www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 TPI 2020; 9(9): 543-546 © 2020 TPI www.thepharmajournal.com

Received: 16-07-2020 Accepted: 19-08-2020

Alok Kumar Pandey

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

SR Mishra

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

AN Mishra

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

Arun Kumar

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

Suraj Kumar

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

Rakesh Kumar Kushwaha

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

AK Singh

Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

Corresponding Author:

Alok Kumar Pandey Department of Agricultural Meteorology, A.N.D. University of Agriculture & Technology Kumarganj, Ayodhya, Uttar Pradesh, India

Studies on accumulated thermal unit, thermal use efficiency of different rice genotypes at different phenological stages

Alok Kumar Pandey, SR Mishra, AN Mishra, Arun Kumar, Suraj Kumar, Rakesh Kumar Kushwaha and AK Singh

Abstract

A field experiment was conducted during *Kharif* season of 2019 at Student Instructional Farm of A.N.D.U.A. & T, Kumarganj, Ayodhya (U.P.) Studies on accumulated thermal unit, thermal use efficiency of different rice genotypes at different phenological stages. Experiment was conducted with in Randomized Block Design and replicated four times. The treatments comprised of 3 crop growing environment i.e. 5th July (D₁), 15th July (D₂) and 25th July (D₃) with 3 genotypes i.e. NDR-97 (V₁), SARJOO-52 (V₂) and BPT-5204 (V₃). The results revealed that Crop growing environment of 5th July (D₁) took more days to reach harvest stage in all genotypes. With respect to the heat units *viz.*, growing degree days, photo thermal unit, helio- thermal unit, the first growing environment of rice on 5th July (D₁) is giving more values over after growing environment i.e. 15th July (D₂) and 25th July (D₃). Maximum thermal use efficiency (TUE) was recorded in crop growing environment on July 5th (0.60 g/m^{2/0}C days⁻¹) at milking the stage, followed by July 15th (0.39g/m^{2/0}C days⁻¹) and July 25th (0.41g/m^{2/0}C days⁻¹).

Keywords: Crop growing environment, GDD, HUT, PTU, genotypes, thermal use efficiency

Introduction

Rice (Oryza sativa L.) is one of the most Staple cereal crops, cultivated in 114 countries across the world (150 million hectares, 11% of total area) (Pathak et al., 2018)^[6]. Rice belongs to the Poaceae family originated from South East Asia. Out of 24 species of rice only two species Oryza glaberima and Oryza sativa are cultivated. Weather and climate greatly affect agricultural productivity in any region. Agricultural production of any region is being regulated by the prevailing climate of that the area through temperature, rainfall, light intensity, radiation, sunshine duration etc. (Sastri et al., 2010)^[9]. Crop phenology can be used to specify the most appropriate date and time of a specific development process. The growing degree dav (GDD), helio-thermal unit (HTU), photo-thermal unit (PTU). and phenothermal index (PTI) are some simple tools to find out the relationship between plant growth, temperature, bright sunshine hours, and day length. However, the impact of temperature, bright sunshine hour, as well as daylength on the growth habits of rice crop, are not well documented. Agricultural production and productivity of any region is being regulated by the prevailing climate of that area through temperature, rainfall, light intensity, radiation, sunshine duration, etc. (Goswami et al., 2006)^[3], Thermal use efficiency i.e., which indicates the amount of dry matter produced per unit of growing degree days or thermal time.

Materials Methods

To carry out the research output of the investigation entitled "Studies on accumulated thermal unit, thermal use efficiency of different rice genotypes at different phenological stages", an experiment was conducted during kharif seasons of 2019 at Student Instructional Farm of ANDUA&T, Narendra Nagar, Kumarganj, Ayodhya (U.P.). The geographical situation of experimental site lies at latitude 26° 47'North longitude 82° 12' East and altitude of 113 meter from mean sea level in the Indo -genetic alluvium of Eastern Uttar Pradesh. The experiment was carried out in Randomized Block Design (Factorial) and replicated four times. The experiment comprised of three crop growing environment i.e. 5th July (D₁), 15th July (D₂) and 25th July (D₃) with three genotypes i.e. NDR-97 (V₁), SARJOO-52 (V₂) and BPT-5204 (V₃).

