www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2021; 10(10): 619-623 © 2021 TPI www.thepharmajournal.com Received: 08-07-2021

K Sathish Babu

Accepted: 17-08-2021

Scientist (Agronomy) AINP on Tobacco, RARS, Nandyal, Andhra Pradesh, India

Y Padmalatha

Principal Scientist & Head (Agronomy), ARS, Reddipalli, Ananthapuram, Andhra Pradesh, India

Evaluation of pigeonpea (*Cajanus cajan* L.) based intercropping systems in Krishna district of Andhra Pradesh

K Sathish Babu and Y Padmalatha

Abstract

A field experiment was conducted during three *kharif* seasons during 2016-17 to 2018-19 at Agricultural Research Station, Garikapadu, Krishna district, ANGRAU, with an objective to evaluate the performance of different intercrops with pigeonpea and to find out the suitable intercrop with pigeonpea. Among the various pigeonpea intercropping systems, Pigeonpea + cowpea (1:5) was found superior with mean maximum pigeonpea equivalent yield 2026 kg/ha and mean maximum rainwater use efficiency of 2.84 kg/ha-mm compared to other intercropping systems. Maximum net returns of Rs.75,555/ha and benefit-cost ratio 2.57 was also recorded with Pigeonpea + cowpea (1:5) intercropping system. Further, this intercropping system also recorded relatively higher land equivalent ratio of 3.27 indicating yield advantage of 27% compared to sole crops.

Keywords: Pigeonpea intercropping systems, PEY, LER, RWUE, Economics

Introduction

Pigeonpea (Cajanus cajan L.) also known as arhar, tur or red gram is one of the most important kharif pulse crop cultivated in India. It occupies a prime niche in sustainable farming systems of small and marginal rainfed farmers. It is next to only chickpea in area and production among the entire pulse crop grown in India. It is cultivated under diverse agro climatic conditions either as sole or in mixtures with cereals, millets, pulses or oilseeds under rainfed conditions. Pigeonpea grown as a sole crop is not economically viable because of its slow initial growth rate, low productivity and longer duration during which the more rapidly growing short duration and short stature crops like greengram, blackgram, cowpea, soybean, sorghum, bajra and korra can be conveniently intercropped to utilize the natural resources most efficiently in the early stages of pigeonpea intercropping system. Intercropping with short duration pulses like greengram and cereals like pear millet in pigeonpea enhance total productivity (Sharma et al., 1995). Intercropping involves growing two or more crops or varieties simultaneously on the same piece of land with definite row ratio. Crop intensification is in both time and space dimensions. There is intercrop competition during all part of crop growth (Prasad and Shrivastava, 2011) [3]. Intercropping provides insurance against drought, modifies soil environment, improves moisture and radiation use, ensure better weed control, reduces disease and pest incidence and in whole increases and stabilizes the productivity. Intercropping has been identified as a kind of biological insurance against risks under aberrant rainfall behaviour. Crop diversification is also necessary to get higher yield and return to maintain soil health, conserve natural resources, preserve environment, meet daily food requirement of human and animals, withstand price fluctuation and ensure constant flow of income (Siddique et al., 2012) [4]. In Krishna zone of Andhra Pradesh pigeonpea is cultivated during kharif under diverse biophysical (soil and rainfall types) and socioeconomic settings, thus always risk prone due to in - season drought, particularly in the shallow to medium deep red soils often resulting in unsustainable yields and income. Thus, it becomes necessary to develop an efficient and profitable pigeonpea based intercropping system for Krishna zone of Andhra Pradesh.

Materials and Methods

A field experiment was conducted during three *kharif* seasons during 2016-17 to 2018-19 at Agricultural Research Station, Garikapadu, Krishna district, ANGRAU with an objective to evaluate the performance of different intercrops with pigeonpea and to find out the suitable intercrop with pigeonpea.

