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Abstract 
Utilizing cutting-edge technologies like neural networks, machine learning, and image processing has 

greatly increased the precision and speed of cancer detection. The integration of these technologies with 

the knowledge of contact inhibition and the characteristics of cancerous cells has enabled the researchers 

to develop a model that can accurately detect the presence of tumors in patients' lungs and differentiate 

between benign and malignant tumors. The dataset of CT scan images of patients, along with the 

application of image enhancement techniques and image segmentation algorithms, allows for the 

identification and extraction of important features necessary for the accurate detection of tumors. By 

creating a neural network model, the researchers can obtain the required output for the patient's lung 

status, which can help medical professionals in their diagnosis and treatment planning. This methodology 

can significantly reduce the mortality rate associated with lung cancer by enabling timely detection and 

treatment, which is why it is implemented in the field of medical science. This model can also aid 

radiologists and medical experts in their evaluation and diagnosis of cancerous cells, providing a more 

accurate and reliable diagnosis. 
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1. Introduction 

Researchers have learned about the various problems and time taking methods for detection of 

Lung cancer. Several methods, including X-ray images, ANN, etc. are used by other 

researchers, and they do not provide outstanding results. The aim of this research is to reduce 

the time taken to detect cancer, and help patients identify and start the curing procedures 

before it gets too late. This research focuses on implementing CNN, using CT-scan images and 

SMOTE function to increase accuracy and improve overall detection. 

Lung Cancer tends to show its symptoms during the final stage, which is why it is considered 

as a very difficult disease to identify and detect before it gets worse. The Lung Cancer 

Incidence for males is displayed in Fig 1. 

 

 
 

Fig 1: Lung cancer incidence rates, male 
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With several practices and new technologies, it is possible to 

get an accurate detection while saving precious time and 

reducing mortality rate. 

 Usage of Image Processing, CNN and classification 

techniques in our overall model is done to implement the 

detection of cancer.  

 Contact Inhibition allows noncancerous cells to stop 

growing and proliferating when they come into contact 

with one another. When cells change malignantly, they 

lose this quality, which causes unchecked cell division 

and the development of solid tumors. The role that 

Contact Inhibition plays in the development of cancerous 

cells is precisely understood by the researchers.  

 The model identifies these abnormalities, and detects the 

whole tumour area using the same knowledge.  

 The model also identifies and differentiates between 

Malignant and Benign Tumours, which would be helpful 

for further classification and evaluation of the cancerous 

cells present in the patient’s lungs.  

 Getting a dataset of CT scan images of patients, which 

consists of benign tumours, malignant tumours and 

normal lungs is the first step.  

 The second stage is to use picture enhancement 

techniques to improve the image quality.  

 Applying image segmentation algorithms is the third 

step.  

 Getting the features from the improved segmented image 

is the fourth step. 

 Fifth step is to create a neural network model and get the 

required output for the patient’s lung status 

 

The full methodology of medical imaging and image 

segmentation applied by the researchers in the model of 

detection would help in the field of medical science and 

timely detection by medical experts, professionals and most 

importantly, the radiologists. 

 

2. Literature Survey 

Palani and Venkatalakshmi's continuous monitoring provides 

a lung cancer prediction model. This study sheds light on how 

the predictive modelling system's accuracy has improved. 

Fuzzy cluster-link augmentation with categorization was 

used. In order to get an accurate image segmentation, fuzzy 

clustering was applied. They also used an Otsu thresholding 

model to distinguish between the transition zone and the 

representation of a malignant lung. The segmentation was 

enhanced by thinning. For classification, they used techniques 

such as Association Rule Mining, Convolutional Neural 

Networks, and Conventional Decision Trees. The IoT devices 

that were directly attached to the patients were used to collect 

patient health and other data. 

Joon and others. acquired images of the lungs taken by X-ray. 

obtained lung X-ray images in order to identify and separate 

lung cancer. During the pre-processing stage, the noise was 

found using a median filter. Fuzzy C-means and K-means 

were used for segmentation. After the X-ray image was 

segmented, cancer detection was simulated using MATLAB. 

They additionally employed the SVM technique for 

classification. This study made use of both healthy and 

malignant images. 

