

~ 29 ~

The Pharma Innovation Journal 2019; SP-8(5): 29-38

ISSN (E): 2277- 7695

ISSN (P): 2349-8242

NAAS Rating: 5.03

TPI 2019; SP-8(5): 29-38

© 2019 TPI

www.thepharmajournal.com

Received: 19-03-2019

Accepted: 29-04-2019

RK Tiwari

ECE Dept, MBA Dept, Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Sangeeta Yadav

ECE Dept, MBA Dept, Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Correspondence

RK Tiwari

ECE Dept, MBA Dept, Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Lung cancer detection through image pre-processing

and convolutional neural networks

RK Tiwari and Sangeeta Yadav

DOI: https://doi.org/10.22271/tpi.2019.v8.i5Sa.25265

Abstract
Utilizing cutting-edge technologies like neural networks, machine learning, and image processing has

greatly increased the precision and speed of cancer detection. The integration of these technologies with

the knowledge of contact inhibition and the characteristics of cancerous cells has enabled the researchers

to develop a model that can accurately detect the presence of tumors in patients' lungs and differentiate

between benign and malignant tumors. The dataset of CT scan images of patients, along with the

application of image enhancement techniques and image segmentation algorithms, allows for the

identification and extraction of important features necessary for the accurate detection of tumors. By

creating a neural network model, the researchers can obtain the required output for the patient's lung

status, which can help medical professionals in their diagnosis and treatment planning. This methodology

can significantly reduce the mortality rate associated with lung cancer by enabling timely detection and

treatment, which is why it is implemented in the field of medical science. This model can also aid

radiologists and medical experts in their evaluation and diagnosis of cancerous cells, providing a more

accurate and reliable diagnosis.

Keywords: CNN, image processing, machine learning, CT scan, lung cancer, neural networks, SMOTE

1. Introduction

Researchers have learned about the various problems and time taking methods for detection of

Lung cancer. Several methods, including X-ray images, ANN, etc. are used by other

researchers, and they do not provide outstanding results. The aim of this research is to reduce

the time taken to detect cancer, and help patients identify and start the curing procedures

before it gets too late. This research focuses on implementing CNN, using CT-scan images and

SMOTE function to increase accuracy and improve overall detection.

Lung Cancer tends to show its symptoms during the final stage, which is why it is considered

as a very difficult disease to identify and detect before it gets worse. The Lung Cancer

Incidence for males is displayed in Fig 1.

Fig 1: Lung cancer incidence rates, male

https://doi.org/10.22271/tpi.2019.v8.i5Sa.25265

~ 30 ~

The Pharma Innovation Journal

With several practices and new technologies, it is possible to

get an accurate detection while saving precious time and

reducing mortality rate.

 Usage of Image Processing, CNN and classification

techniques in our overall model is done to implement the

detection of cancer.

 Contact Inhibition allows noncancerous cells to stop

growing and proliferating when they come into contact

with one another. When cells change malignantly, they

lose this quality, which causes unchecked cell division

and the development of solid tumors. The role that

Contact Inhibition plays in the development of cancerous

cells is precisely understood by the researchers.

 The model identifies these abnormalities, and detects the

whole tumour area using the same knowledge.

 The model also identifies and differentiates between

Malignant and Benign Tumours, which would be helpful

for further classification and evaluation of the cancerous

cells present in the patient’s lungs.

 Getting a dataset of CT scan images of patients, which

consists of benign tumours, malignant tumours and

normal lungs is the first step.

 The second stage is to use picture enhancement

techniques to improve the image quality.

 Applying image segmentation algorithms is the third

step.

 Getting the features from the improved segmented image

is the fourth step.

 Fifth step is to create a neural network model and get the

required output for the patient’s lung status

The full methodology of medical imaging and image

segmentation applied by the researchers in the model of

detection would help in the field of medical science and

timely detection by medical experts, professionals and most

importantly, the radiologists.

2. Literature Survey

Palani and Venkatalakshmi's continuous monitoring provides

a lung cancer prediction model. This study sheds light on how

the predictive modelling system's accuracy has improved.