Corresponding Author: K Sathish Babu

Scientist (Agronomy) AINP on Tobacco, RARS, Nandyal, Andhra Pradesh, India The experimental site was characterized as red sandy loams with shallow depth (25-30 cm) with water holding capacity 14.5%, well drained in nature, PH 6.9, EC 0.14 ds m⁻¹, Organic carbon 0.48%, low in available Nitrogen (149-193 kg/ha), medium to high in available phosphorus (16.4-28.3 kg/ha) and potassium (155-349 kg/ha). The treatments consisting of 7 inter pigeonpea cropping systems with intercrops like greengram, blackgram, cowpea, soyabean, sorghum, bajra, korra, and 8 sole crop treatments, total 15 treatments were studied in RBD design and replicated thrice. Pigeonpea variety LRG-52, Greengram variety IPM 2-14, Blackgram variety LBG 787, Cowpea variety TPTC-29, Soybean variety JS335, Sorghum variety NTJ-5, Bajra variety ABV04, Korra variety SiA3222 were used. After every one row of pigeonpea five rows of greengram, blackgram, cowpea, soybean, korra, while two rows of sorghum and bajra after every row of pigeonpea evaluated. The optimum plant population was maintained by thinning and gap filling at 10 days after germination. For sole crop, recommended dose of fertilizers was applied and for intercrop, which crop recommended fertilizer dose was maximum that fertilizer dose was applied. Weeds were controlled by adoption of two hand weedings. The sowing of intercrop and sole crop during the 2016-17, 2017-18 and 2018-19 viz., pigeonpea, greengram, blackgram, cowpea, soybean, sorghum, bajra and korra was sown 30.06.2016, 22.06.2017 and 29.06.2018 respectively and harvested after attaining physical maturity. The monthly actual and normal rainfall at ARS, Garikapadu during the experimentation period is given in Table 1. During 2016-17 (June to January), total rainfall received was 746.9 mm in 43 rainy days which was surplus by 5.27% against normal rainfall (709.5 mm), while during the kharif, total rainfall received was 677.9 mm in 38 rainy days which was deficit by 4.45% against normal rainfall (709.5 mm). During 2017-18 total rainfall received was 723.9 mm in 43 rainy days which was surplus by 2.02% against normal rainfall (709.5 mm), while during the kharif, total rainfall received was 618.9 mm in 37 rainy days which was deficit by 12.7% against normal rainfall (709.5 mm). During 2018-19 total rainfall received was 647.3 mm in 43 rainy days which was deficit by 8.76% against normal rainfall (709.5 mm), while during the kharif, total rainfall received was 555.3 mm in 37 rainy days which was deficit by 21.73% against normal rainfall (709.5 mm). Different competition indices were calculated as described by Willy (1979) [6]. Pigeonpea equivalent yield (PEY) was worked out by converting the yields of intercrops to the yield of pigeonpea on the basis of prevailing market price of each crop. It was calculated with the following formula.

PEY = (Yield of intercrop \times price of intercrop/ price of pigeonpea) + Yield of pigeonpea.

The land equivalent ratio (LER) is sum of fraction of the yields of intercrops, relative to their sole crop yields. It is calculated with the following formula.

LER = (Yield of pigeonpea in intercropping system/ yield of sole pigeonpea) + (Yield of intercrops in intercropping system/yield of sole intercrops).

The rainwater use efficiency (kg/ha mm) of a crop or cropping system was determined by considering the pigeonpea equivalent yield (kg/ha) attained by the system and crop seasonal rainfall (mm) received from sowing to harvest of a given crop or the long duration crop in the cropping system. It is given as a ratio of the pigeonpea equivalent yield

and the crop seasonal rainfall of a crop. The cost of cultivation (Rs/ha) incurred under sole and intercropping systems was divided by taking into account all the costs involved for different agricultural inputs and operations. The value of different crops in sole and intercropping systems was considered to derive the gross returns (Rs/ha), net returns (Rs/ha) and cost-benefit ratio.

Results and Discussion

Yield of component crops and pigeonpea equivalent yield of intercropping systems

Among the pigeonpea based intercropping systems, higher grain (791 kg/ha) and straw yield (2839 kg/ha) of cowpea as a intercrop was recorded in Pigeonpea + cowpea (1:5) system (Table 3). The erect growing and short duration crop foxtail millet and might have avoided the shading effect of the slow growing pigeonpea. The taller bajra or sorghum component of the intercrop might have extended depressive effects through shading of the shorter and slower growing pigeonpea component. Hence the pigeonpea yield under Pigeonpea + sorghum (1:2) intercropping system and Pigeonpea + bajra (1:2) intercropping system was low 1415 and 1441 kg/ha respectively compare to the pigeonpea yields with other intercrops i.e., greengram, blackgram, cowpea and sorghum. Mahto et.al., 2007 also conducted field experiment and concluded that fingermillet recorded highest component yields in pigeonpea + fingermillet (1:5) system which are in similar line of results observed.