Lakshmanaprabu et al. decreased the number of 

characteristics in lung CT scans and compared it to existing 

classification methods in order to create an Optimal Deep 

Neural Network (OODN). The introduction of an automatic 

classification system has reduced the amount of time required 

for human labelling and eliminated any chance of human 

error. The performance of ML algorithms, as well as the 

accuracy and detection of normal and pathological lungs, 

significantly improved. The model had a 96.2% accuracy 

level, a 94.2% sensitivity level, and a 94.56% specificity 

level. This demonstrated how improving the performance of 

cancer detection in CT scans is both conceivable and 

practicable. 

Bhatia et al. developed a system to determine whether or not 

lung cancer is visible in a CT scan using deep residual 

learning. The researchers constructed a pre-processing 

pipeline using ResNet and UNet models. In addition to the 

Convolution Operation, Max Pooling, ReLU Activation, 

Concatenation, and Up Sampling Layers, U-Net is divided 

into three sections: bottleneck, contraction, and expansion. 

Res-Net addresses the problem of networks' performance 

being saturated when more layers are added and starting to 

degrade quickly. The goal was to subsequently draw attention 

to the characteristics and remove them from the malignant 

lung tissue. The chance that a CT scan will detect cancer is 

predicted using a combination of random forest and XG Boost 

classifiers. Compared to current methods, the Lung Imaging 

Database Collaboration and Image Database Resource 

Initiative (LIDC-IDRI) yields 84% higher accuracy. 

Nithila and Kumar developed and implemented an active 

contouring model. They employed a variation level set 

function to segment the lungs. To greatly improve CT lung 

image segmentation, the Selective Binary and Gaussian 

Filtering - new Signed Pressure Force (SBGF-new SPF) tool 

was created. Any additional insignificant and ineffective 

expansions at the edges were stopped if external lung 

constraints were discovered. Following this investigation, four 

different active contour models and currently under 

consideration algorithms were compared. 

The Mayo Clinic research commonly known as the Mayo 

Lung Project, sought to use radiologic and cytologic 

techniques to screen 10,933 high-risk male outpatients for 

lung cancer. If a candidate's life expectancy was less than five 

years or if they couldn't handle having their lungs removed, 

they were disqualified from the trial. 91 lung malignancies 

were found through prevalence screening, with approximately 

two thirds being found by chest roentgenography alone and 

half of these tumors being surgically removed. Sputum 

cytologic testing alone found only a fifth of the tumors, 

although all but one of these were removed surgically. 

According to the study, lung cancers that are more prevalent 

are more likely to be resectable, related with survival 5 years 

after treatment, and postsurgical Stage I or II (AJCC) than 

lung cancers seen in current Mayo Clinic clinical practice. 

The prevalence screening results were unaffected by the 

study's randomization for the subsequent incidence screening. 

An Artificial Neural Network (ANN) model was presented by 

Ibrahim M. Nasser et al. to determine whether a person has 

lung cancer or not. The model uses other personal data as well 

as symptoms including yellow fingers, anxiety, chronic 

illness, weariness, allergy, wheezing, coughing, shortness of 

breath, swallowing trouble, and chest pain as input variables. 

The dataset used to create, train, and validate the ANN was 

titled "survey lung cancer." According to the model's 

evaluation, it can reliably determine if lung cancer is present 

or absent with a 96.67% accuracy rate. 

Lung Cancer Detection using CT Scan Images stressed the 

value of early detection and treatment of lung cancer. which 
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can considerably increase the chances of survival. Even 

though a CT scan is the most effective imaging method, it can 

be difficult for medical professionals to precisely identify 

cancerous cells. In order to help physicians correctly identify 

lung cancer, computer-aided diagnostic (CAD) systems have 

been created combining image processing and machine 

learning. In this research, various CAD techniques were 

evaluated based on their detection accuracy, and their 

limitations and drawbacks were analyzed. Certain techniques 

demonstrated low accuracy, while others demonstrated higher 

accuracy that was still far from 100%. As a result, the goal of 

this research is to suggest a new model that can raise lung 

cancer detection accuracy to 100%. The suggested 

methodology may enhance early identification and treatment 

of lung cancer, potentially improving patient outcomes by 

addressing the shortcomings and downsides of present 

methodologies. 