Fuzzy cluster-link augmentation with categorization was

used. In order to get an accurate image segmentation, fuzzy

clustering was applied. They also used an Otsu thresholding

model to distinguish between the transition zone and the

representation of a malignant lung. The segmentation was

enhanced by thinning. For classification, they used techniques

such as Association Rule Mining, Convolutional Neural

Networks, and Conventional Decision Trees. The IoT devices

that were directly attached to the patients were used to collect

patient health and other data.

Joon and others. acquired images of the lungs taken by X-ray.

obtained lung X-ray images in order to identify and separate

lung cancer. During the pre-processing stage, the noise was

found using a median filter. Fuzzy C-means and K-means

were used for segmentation. After the X-ray image was

segmented, cancer detection was simulated using MATLAB.

They additionally employed the SVM technique for

classification. This study made use of both healthy and

malignant images.

Lakshmanaprabu et al. decreased the number of

characteristics in lung CT scans and compared it to existing

classification methods in order to create an Optimal Deep

Neural Network (OODN). The introduction of an automatic

classification system has reduced the amount of time required

for human labelling and eliminated any chance of human

error. The performance of ML algorithms, as well as the

accuracy and detection of normal and pathological lungs,

significantly improved. The model had a 96.2% accuracy

level, a 94.2% sensitivity level, and a 94.56% specificity

level. This demonstrated how improving the performance of

cancer detection in CT scans is both conceivable and

practicable.

Bhatia et al. developed a system to determine whether or not

lung cancer is visible in a CT scan using deep residual

learning. The researchers constructed a pre-processing

pipeline using ResNet and UNet models. In addition to the

Convolution Operation, Max Pooling, ReLU Activation,

Concatenation, and Up Sampling Layers, U-Net is divided

into three sections: bottleneck, contraction, and expansion.

Res-Net addresses the problem of networks' performance

being saturated when more layers are added and starting to

degrade quickly. The goal was to subsequently draw attention

to the characteristics and remove them from the malignant

lung tissue. The chance that a CT scan will detect cancer is

predicted using a combination of random forest and XG Boost

classifiers. Compared to current methods, the Lung Imaging

Database Collaboration and Image Database Resource

Initiative (LIDC-IDRI) yields 84% higher accuracy.

Nithila and Kumar developed and implemented an active

contouring model. They employed a variation level set

function to segment the lungs. To greatly improve CT lung

image segmentation, the Selective Binary and Gaussian

Filtering - new Signed Pressure Force (SBGF-new SPF) tool

was created. Any additional insignificant and ineffective

expansions at the edges were stopped if external lung

constraints were discovered. Following this investigation, four

different active contour models and currently under

consideration algorithms were compared.

The Mayo Clinic research commonly known as the Mayo

Lung Project, sought to use radiologic and cytologic

techniques to screen 10,933 high-risk male outpatients for

lung cancer. If a candidate's life expectancy was less than five

years or if they couldn't handle having their lungs removed,

they were disqualified from the trial. 91 lung malignancies

were found through prevalence screening, with approximately

two thirds being found by chest roentgenography alone and

half of these tumors being surgically removed. Sputum

cytologic testing alone found only a fifth of the tumors,

although all but one of these were removed surgically.

According to the study, lung cancers that are more prevalent

are more likely to be resectable, related with survival 5 years

after treatment, and postsurgical Stage I or II (AJCC) than

lung cancers seen in current Mayo Clinic clinical practice.

The prevalence screening results were unaffected by the

study's randomization for the subsequent incidence screening.

An Artificial Neural Network (ANN) model was presented by

Ibrahim M. Nasser et al. to determine whether a person has

lung cancer or not. The model uses other personal data as well

as symptoms including yellow fingers, anxiety, chronic

illness, weariness, allergy, wheezing, coughing, shortness of

breath, swallowing trouble, and chest pain as input variables.

The dataset used to create, train, and validate the ANN was

titled "survey lung cancer." According to the model's

evaluation, it can reliably determine if lung cancer is present

or absent with a 96.67% accuracy rate.