Pigeonpea equivalent yields was significantly differed with various pigeonpea based intercropping systems were presented in Table.4. Significantly higher mean pigeonpea equivalent yields 2026 kg/ha was recorded with Pigeonpea + cowpea (1:5) intercropping system followed by Pigeonpea + greengram (1:5) 1848 kg/ha and 1729 kg/ha with Pigeonpea + foxtail millet (1:5). The increase in pigeonpea equivalent yield in Pigeonpea + cowpea (1:5) intercropping system might be due to no or low competition between main crop and intercrop for growth as pulses was short duration crop with less competition for light and nutrients compare to the tall crops like sorghum and bajra. Kathmale *et al.*, 2014 [1] reported that pigeonpea equivalent yields significantly higher with pigeonpea + groundnut intercropping system (1:3) by utilizing both below and above groundnut environment.

Land equivalent ratio

The Land equivalent ratio (LER) for the 2016-17, 2017-18 and 2018-19 and pooled mean were calculated and presented in Table.4. The Land equivalent ratio (LER) obtained in all the intercropping systems was more than one ranging from 1.0 to 3.27 indicating yield advantage with pigeonpea based intercropping systems. This yield advantage owing to intercropping might be attributed to balanced competition and better utilization of available resources than sole cropping resulting in higher productivity/unit area. The maximum LER of 3.27 was obtained with Pigeonpea + cowpea (1:5) intercropping system followed by Pigeonpea + soyabean (1:5) 2.97 which is on par with Pigeonpea + blackgram (1:5) 2.95, Pigeonpea + greengram (1:5) 2.80 but was significantly higher than the LER (1.99) attained with Pigeonpea + sorghum (1:2) and LER (1.78) with Pigeonpea + korra (1:5) system (Table 4). Similar results of higher LER were reported in pigeonpea + greengram (1:3) ratio (Udhaya and Kuzhanthaivel, 2015) [5].

Rain water use efficiency

Rainwater use efficiency (RWUE) was estimated for the years 2016-17,2017-18 and 2018-19 and pooled mean and the results were presented in Table.5. The rainwater use efficiency (RWUE) attained with pigeonpea based intercropping systems, in general was higher as compared to rainwater use efficiency attained with sole crops. This indicated higher resource use efficiency of both rainfall and soil moisture by both the component crops during the crop season. The mean maximum RWUE of 2.84 kg/ha-mm was obtained with Pigeonpea + cowpea (1:5) intercropping system followed by Pigeonpea + greengram (1:5) intercropping system (2.61 kg/ha-mm) and Pigeonpea + korra (1:5) intercropping system (2.42 kg/ha-mm). Similarly Kathmale *et al.*, 2014 [1] also reported that higher RWUE of (3.19 kg/ha-mm) was observed in pigeonpea + groundnut (1:3)

intercropping system. The rainwater use efficiency was higher in intercropping with legume crops compared to erect crops like sorghum and bajra. The legumes as intercrops acted as cover crops in widely row spaced pigeonpea resulting in higher *in-situ* moisture conservation and efficient utilization by both the component crops, further helped in increased pigeonpea equivalent yields and higher rainwater use efficiency.

Economics

Among the various pigeonpea intercropping systems, Pigeonpea + cowpea (1:5) system recorded higher net returns (Rs.75,555/ha) and benefit-cost ratio (2.57) followed by Pigeonpea + greengram (1:5) intercropping system (net returns Rs.65332/ha) and benefit-cost ratio (2.38) (Table 6).

Table 1: Monthly rainfall (mm) received from sowing to harvest at ARS, Garikapadu

	2016-17		2017	2017-18		2018-19		Pooled mean	
Month	Normal (mm)	Actual (mm)	Normal (mm)	Actual (mm)	Normal (mm)	Actual (mm)	Normal (mm)	Actual (mm)	
June	101.6	108	101.6	159.8	101.6	94.7	101.6	120.8	
July	170.3	127.4	170.3	214.6	170.3	131.8	170.3	157.9	
August	167.9	101	167.9	185.7	167.9	286.8	167.9	191.6	
September	147.6	341.5	147.6	58.8	147.6	42.0	147.6	147.4	
October	79.6	69.0	79.6	105.0	79.6	5.0	79.6	59.6	
November	27.0	0.0	27.0	0.0	27.0	16.0	27.0	5.3	
December	10.3	0.0	10.3	0.0	10.3	40.0	10.3	13.3	
January	5.2	0.0	5.2	0.0	5.2	31.0	5.2	10.3	
Total	709.5	746.9	709.5	723.9	709.5	647.3	709.5	706.2	