Imran Nazir et al. proposed a method for improving the 

detection of lung cancer through image fusion-based lung 

segmentation. The proposed method uses Laplacian Pyramid 

(LP) decomposition and Adaptive Sparse Representation 

(ASR) to fuse multi-view CT images. The LP decomposition 

technique is used to split medical images into smaller 

segments, which are then combined using LP to produce the 

final fused image. The authors evaluate the 

proposed approach using the Lungs Image Database 

Consortium and Image Database Resource Initiative (LIDC-

IDRI). The results demonstrated that, with a Dice Similarity 

Coefficient (DSC) score of 0.9929, the suggested strategy 

outperformed recently published results. Additionally, 

competitive results of 89% were obtained from assessments of 

the suggested method's sensitivity, specificity, and accuracy. 

 

3. Related Work 

An image dataset with different lung cancer images (benign 

and malignant) was prepared. The images were collected from 

various sources, hospitals, clinics and laboratories. After 

various image enhancement and segmentation techniques, the 

dataset was used for training and testing with a 75:25 split for 

the model. It is then passed as a NumPy array in the model 

with CNN applied. 
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Fig 2: Flowchart of the methodology implemented 

 

A. Dataset 

A combined dataset of images was used as the training input. 

Several enhancement and segmentation techniques were 

applied on the images, and were then used in the model. 

Through a Convolutional Neural Network with several 

epochs, the model gave the output of cancerous or non-

cancerous when the images were passed. This was done using 

Jupyter Notebook and Python.  

The images used were CT-Scan images, stored in a local 

folder and then imported as a dataset of images. 

 

  
 

Fig 3: Benign and Malignant Tumour Grayscale CT-scan image 

 

A dictionary with ‘Benign’, ‘Malignant’ and ‘Normal’ keys 

were implemented, so that the images are separated and 

classified in a well-ordered manner. This makes it easier to 

implement further techniques on the dataset. The images were 

resized and appended into their respective categories 
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Fig 4: Benign, Malignant and Normal Case CT-Scan images with GaussianBlur 

 

 
 

Fig 5: Benign vs Malignant Images (with labels) 

 

The images and labels stored were all converted to a NumPy 

array. These are further enhanced using two main 

enhancement techniques. 

 

B. Data Pre-processing 

The initial technique for improvement is called Histogram 

Equalization. Photos are compared using the Histogram 

Equalization method. By extending the image's intensity 

range and increasing its frequency of use, it achieves this. 

When an image's data is represented with sharp contrast, this 

technique frequently boosts the image's overall contrast. 

Greater contrast can be achieved locally as a result. Gamma 

Correction is the second enhancing technique used. Gamma 

and gamma correction have to do with bridging the gap 

between linear representations of light intensities and the 

nonlinear response of the human eye, which is more sensitive 

to changes in low light than to changes in strong light that are 

equivalent in magnitude. Gamma correction is a type of image 

processing that corrects for a capture device's intrinsic tone-

reproduction issues or prepares an image for output to a 

display or printer, which may also have non-linear calibration 

needs. We finish the image enhancing process by combining 

both methods. 

Now, these enhanced images are segmented using 

segmentation techniques. Again, two segmentation techniques 

are followed for the image segmentation. The first technique 

used is Otsu Thresholding. Although binary segmentation's 

logic is straightforward, numerous ways exist to choose an 

image's threshold. Otsu's approach is one of the procedures 

utilizing the machine. The background and foreground values 

are examined at the beginning of both groups. Otsu's approach 

calculates the difference between each group before selecting 

a value that minimizes the weight of these variances. Group 

differences might be taken into account. The same results and 

strong discrimination between the two classes are obtained by 

decreasing the within-group variance (within different groups) 

and increasing the between-group variance (inside different 

groups). Adaptive Thresholding is the second technique 

applied. Adaptive thresholding, also called dynamic or local 

thresholding, establishes thresholds to decide whether to 

transition to white or black at ground level. Application-

specific sample spaces and measurement techniques exist. 

Comparing adaptive thresholding at the pixel level to general 

thresholding can be pretty successful, especially for photos 

with varied levels in various places. These techniques are 

again combined, similar to the enhancement, and then 

converted to a NumPy array.  