Lung Cancer Detection using CT Scan Images stressed the

value of early detection and treatment of lung cancer. which

~ 31 ~

The Pharma Innovation Journal

can considerably increase the chances of survival. Even

though a CT scan is the most effective imaging method, it can

be difficult for medical professionals to precisely identify

cancerous cells. In order to help physicians correctly identify

lung cancer, computer-aided diagnostic (CAD) systems have

been created combining image processing and machine

learning. In this research, various CAD techniques were

evaluated based on their detection accuracy, and their

limitations and drawbacks were analyzed. Certain techniques

demonstrated low accuracy, while others demonstrated higher

accuracy that was still far from 100%. As a result, the goal of

this research is to suggest a new model that can raise lung

cancer detection accuracy to 100%. The suggested

methodology may enhance early identification and treatment

of lung cancer, potentially improving patient outcomes by

addressing the shortcomings and downsides of present

methodologies.

Imran Nazir et al. proposed a method for improving the

detection of lung cancer through image fusion-based lung

segmentation. The proposed method uses Laplacian Pyramid

(LP) decomposition and Adaptive Sparse Representation

(ASR) to fuse multi-view CT images. The LP decomposition

technique is used to split medical images into smaller

segments, which are then combined using LP to produce the

final fused image. The authors evaluate the

proposed approach using the Lungs Image Database

Consortium and Image Database Resource Initiative (LIDC-

IDRI). The results demonstrated that, with a Dice Similarity

Coefficient (DSC) score of 0.9929, the suggested strategy

outperformed recently published results. Additionally,

competitive results of 89% were obtained from assessments of

the suggested method's sensitivity, specificity, and accuracy.

3. Related Work

An image dataset with different lung cancer images (benign

and malignant) was prepared. The images were collected from

various sources, hospitals, clinics and laboratories. After

various image enhancement and segmentation techniques, the

dataset was used for training and testing with a 75:25 split for

the model. It is then passed as a NumPy array in the model

with CNN applied.

~ 32 ~

The Pharma Innovation Journal

Fig 2: Flowchart of the methodology implemented

A. Dataset

A combined dataset of images was used as the training input.

Several enhancement and segmentation techniques were

applied on the images, and were then used in the model.

Through a Convolutional Neural Network with several

epochs, the model gave the output of cancerous or non-

cancerous when the images were passed. This was done using

Jupyter Notebook and Python.

The images used were CT-Scan images, stored in a local

folder and then imported as a dataset of images.

Fig 3: Benign and Malignant Tumour Grayscale CT-scan image

A dictionary with ‘Benign’, ‘Malignant’ and ‘Normal’ keys

were implemented, so that the images are separated and

classified in a well-ordered manner. This makes it easier to

implement further techniques on the dataset. The images were

resized and appended into their respective categories

~ 33 ~

The Pharma Innovation Journal

Fig 4: Benign, Malignant and Normal Case CT-Scan images with GaussianBlur

Fig 5: Benign vs Malignant Images (with labels)

The images and labels stored were all converted to a NumPy

array. These are further enhanced using two main

enhancement techniques.

B. Data Pre-processing

The initial technique for improvement is called Histogram

Equalization. Photos are compared using the Histogram

Equalization method. By extending the image's intensity

range and increasing its frequency of use, it achieves this.

When an image's data is represented with sharp contrast, this

technique frequently boosts the image's overall contrast.

Greater contrast can be achieved locally as a result. Gamma

Correction is the second enhancing technique used. Gamma

and gamma correction have to do with bridging the gap

between linear representations of light intensities and the

nonlinear response of the human eye, which is more sensitive

to changes in low light than to changes in strong light that are

equivalent in magnitude. Gamma correction is a type of image

processing that corrects for a capture device's intrinsic tone-

reproduction issues or prepares an image for output to a

display or printer, which may also have non-linear calibration

needs. We finish the image enhancing process by combining

both methods.

