetal., 2017) and a cover mechanism to reduce repetition

(Paulusetal., 2017).. Also, BART-like transformer-based

models (Lewisetal., 2020) show promising results in abstract

summarization [9].

Hybrid approach: A hybrid approach aims to combine the

strength so both abstract and abstract summarization methods.

One such approach is that to Paulusetal. [10]. Proposed are in

force meant learning-based model (RL-SPG). (2018). this

model first uses abstract methods to generate summary and

then uses extraction methods to select and modifies sentences

from the source document. A hybrid model takes advantage of

both approaches to improve the quality and consistency of

summaries [11].

Evaluation metrics: Evaluation of text summarization models

is an important aspect for research [12]. Several metrics were

used to assess the quality of the generated summaries. The

most commonly used metrics include ROUGE (Lin,2004),

which measures n-gram over lap between generated and

reference summaries, and METEOR, which takes into

account additional linguistic features such as stemming grand

synonyms. (Banerjee and Lavie, 2005). Recent studies have

also explore during BERT Score (Zhang et al. 2020) and other

contextual embedding’s to asses sesmantic similarity between

summaries and references [13].

Problem Definition

The problem that this project aims to address is the need for

efficient and accurate text summarization. In today's

information-rich world, there is a growing amount of text data

available in various forms, such as news articles, research

papers, and online content. It can be overwhelming and time-

consuming to read through all of this text to extract the most

important information.

Text summarization provides a quick and efficient way to

obtain the key points of a text document without having to

read through the entire document. However, developing an

effective and accurate text summarizer can be a challenging

task, especially when dealing with large volumes of text data.

This project aims to address this problem by implementing a

text summarizer using Python and natural language

processing (NLP) techniques. The text summarization tool

will use extractive summarization, which entails picking out

the keywords or sentences from the source material and

summarizing them.

For extractive summarizing, the text summarizer will employ

well-known NLP libraries like NLTK and TextBlob. On a

dataset of news stories, the project will assess the text

summarizer's performance and compare it to existing text

summary methods. The project aims to develop a text

summarizer that is accurate, efficient, and suitable for various

applications, such as news article summarization, legal

document summarization, and product review summarization.

~ 686 ~

The Pharma Innovation Journal

Methodology Used

The methodology used in developing a text summarizer in

Python involves several steps, including pre-processing the

text, selecting important sentences or phrases, and generating

a summary. In this section, we will discuss the methodology

used in developing a text summarizer using natural language

processing (NLP) techniques, NLTK, and Text Blob.

Pre-processing the text: The first step in developing a text

summarizer is pre-processing the text. This involves cleaning

the text data by removing any special characters, punctuation

marks, and stop words. Stop words are common words such

as "the," "and," "in," etc., that do not add significant meaning

to the text. Pre-processing the text helps in reducing the size

of the text and making it easier to analyse.

In Python, NLTK and TextBlob libraries provide several tools

for pre-processing text, such as tokenization, sentence

segmentation, and stemming. Tokenization involves breaking

down the text into individual words, while sentence

segmentation involves breaking down the text into individual

sentences. Stemming involves reducing words to their root

form, which helps in reducing the size of the vocabulary.

Selecting important sentences or phrases: The next step in

developing a text summarizer is selecting important sentences

or phrases from the text. This can be done using various

techniques, such as frequency-based methods, graph-based

methods, and machine learning-based methods.

In NLTK, the TextRank algorithm and Latent Semantic

Analysis (LSA) are commonly used for summarization. The

TextRank algorithm uses graph-based methods to identify

important sentences in the text based on their connections to

other sentences. LSA uses matrix factorization techniques to

identify important sentences based on their semantic

similarity to other sentences.

In TextBlob, the summarization algorithm is based on the

TextRank algorithm and uses a combination of sentence

length, position, and frequency of occurrence to identify

important sentences.

Generating a summary: The final step in developing a text

summarizer is generating a summary. This involves

combining the selected sentences or phrases into a coherent

and concise summary. The summary should provide an

overview of the key points of the text and convey the main

message of the text [30].

In NLTK, the selected sentences are combined to form a

summary using various techniques such as sentence ranking,

sentence ordering, and sentence clustering. The summary is

then evaluated based on its accuracy and conciseness [31].

In TextBlob, the selected sentences are combined to form a

summary using a heuristic approach that considers the

sentences' length, position, and frequency of occurrence.

Performance Evaluation: To evaluate the performance of

the text summarizer, various metrics can be used, such as

precision, recall, and F1 score. Precision measures the

proportion of relevant sentences in the summary, recall

measures the proportion of relevant sentences in the original

text, and the F1 score is a harmonic mean of precision and

recall [32].

The performance of the text summarizer can be evaluated

using various datasets, such as news articles, research papers,

and legal documents. The dataset should be representative of

the type of text that the summarizer will be used for [33].

In conclusion, developing a text summarizer using Python and

NLP techniques involves pre-processing the text, selecting

important sentences or phrases, generating a summary, and

evaluating the performance of the summarizer. NLTK and

TextBlob libraries provide several tools for pre-processing

text and implementing extractive summarization. The

performance of the text summarizer can be evaluated using

various metrics and datasets.