Using the segmented images, features are extracted from 

them. The Haralick texture property is used to describe the 

"texture" of an image. It is possible to discern between rough 

and smooth surfaces using Haralick's texture feature. 

Additionally, they can be used to distinguish between brick, 

sand, and stone. The grey level joint matrix (GLCM), from 

which Haralick's characteristics are generated. By keeping 

track of how many adjacent pairs of pixels with a particular 

value appear in the image, this matrix describes the texture. 
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Fig 6: Image Pre-processing methodology used by Suren et al. [9] 

 

Fig 4. shows one way of image pre-processing, and this 

research is based on the same process. After feature 

extraction, the features are passed through the model. 

 

C. Model Architecture 

A convolutional neural network (CNN) with three 

convolutional layers and two fully connected layers makes up 

the model architecture for the provided code. A Conv2D layer 

with 64 3x3-pixel filters and a ReLU activation function make 

up the top layer. Given that the input images are grayscale and 

have a 256x256 resolution, the input_shape parameter for this 

layer is the shape of the input images, which is (256, 256, 1). 

A MaxPooling2D layer with a pool size of 2x2 follows this 

layer. 

The second layer is made up of a ReLU activation function 

and 64 3x3-sized filters on a Conv2D layer. The first 

MaxPooling2D layer is followed by a second one with a pool 

size of 2x2. 

The output of the previous layer is converted into a 1D array 

in the third layer, also called the Flatten layer. This flattened 

output is then passed on to a dense fully connected layer 

labeled as Dense, which consists of 16 units and utilizes a 

ReLU activation function. Subsequently, the output is further 

transmitted to another dense fully connected layer named 

FullMax, encompassing 3 units, each specifically intended for 

one of the three classes. 

In the model, the Adam optimizer and the 

sparse_categorical_crossentropy loss function are employed. 

Accuracy is the metric used to assess how well the model 

performed during training.  

 

D. Model Architecture 

The training set is used to train the model after the model 

architecture has been established. By using the fit() function 

on the model object, this is accomplished. The training data 

(X_train_sampled and y_train_sampled), batch size (number 

of samples each gradient update), number of epochs (number 

of iterations throughout the entire training set), and validation 

data (X_valid and y_valid) are among the various inputs that 

the fit() function takes. 

The sparse_categorical_crossentropy loss function and the 

Adam optimizer are used to improve the model during 

training. During training, the accuracy measure is also 

calculated. The target variable (y) is categorical, and the 

labels are integers, hence the sparse_categorical_crossentropy 

loss function is employed. The cross-entropy loss between the 

expected and actual probability distributions is calculated 

using this function. 

After training the model, the performance is evaluated on the 

validation set using the predict () function on the model 

object. The predict () function returns an array of probabilities 

for each class for each input image in the validation set. These 

probabilities are converted into class labels using the argmax 

() function. 

The model's performance is assessed using a variety of 

assessment metrics, including accuracy, precision, recall, and 

F1-score. The classification_report() and confusion_matrix() 

functions from the sklearn. metrics package are used to 

calculate these metrics. The confusion matrix lists the number 

of true positives, false positives, true negatives, and false 

negatives for each class. The classification report summarizes 

a number of evaluation metrics for each class, including 

precision, recall, and F1-score. 

 

E. Algorithm 

The algorithm for the whole model preparation, image pre-

processing and analysis is given below. 

 

4. Start 

1. Import necessary libraries including NumPy, pandas, 

matplotlib, cv 

2. 2, imageio, plotly.graph_objects, and collections. 

3. Import required functions from sklearn including 

train_test_split, accuracy_score, recall_score, 

precision_score, classification_report, confusion_matrix, 

and plot_confusion_matrix. 

4. Import SMOTE function from imblearn.over_sampling. 
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5. Import necessary functions from keras including 

Conv2D, MaxPooling2D, GlobalAveragePooling2D, 

BatchNormalization, Sequential, Dense, Dropout, 

Activation, and Flatten. 

6. Define the directory path as the location of the image 

folder. 

7. Define the categories list as ['Benign cases', 'Malignant 

cases', 'Normal cases']. 