Now, these enhanced images are segmented using

segmentation techniques. Again, two segmentation techniques

are followed for the image segmentation. The first technique

used is Otsu Thresholding. Although binary segmentation's

logic is straightforward, numerous ways exist to choose an

image's threshold. Otsu's approach is one of the procedures

utilizing the machine. The background and foreground values

are examined at the beginning of both groups. Otsu's approach

calculates the difference between each group before selecting

a value that minimizes the weight of these variances. Group

differences might be taken into account. The same results and

strong discrimination between the two classes are obtained by

decreasing the within-group variance (within different groups)

and increasing the between-group variance (inside different

groups). Adaptive Thresholding is the second technique

applied. Adaptive thresholding, also called dynamic or local

thresholding, establishes thresholds to decide whether to

transition to white or black at ground level. Application-

specific sample spaces and measurement techniques exist.

Comparing adaptive thresholding at the pixel level to general

thresholding can be pretty successful, especially for photos

with varied levels in various places. These techniques are

again combined, similar to the enhancement, and then

converted to a NumPy array.

Using the segmented images, features are extracted from

them. The Haralick texture property is used to describe the

"texture" of an image. It is possible to discern between rough

and smooth surfaces using Haralick's texture feature.

Additionally, they can be used to distinguish between brick,

sand, and stone. The grey level joint matrix (GLCM), from

which Haralick's characteristics are generated. By keeping

track of how many adjacent pairs of pixels with a particular

value appear in the image, this matrix describes the texture.

~ 34 ~

The Pharma Innovation Journal

Fig 6: Image Pre-processing methodology used by Suren et al. [9]

Fig 4. shows one way of image pre-processing, and this

research is based on the same process. After feature

extraction, the features are passed through the model.

C. Model Architecture

A convolutional neural network (CNN) with three

convolutional layers and two fully connected layers makes up

the model architecture for the provided code. A Conv2D layer

with 64 3x3-pixel filters and a ReLU activation function make

up the top layer. Given that the input images are grayscale and

have a 256x256 resolution, the input_shape parameter for this

layer is the shape of the input images, which is (256, 256, 1).

A MaxPooling2D layer with a pool size of 2x2 follows this

layer.

The second layer is made up of a ReLU activation function

and 64 3x3-sized filters on a Conv2D layer. The first

MaxPooling2D layer is followed by a second one with a pool

size of 2x2.

The output of the previous layer is converted into a 1D array

in the third layer, also called the Flatten layer. This flattened

output is then passed on to a dense fully connected layer

labeled as Dense, which consists of 16 units and utilizes a

ReLU activation function. Subsequently, the output is further

transmitted to another dense fully connected layer named

FullMax, encompassing 3 units, each specifically intended for

one of the three classes.

In the model, the Adam optimizer and the

sparse_categorical_crossentropy loss function are employed.

Accuracy is the metric used to assess how well the model

performed during training.

D. Model Architecture

The training set is used to train the model after the model

architecture has been established. By using the fit() function

on the model object, this is accomplished. The training data

(X_train_sampled and y_train_sampled), batch size (number

of samples each gradient update), number of epochs (number

of iterations throughout the entire training set), and validation

data (X_valid and y_valid) are among the various inputs that

the fit() function takes.

The sparse_categorical_crossentropy loss function and the

Adam optimizer are used to improve the model during

training. During training, the accuracy measure is also

calculated. The target variable (y) is categorical, and the

labels are integers, hence the sparse_categorical_crossentropy

loss function is employed. The cross-entropy loss between the

expected and actual probability distributions is calculated

using this function.

After training the model, the performance is evaluated on the

validation set using the predict () function on the model

object. The predict () function returns an array of probabilities

for each class for each input image in the validation set. These

probabilities are converted into class labels using the argmax

() function.

The model's performance is assessed using a variety of

assessment metrics, including accuracy, precision, recall, and

F1-score. The classification_report() and confusion_matrix()

functions from the sklearn. metrics package are used to

calculate these metrics. The confusion matrix lists the number

of true positives, false positives, true negatives, and false

negatives for each class. The classification report summarizes

a number of evaluation metrics for each class, including

precision, recall, and F1-score.