The fertilizers were applied as per the requirement of crop. 100:60:60 kg ha⁻¹ N: P₂O₅: K₂O was applied in the form of Urea, SSP and MOP, respectively. At higher mean temperatures (25-32 °C), early flowering is induced by reducing the growth duration; whereas the mean low temperature (<15 °C) forces the crop to remain dormant with no flowering. Therefore, a day temperature of 25 °C to 33 °C and night temperature of 15 °C to 20 °C is preferable. Rice crop needs a hot and humid climate. The heat unit or GDD was proposed to explain the relationship between growth duration and temperature. This concept assumes a direct and linear relationship between growth and temperature. The heat units, i.e. Growing Degree Day (GDD) were computed using a base temperature of 10 °C during the various crop growth stages for rice genotypes.

Accumulated thermal unit/GDD (°C days)

The heat unit or GDD was proposed to explain the relationship between growth duration and temperature. This concept assumes a direct and linear relationship between growth and temperature. The heat units, i.e. Growing Degree Day (GDD) were computed using a base temperature of 10 °C during the various crop growth stages for rice genotypes.

Accumulated thermal unit of different phenophases were calculated by using following formula.

ATU = $\sum_{i=1}^{n} G. D. D.$

Where, i= 1, 2, 3.....n is the number of days. Accumulated thermal unit = $\frac{T \max + T \min}{2}$ – Base temp.

Base temperature for rice crops is 10 °C. Accumulated photothermal unit (day °C hour) Photothermal unit (PTU) = GDD x DL Where,

DL = Day length (Possible sunshine hours: from dawn to twilight).

Accumulated helio-thermal unit (day °C hour)

Heliothermal unit (HTU) = GDD x BSSH Where, BSSH = Bright sunshine hours

Thermal use efficiency (g/m²/°C days)

Thermal use efficiency i.e., which indicates the amount of dry matter produced per unit of growing degree days or thermal time

Thermal use efficiency (HUE) was calculated by per following formula

$$TUE = \frac{\text{Total Dry matter}(g/m^2)}{\text{Accu.thermal unit (°C days)}}$$

Results & Discussion

The data pertaining to total dry matters accumulation as of rice genotypes recorded at different stages of crop as influenced by various treatments have been presented in Table 1 and fig. 1. The total dry matter (gm⁻²) accumulation differs significantly with respect to different growing environment at all the growth stages. From table it was revealed that maximum total dry matters (gm⁻²) accumulation was recorded at July 5th (1177.15) followed by July 15th (1065.72) and July

25th (947.92) at harvest, respectively. Among the genotypes SARJOO-52 attained maximum total dry matters (gm⁻²) accumulation (1230.08) at harvest followed by genotypes BPT-5204 (1139.88) at harvest and NDR-97 (820.83) at the harvest. It is also evident that genotypes significant among each other for total dry matters (gm⁻²) accumulation at 15 DAT, 30 DAT, 45 DAT, 60 DAT, 75 DAT, and 90 DAT and at harvest.As the weather became free in most of the days of September–October, the crop growth became faster under D3 lesser accumulation of dry matter has been observed due to short plant and cold spell at night. The results are in conformity with the findings of Salam *et al.* (2004)^[8].

The accumulated growing degree days (GDD) computed for different rice genotypes under various date of crop growing environment from tillering to harvest stage are shown in Table 2. Highest accumulated GDD was observed under 05th July (D_1) crop growing environment in all the genotypes followed by 15th July (D₂) crop growing environment and 25th July (D_3) crop growing environment, respectively. In genotypes NDR-97 observed the highest GDD at harvest with D_1 crop growing environment (1788.7) followed by D_2 crop growing environment (1710.5) and D₃ crop growing environment (1617). In genotypes SARJOO-52 the highest GDD was recorded at harvest stage with D₁ crop growing environment (2197.7) followed by D2 crop growing environment (2128.7) and D₃ transplanting crop growing environment (2010). Similarly, in genotypes BPT-5204 highest value of GDD was recorded at harvest stage with D1 crop growing environment (2566.95) followed by D₂ crop growing environment (2427) and D₃ crop growing environment (2300). Similar results were reported by Halder et al., 2010^[4]. In general, the accumulated growing degree day values decreased with delayed sowing due to early maturity of crops because of high value of temperature at maturity. These results are in general agreement with the findings of Sreenivas et al. (2010)^[11] and Chopra and Chopra (2004)^[2]. Paul and Sarker (2000)^[7] also reported that requirement of GDD decreased for different phenological stages with delay in sowing. Decrease in heat units with delay in transplanting has also been reported by Singh and Pal (2003)^[10]. Abhilash et al. (2017)^[1] reported that accumulated GDD were higher under early transplanting.