8. Create an empty dictionary size_data. 

9. For each category in categories, perform the following 

steps: 

a. Define the path as the join of the directory path and the 

category. 

b. Define the class_num as the index of the category. 

c. Create an empty dictionary temp_dict. 

d. For each file in the path, perform the following steps: 

 Define the filepath as the join of the path and the file. 

 Read the height, width, and channels of the image using 

the imageio.imread function. 

 If the string representation of the height and width 

already exists in temp_dict, increment the value of the 

key by 1. 

 Else, add a new key to temp_dict with the string 

representation of the height and width and set its value to 

1. 

e. Add temp_dict to size_data with the key as the category. 

10. Return the size_data dictionary. 

11. For each category in categories, perform the following 

steps: 

a. Define the path as the join of the directory path and the 

category. 

b. Define the class_num as the index of the category. 

c. For each file in the path, perform the following steps: 

 Define the filepath as the join of the path and the file. 

 Print the category. 

 Read the image using cv2.imread function and store it in 

img. 

 Show the image using plt.imshow function and plt.show. 

 Break the loop after the first image. 

12. Define the img_size variable as 256. 

13. For each category in categories, perform the following 

steps: 

a. Define the cnt and samples variables as 0 and 3, 

respectively. 

b. Create a figure and axes with the subplots function and 

store them in fig and ax, respectively. 

c. Set the figure title as i using fig.suptitle function. 

d. Define the path as the join of the directory path and the 

category. 

e. Define the class_num as the index of the category. 

f. For each file in the path, perform the following steps: 

 Define the filepath as the join of the path and the file. 

 Read the image using cv2.imread function and store it in 

img. 

 Resize the image to img_size using cv2.resize function 

and store it in img0. 

 Apply Gaussian blur to img0 using cv2.GaussianBlur 

function and store it in img1. 

 Show the original image, img0, and img1 using ax[cnt, 

0].imshow, ax[cnt, 1].imshow, and ax[cnt, 2].imshow, 

respectively. 

 Increment the cnt variable by 1. 

 Break the loop after samples images. 

14. Show the figure using plt.show. 

15. Create an empty list data. 

16. Define the img_size variable as 256. 

17. For each category in categories, perform the following 

steps: 

a. Define the path as the join of the directory path and the 

category. 

b. Define the class_num as the index of the category. 

c. For each file in the path, perform the following steps: 

 Define the filepath as the join of the path and the file. 

 Read the image using cv2.imread function and store it in 

img. 

 Resize the image to img_size using cv2.resize function 

and store it in img. 

 Append the list [img, class_num] to data. 

18. Shuffle the data using random. shuffle function. 

19. Create two empty lists X and y. 

20. For each feature and label in data, perform the following 

steps: 

a. Append feature to X. 

b. Append label to y. 

21. Print the length of X and the counts of y using len 

function and Counter from collections library. 

22. Normalize X by converting it to a numpy array, 

reshaping it to (-1, img_size, img_size, 1), and dividing 

by 255.0. 

23. Convert y to a numpy array. 

24. The dataset should now be split into training sets and 

validation sets using the train_test_split function with a 

random state of 10 and stratify=y. 

25. Print the length and shape of the training and validation 

sets, as well as the count of the different labels in each set 

using Counter. 

26. Reshape X_train to have a single channel using the 

reshape method. 

27. Print the length and shape of X_train after the reshape. 

28. Apply the SMOTE (Synthetic Minority Over-sampling 

Technique) oversampling method to balance the dataset. 

Print the count of labels in y_train before and after 

SMOTE. 

29. Reshape X_train and X_train_sampled back to the 

original shape with one channel. 

30. Create a Sequential model. 

31. Add two Conv2D layers with 64 filters, a 3x3 kernel size, 

and ReLU activation, followed by a MaxPooling2D layer 

with a 2x2 pool size. 

32. Add a Flatten layer and two Dense layers with 16 and 3 

units, respectively, and a Softmax activation for the 

output layer. 

33. Print a summary of the model. 

34. Use 'sparse_categorical_crossentropy' loss, 'adam' 

optimizer, and 'accuracy' metric to compile the model. 