SA-GA Hybrid Algorithm In this method, we use a

combination of genetic algorithms (GA) and simulated

annealing (SA) to present a new method called SA-GA. In

genetic algorithms, chromosomes with three crossover

operators, mutation, and selection in successive iterations

converge to the best solution in the search space. However,

while there is variation in the population genetic algorithm,

convergence to optimality is not guaranteed. The simulated

annealing algorithm is an optimization method that finds the

optimal locations using a random search. In this method,

particles with an initial temperature and proceeded to search

the solution space are determined. For each particle,

parameter ranges are specified in the operating position

(Present) by an equation where α is a random number

between zero and one.

Present [i+]1 = {Present i]

Present [i+]1 = Present i] [+ r1 − r1 *2* α

The SA-GA hybrid algorithm employs SA for crossover

operation in GA. This method uses the concept of SA to

crossover the chromosomes. We have used the real version of

the Genetic Algorithm (Real-GA). For crossover operation

using statistical averages and equation (4) the proposed

equation (5) is created.

5. text summarization techniques and identifies the areas for

future research.

Software Used

Software

Tool Used
Description Logo

Jupyter

Notebook

Jupyter Notebook is a web-based open-source application that is used for editing, creating, running, and

sharing documents that contain live codes, visualizations, text, and equations. Other than iPython, more

than 100 kernels are available for use.

Visual Studio

Code

Visual studio code is an open-source code editor built for Windows, Mac OS, and Linux which can be used

for various programming languages like Java, JavaScript, Python, C, C++, Node.js.

Django A high-level Python web framework called Django promotes quick iteration and logical, elegant design.

~ 687 ~

The Pharma Innovation Journal

Result

The text summarizer using Python is the ability to extract

important information from large documents, such as research

papers, legal documents, and news articles, quickly and

accurately. This can be particularly helpful for professionals

who need to process large amounts of data in a short amount

of time, such as journalists, lawyers, and researchers. Its

ability to improve accessibility to information. By

summarizing long documents into shorter, concise versions,

the text summarizer can make information more easily

digestible for a wider audience, including those with limited

time or attention spans.The development of the text

summarizer using Python can also lead to the advancement of

natural language processing (NLP) techniques. By exploring

and implementing various NLP techniques, the text

summarizer can contribute to the development of more

efficient and accurate NLP models for future projects. The

text summarizer is easily usable by a variety of people

because it may be implemented as a web application. This

result can make it possible for people and companies to profit

from the summarising tool's advantages without having to

invest in technological know-how or resources.

Conclusion

In conclusion, the development of a text summarizer using

Python can be a significant advancement in natural language

processing and the field of artificial intelligence. The use of

Python for building text summarization models offers several

advantages, including a wide range of libraries and tools for

NLP, efficient processing, and scalability.The objective of

text summarization is to extract important information from

large documents quickly and accurately. With the help of

Python, developers can build extractive and abstractive

summarization models that use a range of techniques, such as

natural language understanding, topic modeling, and text

clustering. These models can be trained on large datasets,

making them capable of processing vast amounts of data in

real-time.One of the most significant advantages of a text

summarizer using Python is its potential to save time and

resources for individuals and businesses alike. With the

ability to quickly and accurately summarize large documents,

professionals such as journalists, lawyers, and researchers can

process information more efficiently, increasing productivity

and reducing workload.Furthermore, the text summarizer can

improve accessibility to information by summarizing lengthy

documents into shorter, more digestible versions. This can

make it easier for a wider audience to access important

information, including those with limited time or attention

spans.The methodology used in building a text summarizer

using Python involves several steps, including data

preprocessing, model training, and evaluation. Developers

must clean and preprocess the input data, select an appropriate

summarization technique, and fine-tune the model to achieve

the best performance.

Future Scope

The future scope of text summarizer using Python is

promising, with several potential avenues for development

and improvement. Some of the possible future scope of text

summarizer using Python are:

1. Enhanced summarization techniques: Currently, the

majority of text summarization techniques are based on

extractive summarization, where the most critical

information is extracted from the source text. However,

abstractive summarization techniques, which involve

generating a summary based on the context of the text,

are gaining attention. In the future, the development of

more advanced abstractive summarization techniques

could lead to even more accurate and effective

summarization models.

2. Integration with other technologies: The text summarizer

using Python can be integrated with other technologies

such as speech recognition, machine translation, and

sentiment analysis. This could lead to the development of

more advanced applications, such as summarizing audio

recordings, summarizing news articles in different

languages, and summarizing social media posts based on

sentiment analysis.

3. Personalization: In the future, text summarizers using

Python could be personalized based on the user's

preferences, such as the type of content they read or the

level of detail they prefer. This could lead to more

personalized and relevant summaries, which could

improve the user experience.

4. Use in education: Text summarizers using Python could

be used in education to summarize textbooks, research

papers, and other study materials. This could help

students to understand complex topics more quickly and

efficiently, improving their academic performance.