Table 2: Main crop grain and straw/haulm yield as influenced by different intercropping systems

Treatments	Main crop grain yield (kg/ha ⁻¹)				Main crop straw/haulm yield (kg/ha ⁻¹)			
Treatments	2016-17	2017-18	2018-19	Pooled mean	2016-17	2017-18	2018-19	Pooled mean
Pigeonpea+ Greengram (1:5)	1516	912	1072	1166	5376	3375	3741	4164
Pigeonpea + blackgram (1:5)	1508	879	785	1056	5338	3331	2888	3853
Pigeonpea + cowpea (1:5)	1611	985	1295	1269	5864	3733	4649	4644
Pigeonpea + soyabean (1:5)	1490	787	585	954	5424	2825	2205	3482
Pigeonpea + sorghum (1:2)	1477	750	560	929	5125	2745	2106	3326
Pigeonpea + bajra (1:2)	1482	727	635	947	5316	2653	2311	3425
Pigeonpea + korra (1:5)	1470	720	683	973	5158	2692	2554	3468
Sole Pigeonpea	1765	1028	1135	1309	6248	3722	4244	4842
Sole Greengram	785	627	529	647	2551	1724	1423	1899
Sole Blackgram	532	711	436	560	1723	1834	1120	1559
Sole Cowpea	829	622	391	614	2702	2621	1219	1980
Sole Soyabean	413	704	635	583	1548	1999	1892	1813
Sole Sorghum	1209	827	652	897	4570	3092	2343	3335
Sole Bajra	944	878	728	851	2416	2853	2497	2589
Sole Korra	1306	1285	991	1193	3643	3315	2735	3232
SEm <u>+</u>	53.0	44.98	39.8	88.0	272	102	119	133
CD (P=0.05)	156.0	138	122	258.0	NS	257	351	391
CV%	13.0	9.18	8.00	12.6	11.5	12.3	10.8	11.7

Table 3: Intercrop grain and straw/haulm yield as influenced by different intercropping systems

Treatments	Intercrop grain yield (kg/ha ⁻¹)				Intercrop straw/haulm yield (kg/ha ⁻¹)			
Treatments	2016-17	2017-18	2018-19	Pooled mean	2016-17	2017-18	2018-19	Pooled mean
Pigeonpea + Greengram (1:5)	639	540	481	533	1596	1351	1251	1399
Pigeonpea + blackgram (1:5)	487	610	323	473	1222	1482	847	1182
Pigeonpea + cowpea (1:5)	712	545	275	510	1857	1388	683	1309
Pigeonpea + soyabean (1:5)	319	610	478	469	785	1647	1242	1225
Pigeonpea + sorghum (1:2)	1015	692	505	737	2767	1868	1283	1473
Pigeonpea + bajra (1:2)	855	790	611	752	2334	2480	2187	2333
Pigeonpea + korra (1:5)	1241	1130	839	791	3052	2983	2483	2839

Table 4: Pigeonpea equivalent yield (REY) and Land equivalent ratio (LER) as influenced by different intercropping systems

Tracetorerate	Pigeonp	ea equivale	ent yield (R	EY) (kg/ha ⁻¹)	Land equivalent ratio (LER)			
Treatments	2016-17	2017-18	2018-19	Pooled mean	2016-17	2017-18	2018-19	Pooled mean
Pigeonpea+ Greengram (1:5)	2314	1557	1673	1848	2.93	2.45	3.02	2.80
Pigeonpea + blackgram (1:5)	2049	1587	1143	1593	3.83	2.23	2.80	2.95
Pigeonpea + cowpea (1:5)	2628	1763	1687	2026	2.94	2.58	4.31	3.27
Pigeonpea + soyabean (1:5)	1889	1527	1182	1532	4.90	2.11	1.92	2.97
Pigeonpea + sorghum (1:2)	2038	1269	938	1415	2.23	1.90	1.85	1.99
Pigeonpea + bajra (1:2)	1794	1385	1145	1441	2.56	1.82	1.87	2.08
Pigeonpea + korra (1:5)	2356	1549	1282	1729	2.12	1.56	1.68	1.78
Sole Pigeonpea	1765	1028	1135	1309	1.0	1.0	1.0	1.0
Sole Greengram	706	705	661	691	1.0	1.0	1.0	1.0
Sole Blackgram	473	727	485	562	1.0	1.0	1.0	1.0
Sole Cowpea	900	888	559	782	1.0	1.0	1.0	1.0
Sole Soyabean	372	880	794	682	1.0	1.0	1.0	1.0
Sole Sorghum	756	579	489	608	1.0	1.0	1.0	1.0
Sole Bajra	629	673	607	636	1.0	1.0	1.0	1.0
Sole Korra	653	826	708	729	1.0	1.0	1.0	1.0
SEm <u>+</u>	87.20	72.21	63.2	90.5	0.01	0.01	0.02	0.01
CD (P=0.05)	264	221	194	277	0.03	0.03	0.06	0.03
CV%	8.0	8.6	7.2	9.7	12.0	11.6	9.7	13.3