35. Fit the model with the oversampled training data, a batch 

size of 8, 10 epochs, and the validation data. 

36. Save the model to a file named 'my_model.h5'. 

37. Use the model to predict on the validation data and save 

the predictions to y_pred. 

38. Convert y_pred to binary labels using argmax. 

39. Print the classification report and confusion matrix of the 

predictions on the validation data 

40. Matplotlib library is used for the plotting of accuracy of 

training and validation for each epoch of the model. 

41. Use the history object, which was returned by the fit() 

method, to access the accuracy values for both the 
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training and validation sets. 

42. Use the plot() method to create a line plot for the 

accuracy of training and validation accuracy. Set the label 

parameter to 'Train' for the accuracy of the training plot 

and 'Validation' for the validation plot. 

43. Set the title of the plot to 'Model Accuracy', set the y-axis 

label to 'Accuracy', and set the x-axis label to 'Epoch'. 

44. Use the legend() method to display a legend on the plot, 

which will show which line corresponds to the training 

accuracy and which corresponds to the validation 

accuracy. 

45. Call show() method to display the plot. 

46. Repeat steps 1-6 for the model loss, using the 'loss' and 

'val_loss' values from the history object instead of the 

accuracy values. 

47. Set the title of the plot to 'Model Loss', set the y-axis 

label to 'Loss', and set the x-axis label to 'Epoch'. 

48. STOP 

 

4. Results and Analysis 

The model after compiling runs using a batch size of ‘8’ and 

the number of running epochs being more than ‘10’. It gives 

an accuracy of 1.000, with loss as 5.7009e-05, val_loss as 

0.0632 and val_accuracy as 0.9927. 

 

 
 

Fig 7: Epochs 

 

The confusion matrix is also printed to visualize the precision and recall values in a better way possible 

 

 
 

Fig 8: Confusion Matrix 

 

The final result is provided after the compilation of model and 

successful running of epochs. The output comes out as 

“Image {file} is classified as {'cancerous' if predictions[i] > 

0.5 else 'non-cancerous'}.” 

 

 
 

Fig 9: Output after running the model 
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Our results show that the machine learning model we 

developed can accurately detect cancerous cells in lung 

images with high precision and recall rates. We also found 

that certain features, such as intensity and texture, were more 

important than others in identifying cancerous cells. 

Two graphs are plotted, each for Model Accuracy and Model 

Loss. These graphs show the actual changes in the loss and 

accuracy. The graph for Model Accuracy shows the 

significant increase in accuracy from the first epoch itself 

after being run, and then it gets at a constant high accuracy 

after the 3rd epoch. The graph for Model Loss shows the 

significant decrease in the loss from the first epoch itself after 

being run, and then it gets at a constant low loss after the 3rd 

epoch. 

 

 
 

Fig 10: Model Accuracy and Model Loss graphs 

 

5. Conclusion 

The research shows the increased accuracy and better 

detection of cancerous cells in a patient’s lung. The output 

displays whether the lung is cancerous or not, based on all 

features extracted from various segmented images. In 

conclusion, our study demonstrates the potential of machine 

learning algorithms in accurately detecting lung cancer. The 

use of segmented images and feature extraction allowed us to 

train a model that can identify cancerous cells with high 

accuracy. The results of this study suggest that machine 

learning models can be used to increase the accuracy of lung 

cancer diagnoses, which could result in earlier detection and 

better patient outcomes. These findings have significant 

clinical implications. To confirm these results on a broader 

scale and investigate the possibilities of these models in 

clinical practice, more investigation is required. 

 

6. Results and Analysis 

The project's implementation could improve patient outcomes 

and aid radiologists in the early detection of lung cancer. 

Lung cancer can be reliably and accurately diagnosed by 

using the trained convolutional neural network (CNN) model 

in medical imaging software. While the project has yielded 

encouraging results, there is still room to explore deeper CNN 

architectures and more advanced image pre-processing 

techniques to improve lung cancer detection accuracy. To 

enable earlier screening and diagnosis, the project can be 

extended to predict the risk of lung cancer in high-risk 

individuals. Improving patient outcomes requires early lung 

cancer detection. Additionally, the trained CNN model can be 

used to predict the results of specific lung cancer treatments. 
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