E. Algorithm

The algorithm for the whole model preparation, image pre-

processing and analysis is given below.

4. Start

1. Import necessary libraries including NumPy, pandas,

matplotlib, cv

2. 2, imageio, plotly.graph_objects, and collections.

3. Import required functions from sklearn including

train_test_split, accuracy_score, recall_score,

precision_score, classification_report, confusion_matrix,

and plot_confusion_matrix.

4. Import SMOTE function from imblearn.over_sampling.

~ 35 ~

The Pharma Innovation Journal

5. Import necessary functions from keras including

Conv2D, MaxPooling2D, GlobalAveragePooling2D,

BatchNormalization, Sequential, Dense, Dropout,

Activation, and Flatten.

6. Define the directory path as the location of the image

folder.

7. Define the categories list as ['Benign cases', 'Malignant

cases', 'Normal cases'].

8. Create an empty dictionary size_data.

9. For each category in categories, perform the following

steps:

a. Define the path as the join of the directory path and the

category.

b. Define the class_num as the index of the category.

c. Create an empty dictionary temp_dict.

d. For each file in the path, perform the following steps:

 Define the filepath as the join of the path and the file.

 Read the height, width, and channels of the image using

the imageio.imread function.

 If the string representation of the height and width

already exists in temp_dict, increment the value of the

key by 1.

 Else, add a new key to temp_dict with the string

representation of the height and width and set its value to

1.

e. Add temp_dict to size_data with the key as the category.

10. Return the size_data dictionary.

11. For each category in categories, perform the following

steps:

a. Define the path as the join of the directory path and the

category.

b. Define the class_num as the index of the category.

c. For each file in the path, perform the following steps:

 Define the filepath as the join of the path and the file.

 Print the category.

 Read the image using cv2.imread function and store it in

img.

 Show the image using plt.imshow function and plt.show.

 Break the loop after the first image.

12. Define the img_size variable as 256.

13. For each category in categories, perform the following

steps:

a. Define the cnt and samples variables as 0 and 3,

respectively.

b. Create a figure and axes with the subplots function and

store them in fig and ax, respectively.

c. Set the figure title as i using fig.suptitle function.

d. Define the path as the join of the directory path and the

category.

e. Define the class_num as the index of the category.

f. For each file in the path, perform the following steps:

 Define the filepath as the join of the path and the file.

 Read the image using cv2.imread function and store it in

img.

 Resize the image to img_size using cv2.resize function

and store it in img0.

 Apply Gaussian blur to img0 using cv2.GaussianBlur

function and store it in img1.

 Show the original image, img0, and img1 using ax[cnt,

0].imshow, ax[cnt, 1].imshow, and ax[cnt, 2].imshow,

respectively.

 Increment the cnt variable by 1.

 Break the loop after samples images.

14. Show the figure using plt.show.

15. Create an empty list data.

16. Define the img_size variable as 256.

17. For each category in categories, perform the following

steps:

a. Define the path as the join of the directory path and the

category.

b. Define the class_num as the index of the category.

c. For each file in the path, perform the following steps:

 Define the filepath as the join of the path and the file.

 Read the image using cv2.imread function and store it in

img.

 Resize the image to img_size using cv2.resize function

and store it in img.

 Append the list [img, class_num] to data.

18. Shuffle the data using random. shuffle function.

19. Create two empty lists X and y.

20. For each feature and label in data, perform the following

steps:

a. Append feature to X.

b. Append label to y.

21. Print the length of X and the counts of y using len

function and Counter from collections library.

22. Normalize X by converting it to a numpy array,

reshaping it to (-1, img_size, img_size, 1), and dividing

by 255.0.

23. Convert y to a numpy array.

24. The dataset should now be split into training sets and

validation sets using the train_test_split function with a

random state of 10 and stratify=y.

25. Print the length and shape of the training and validation

sets, as well as the count of the different labels in each set

using Counter.