The observed value of Thermal use efficiency (TUE) $(g/m^{2/\circ}C \text{ days}^{-1})$ at harvest stages of different genotypes of rice under various crop growing environments is given in the Table 3. Highest accumulated TUE was observed under 05th July (D₁) crop growing environment in all the genotypes followed by 15th July (D₂) crop growing environment and 25th July (D₃) crop growing environment.

In genotype NDR-97 observed the highest TUE at milking stage with D_1 transplanting (0.60) followed by D_2 at harvest stage crop growing environment (0.53) and D_3 at milking stage crop growing environment (0.41). In genotype SARJOO-52 the highest accumulated TUE was found at dough stage with D_1 crop growing environment (0.57) followed by D_2 crop growing environment (0.51) and D_3 crop growing environment (0.47). In genotype BPT-5204 the highest accumulated TUE was found at milking stage with D_1 crop growing environment (0.58) followed by D_2 crop growing environment (0.58) followed by D_2 crop growing environment (0.51) and D_3 crop growing environment (0.47). Similar result was reported by Nayak *et al.*, 2017 ^[5].

Table 1: Total dry matters accumulation as affected	by different growing	g environment of different rice	e genotypes
---	----------------------	---------------------------------	-------------

Treatments	Total dry matter (gm ⁻²)						
Growing environment	15 DAT	30 DAT	45 DAT	60 DAT	75 DAT	90 DAT	At Harvest DAT
5 th July	129.60	216.00	356.59	524.40	708.64	1012.35	1177.15
15 th July	127.80	213.00	322.83	474.76	641.56	916.52	1065.72
25 th July	124.20	207.00	287.15	422.28	570.65	815.21	947.92
SEm±	2.27	3.83	5.95	8.54	11.77	16.51	18.47
CD (5%)	6.65	11.19	17.39	24.93	34.36	48.19	53.93
Varieties							
NDR-97	125.40	209.00	248.65	365.66	494.14	705.91	820.83
Sarjoo-52	129.00	215.00	372.62	547.97	740.51	1057.87	1230.08
BPT-5204	127.20	212.00	345.30	507.80	686.21	980.30	1139.88
SEm±	2.27	3.83	5.95	8.54	11.77	16.51	18.47
CD (5%)	6.65	11.19	17.39	24.93	34.36	48.19	53.93

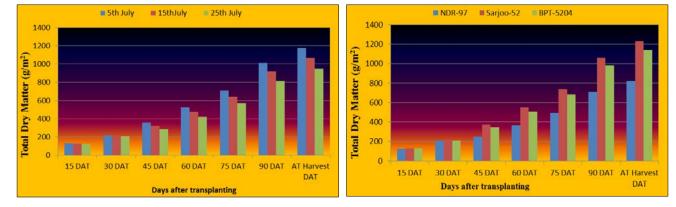


Fig 1: Total dry matters accumulation as affected by different growing environments of different rice genotypes

Transplanting Date	Tillering	Panicle Initiation	Days to 50% Flowering	Milking	Dough stage	Harvest stage		
NDR-97								
05-Jul-19	819.50	1259	1531.75	1685.95	1747.2	1788.7		
15-Jul-19	741.8	1179.3	1468.2	1610.5	1670.2	1710.5		
25-Jul-19	617.8	1019.8	1288	1390.5	1509.5	1617		
Sarjoo-52								
05-Jul-19	948.5	1278.25	1624.2	1829.95	2059.2	2210.20		
15-Jul-19	857.5	1199.3	1570.2	1768.2	1940.5	2095.7		
25-Jul-19	819	1185.7	1509.5	1764.5	1858.2	2010		
BPT-5204								
05-Jul-19	999.25	1479	1849.7	2179.7	2367.95	2566.95		
15-Jul-19	939	1446.7	1768.2	2060.7	2279.5	2427		
25-Jul-19	901	1370.7	1703	2059.5	2247	2300		

Table 2: Accumulated growing degree days (°C day) at different rice genotypes at different phenological stages