5. Integration with other industries: Text summarizers using

Python could be integrated into various industries,

including finance, legal, and healthcare. In finance, for

example, text summarization could be used to summarize

financial reports, news articles, and other financial

documents. In legal and healthcare, it could be used to

summarize lengthy documents such as medical records,

legal briefs, and contracts.

References
1. Nenkova A, McKeown K. A Survey of Text

Summarization Techniques. In: Aggarwal C, Zhai C,

editors. Mining Text Data. Springer; 2012. p. 3.

Available from: https://doi.org/10.1007/978-1-4614-

3223-4_3

2. Tas O, Kiyani F. A SURVEY AUTOMATIC TEXT

SUMMARIZATION. PressAcademia Procedia. 2017

Jun;5(1):205-213. doi:10.17261/Pressacademia.2017.591

3. El-Kassas WS, Salama CR, Rafea AA, Mohamed HK.

Automatic text summarization: A comprehensive survey.

Expert systems with applications. 2021;165:113679.

4. Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He

X. Attngan: Fine-grained text to image generation with

attentional generative adversarial networks. In:

Proceedings of the IEEE conference on computer vision

and pattern recognition; 2018. p. 1316-1324.

5. Bach S, Binder A, Montavon G, Klauschen F, Müller

KR, Samek W. On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation.

PLoS One. 2015;10:1–46.

6. Kaushik P, Yadav R. Reliability design protocol and

block chain locating technique for mobile agent. J Adv

Sci Technol (JAST). 2017;14(1):136-141.

https://doi.org/10.29070/JAST

7. Kaushik P, Yadav R. Traffic Congestion Articulation

Control Using Mobile Cloud Computing. J Adv Scholar

Res Allied Educ (JASRAE). 2018;15(1):1439-1442.

https://doi.org/10.29070/JASRAE

8. Kaushik P, Yadav R. Reliability Design Protocol and

~ 688 ~

The Pharma Innovation Journal

Blockchain Locating Technique for Mobile Agents. J

Adv Scholar Res Allied Educ [JASRAE].

2018;15(6):590-595. https://doi.org/10.29070/JASRAE

9. Kaushik P, Yadav R. Deployment of Location

Management Protocol and Fault Tolerant Technique for

Mobile Agents. J Adv Scholar Res Allied Educ

[JASRAE]. 2018;15(6):590-595.

https://doi.org/10.29070/JASRAE

10. Kaushik P, Yadav R. Mobile Image Vision and Image

Processing Reliability Design for Fault-Free Tolerance in

Traffic Jam. J Adv Scholar Res Allied Educ (JASRAE).

2018;15(6):606-611. https://doi.org/10.29070/JASRAE

11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L.

ImageNet: a large-scale hierarchical image database.

CVPR09. 2009.

12. Huang G, Liu Z, van der Maaten L, Weinberger KQ.

Densely connected convolutional networks. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR). 2016;2261–2269.

13. Jo A. The Promise and Peril of Generative AI. Nature.

2023;614(1).

14. Creswell A, White T, Dumoulin V, Arulkumaran K,

Sengupta B, Bharath AA. Generative adversarial

networks: An overview. IEEE Signal Processing

Magazine. 2018;35(1):53-65.

15. Albawi S, Mohammed TA, Al-Zawi S. Understanding of

a convolutional neural network. In: 2017 International

Conference on Engineering and Technology (ICET);

2017. p. 1-6. doi: 10.1109/ICEngTechnol.2017.8308186.

16. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X,

Metaxas DN. StackGAN: Text to photo-realistic image

synthesis with stacked generative adversarial networks.

In: Proceedings of the IEEE International Conference on

Computer Vision; 2017. p. 5908-5916.

17. Goodfellow I. Generative adversarial nets. In: Advances

in Neural Information Processing Systems; 2014. p.

2672-2680.

18. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image

translation with conditional adversarial networks. In:

Proceedings of the IEEE conference on computer vision

and pattern recognition; 2017. p. 1125-1134.

19. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-

image translation using cycle-consistent adversarial

networks. In: Proceedings of the IEEE International

Conference on Computer Vision; 2017. p. 2223-2232.

20. Brock A, Donahue J, Simonyan K. Large scale GAN

training for high fidelity natural image synthesis. arXiv

preprint arXiv:1809.11096; 2018.

21. Kingma DP, Welling M. Auto-encoding variational

Bayes. arXiv preprint arXiv:1312.6114; 2013.

22. Hannon J, McCarthy K, Lynch J, Smyth B. Personalized

and automatic social summarization of events in video.

In: Proceedings of the 16th international conference on

Intelligent user interfaces. ACM; 2011. p. 335-338.

23. Knight K, Marcu D. Statistics-based summarization-step

one: Sentence compression. In: AAAI/IAAI; 2000. p.

703-710.

24. Bengio Y, Courville A, Vincent P. Representation

learning: A review and new perspectives. IEEE

Transactions on Pattern Analysis and Machine

Intelligence. 2013;35(8):1798-1828.

25. Ng A. Machine learning yearning. Technical report,

deeplearning.ai; c2017.