26. Reshape X_train to have a single channel using the

reshape method.

27. Print the length and shape of X_train after the reshape.

28. Apply the SMOTE (Synthetic Minority Over-sampling

Technique) oversampling method to balance the dataset.

Print the count of labels in y_train before and after

SMOTE.

29. Reshape X_train and X_train_sampled back to the

original shape with one channel.

30. Create a Sequential model.

31. Add two Conv2D layers with 64 filters, a 3x3 kernel size,

and ReLU activation, followed by a MaxPooling2D layer

with a 2x2 pool size.

32. Add a Flatten layer and two Dense layers with 16 and 3

units, respectively, and a Softmax activation for the

output layer.

33. Print a summary of the model.

34. Use 'sparse_categorical_crossentropy' loss, 'adam'

optimizer, and 'accuracy' metric to compile the model.

35. Fit the model with the oversampled training data, a batch

size of 8, 10 epochs, and the validation data.

36. Save the model to a file named 'my_model.h5'.

37. Use the model to predict on the validation data and save

the predictions to y_pred.

38. Convert y_pred to binary labels using argmax.

39. Print the classification report and confusion matrix of the

predictions on the validation data

40. Matplotlib library is used for the plotting of accuracy of

training and validation for each epoch of the model.

41. Use the history object, which was returned by the fit()

method, to access the accuracy values for both the

~ 36 ~

The Pharma Innovation Journal

training and validation sets.

42. Use the plot() method to create a line plot for the

accuracy of training and validation accuracy. Set the label

parameter to 'Train' for the accuracy of the training plot

and 'Validation' for the validation plot.

43. Set the title of the plot to 'Model Accuracy', set the y-axis

label to 'Accuracy', and set the x-axis label to 'Epoch'.

44. Use the legend() method to display a legend on the plot,

which will show which line corresponds to the training

accuracy and which corresponds to the validation

accuracy.

45. Call show() method to display the plot.

46. Repeat steps 1-6 for the model loss, using the 'loss' and

'val_loss' values from the history object instead of the

accuracy values.

47. Set the title of the plot to 'Model Loss', set the y-axis

label to 'Loss', and set the x-axis label to 'Epoch'.

48. STOP

4. Results and Analysis

The model after compiling runs using a batch size of ‘8’ and

the number of running epochs being more than ‘10’. It gives

an accuracy of 1.000, with loss as 5.7009e-05, val_loss as

0.0632 and val_accuracy as 0.9927.

Fig 7: Epochs

The confusion matrix is also printed to visualize the precision and recall values in a better way possible

Fig 8: Confusion Matrix

The final result is provided after the compilation of model and

successful running of epochs. The output comes out as

“Image {file} is classified as {'cancerous' if predictions[i] >

0.5 else 'non-cancerous'}.”

Fig 9: Output after running the model

~ 37 ~

The Pharma Innovation Journal

Our results show that the machine learning model we

developed can accurately detect cancerous cells in lung

images with high precision and recall rates. We also found

that certain features, such as intensity and texture, were more

important than others in identifying cancerous cells.

Two graphs are plotted, each for Model Accuracy and Model

Loss. These graphs show the actual changes in the loss and

accuracy. The graph for Model Accuracy shows the

significant increase in accuracy from the first epoch itself

after being run, and then it gets at a constant high accuracy

after the 3rd epoch. The graph for Model Loss shows the

significant decrease in the loss from the first epoch itself after

being run, and then it gets at a constant low loss after the 3rd

epoch.

Fig 10: Model Accuracy and Model Loss graphs

5. Conclusion

The research shows the increased accuracy and better

detection of cancerous cells in a patient’s lung. The output

displays whether the lung is cancerous or not, based on all

features extracted from various segmented images. In

conclusion, our study demonstrates the potential of machine

learning algorithms in accurately detecting lung cancer. The

use of segmented images and feature extraction allowed us to

train a model that can identify cancerous cells with high

accuracy. The results of this study suggest that machine

learning models can be used to increase the accuracy of lung

cancer diagnoses, which could result in earlier detection and

better patient outcomes. These findings have significant

clinical implications. To confirm these results on a broader

scale and investigate the possibilities of these models in

clinical practice, more investigation is required.