 $\label{eq:table 3: Thermal use efficiency (TUE) (g/m^{2/^{o}}C \ days \ at \ different \ rice \ genotypes \ at \ different \ phenological \ stages$

Transplanting Date	Tillering	Panicle Initiation	Days to 50% Flowering	Milking	Dough stage	Harvest stage		
NDR-97								
05-Jul-19	0.43	0.41	0.46	0.60	0.57	0.56		
15-Jul-19	0.29	0.40	0.44	0.39	0.38	0.53		
25-Jul-19	0.33	0.28	0.32	0.41	0.37	0.35		
Sarjoo-52								
05-Jul-19	0.37	0.41	0.43	0.55	0.57	0.53		
15-Jul-19	0.38	0.39	0.40	0.51	0.47	0.50		
25-Jul-19	0.35	0.35	0.37	0.46	0.43	0.47		
BPT-5204								
05-Jul-19	0.35	0.47	0.54	0.58	0.49	0.45		
15-Jul-19	0.34	0.44	0.51	0.51	0.46	0.43		
25-Jul-19	0.31	0.30	0.47	0.46	0.42	0.41		

Conclusions

Conclusively, With respect to the heat units *viz.*, growing degree days, photo thermal unit, helio thermal unit, the first growing environment of rice on 5th July (D₁) is giving more values over after growing environment i.e. 15th July (D₂) and

 25^{th} July (D₃).With respect of optimum growing environments thermal use efficiency are found better under D₁ (5th July) as compared to 15^{h} July (D₂) and 25^{th} July (D₃) growing environments. Based on above findings (D₁) 5th July is best suited growing environments for new selection genotypes of rice based on yield attributes, yield and heat units. Maximum thermal use efficiency (TUE) was recorded in crop growing environment on July 5th (0.60 g/m²/⁰C days) at milking the stage, followed by July 15th (0.510g/m²/⁰C days) and July 25th (0.509g/m²/⁰C days).

References

- Abhilash D, Shekhar C, Singh R, Premdeep, Sharma R. Agrometeorological Indices and Phenology of Basmati Rice (*Oryza sativa* L.) under Different Dates of Transplanting. Int. J Curr. Microbial. App. Sci. 2017; 6(3):212-222.
- 2. Chopra NK, Chopra N. Influence of transplanting dates on heat unit requirement of different phenological stages and subsequently yield and quality of scented rice (*Oryza sativa*) seed. Indian Journal of Agricultural Sciences. 2004; 74(8):415-419.
- 3. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Prince K Xavier. Increasing Trend of Extreme Rain Events over India in a warming Environment, Science. 2006; 314:1442-1445.
- Halder C, Banerjee S, Dutta P, Mukherjee A. Variation of growing degree-days influencing growth and development of rice in the New Alluvial Zone of West Bengal. Environment and Ecology. 2010; 28(1B):690-693.
- Nayak BR, Panigrahy N, Mohapatra S, Mohanty AK, Sahoo B, Jagdev PN *et al.* Heat utilization and productivity of summer-transplanted rice (*Oryza sativa* L.) in relation to irrigation schedules and date of transplanting. J Agrometeorol. 2017; 19(3):242-245.
- 6. Pathak H, Samal P, Shahid M. Revitalizing rice-system for enhancing productivity, profitability and climate resilience. In Rice Research for enhancing productivity, profitability and climate resilience. ICAR- National Rice Research Institute, Cuttack, Odisha, India, 2018, 1-17.
- 7. Paul NK, Sarker DK. Accumulated heat units and phenology relationships in wheat as influenced by sowing dates. Bangladesh J Bot. 2000; 29(1):49-54.
- Salam MA, Ali F, Anwar MP, Bhuiya MSU. Effect of level nitrogen and date of transplanting on the yield and yield attributes of transplanted Aman rice under SRI method. J Bangladesh Agricultural University. 2004; 2(1):31-36.
- 9. Sastri ASRAS. Climate Change in Indian Sub-Continent and its impact on Agriculture. Nova Acta Leopoldina. 2010; 384:227-240.
- Singh S, Pal M. Growth, yield and phonological response of wheat cultivars to delayed sowing. Indian J Pl. Physiol. 2003; 8:277-86.
- 11. Sreenivas G, Reddy M, Devender, Raji Reddy D. Agrometeorological indices in relation to phenology of aerobic rice. J Agrometeorol. 2010; 12(2):241-244.