6. Results and Analysis

The project's implementation could improve patient outcomes

and aid radiologists in the early detection of lung cancer.

Lung cancer can be reliably and accurately diagnosed by

using the trained convolutional neural network (CNN) model

in medical imaging software. While the project has yielded

encouraging results, there is still room to explore deeper CNN

architectures and more advanced image pre-processing

techniques to improve lung cancer detection accuracy. To

enable earlier screening and diagnosis, the project can be

extended to predict the risk of lung cancer in high-risk

individuals. Improving patient outcomes requires early lung

cancer detection. Additionally, the trained CNN model can be

used to predict the results of specific lung cancer treatments.

7. References
1. Bhatia S, Sinha Y, Goel L. Soft Computing for Problem

Solving. Singapore: Springer; 2019. Lung cancer

detection: a deep learning approach.

2. Nasser IM, et al. Lung Cancer Detection Using Artificial

Neural Network.

3. Nazir I, et al. Efficient Pre-Processing and Segmentation

for Lung Cancer Detection Using Fused CT Images.

4. Joon P, Bajaj SB, Jatain A. Progress in Advanced

Computing and Intelligent Engineering. Singapore:

Springer; c2019. Segmentation and detection of lung

cancer using image processing and clustering techniques.

5. Kaushik P, Yadav R. Reliability design protocol and

block chain locating technique for mobile agent. Journal

of Advances in Science and Technology (JAST).

2017;14(1):136-141. https://doi.org/10.29070/JAST

6. Kaushik P, Yadav R. Deployment of Location

Management Protocol and Fault Tolerant Technique for

Mobile Agents. Journal of Advances and Scholarly

Researches in Allied Education [JASRAE].

~ 38 ~

The Pharma Innovation Journal

2018;15(6):590-595. https://doi.org/10.29070/JASRAE

7. Kaushik P, Yadav R. Mobile Image Vision and Image

Processing Reliability Design for Fault-Free Tolerance in

Traffic Jam. Journal of Advances and Scholarly

Researches in Allied Education (JASRAE).

2018;15(6):606-611. https://doi.org/10.29070/JASRAE

8. Kaushik P, Yadav R. Reliability Design Protocol and

Blockchain Locating Technique for Mobile Agents.

Journal of Advances and Scholarly Researches in Allied

Education [JASRAE]. 2018;15(6):590-595.

https://doi.org/10.29070/JASRAE

9. Kaushik P, Yadav R. Traffic Congestion Articulation

Control Using Mobile Cloud Computing. Journal of

Advances and Scholarly Researches in Allied Education

(JASRAE). 2018;15(1):1439-1442.

https://doi.org/10.29070/JASRAE

10. Lakshmanaprabu SK, Mohanty SN, Shankar K,

Arunkumar N, Ramirez G. Optimal deep learning model

for classification of lung cancer on CT images. Future

Generation Computer Systems.

11. Pavel M, et al. Contact inhibition controls cell survival

and proliferation via YAP/TAZ-autophagy axis.

12. Al-Tarawneh MS. Lung Cancer Detection Using Image

Processing Techniques.

13. Nithila EE, Kumar SS. Segmentation of lung from CT

using various active contour models. Biomedical Signal

Processing and Control. 2019.

14. Palani D, Venkatalakshmi K. An IoT based predictive

modelling for predicting lung cancer using fuzzy cluster-

based segmentation and classification. Journal of Medical

Systems. 2019.

15. Fontana RS, et al. Early Lung Cancer Detection: Results

of the Initial (Prevalence) Radiologic and Cytologic

Screening in the Mayo Clinic Study.

16. Makaju S, et al. Lung Cancer Detection using CT Scan

Images.

17. Makaju S, Prasad PWC, Alsadoon A, Singh AK,

Elchouemi A. Lung Cancer Detection using CT Scan

Images.