Table 5: Rainwater use efficiency (kg/ha-mm) as influenced by different intercropping systems

Treatments	Rainwater use efficiency (kg/ha-mm)						
1 reatments	2016-17	2017-18	2018-19	Pooled mean			
Pigeonpea+ Greengram (1:5)	3.10	2.15	2.60	2.61			
Pigeonpea + blackgram (1:5)	2.74	2.19	1.80	2.24			
Pigeonpea + cowpea (1:5)	3.51	2.43	2.60	2.84			
Pigeonpea + soyabean (1:5)	2.52	2.10	1.82	2.14			
Pigeonpea + sorghum (1:2)	2.72	1.75	1.44	1.97			
Pigeonpea + bajra (1:2)	2.40	1.91	1.77	2.02			
Pigeonpea + korra (1:5)	3.15	2.13	1.98	2.42			
Sole Pigeonpea	2.36	1.42	1.75	1.84			
Sole Greengram	1.05	0.86	0.78	0.91			
Sole Blackgram	0.71	0.98	0.67	0.79			
Sole Cowpea	1.10	0.85	0.60	0.86			
Sole Soyabean	0.55	0.97	0.98	0.82			
Sole Sorghum	1.61	1.14	1.01	1.27			
Sole Bajra	1.26	1.12	1.12	1.21			
Sole Korra	1.74	1.77	1.53	1.68			
SEm <u>+</u>	87.20	72.21	63.2	90.5			
CD (P=0.05)	264	221	194	277			
CV%	8.0	8.6	7.2	9.7			

Table 6: Cost economics of Pigeonpea based inter cropping systems (2016-17 to 2018-19) (Pooled)

Treatments	Redgram equivalent yield (REY) (kg/ha ⁻¹)	Cost of cultivation (Rs/ha)	Gross Returns (Rs/ha)	Net Returns (Rs/ha)	C:B Ratio
Pigeonpea+ Greengram (1:5)	1848	47396	112728	65332	2.38
Pigeonpea + blackgram (1:5)	1593	49275	97173	47898	1.97
Pigeonpea + cowpea (1:5)	2026	48031	123586	75555	2.57
Pigeonpea + soyabean (1:5)	1532	46271	93452	47181	2.02
Pigeonpea + sorghum (1:2)	1415	52309	86315	34006	1.65
Pigeonpea + bajra (1:2)	1441	48654	87901	39247	1.81
Pigeonpea + korra (1:5)	1729	42772	105469	62697	2.47
Sole Pigeonpea	1309	39205	79849	40644	2.04
Sole Greengram	691	27562	42151	14589	1.53
Sole Blackgram	562	28106	34282	6176	1.22
Sole Cowpea	782	26179	47702	21523	1.82
Sole Soyabean	682	29205	41602	12397	1.42
Sole Sorghum	608	32030	37088	5058	1.16
Sole Bajra	636	29585	38796	9211	1.31
Sole Korra	729	26377	44469	18092	1.69

Market Price (Rs/kg)				
Pigeonpea – 61/-	Greengram - 65/-	Blackgram - 72/-	Cowpea - 60/-	Soybean - 32/-
Sorghum - 32/-	Bajra - 26/-	Korra - 23/-		

Conclusion

Among pigeonpea based intercropping systems evaluated Pigeonpea + cowpea (1:5) / Pigeonpea + greengram (1:5) were more productive and profitable than other intercropping systems under rainfed conditions at Krishna district of Andhra Pradesh.

References

- 1. Kathmale DK, Dhadge SM, Satpute NR, Patil SV, Ravindra Chary G, Srinivasa Rao Ch *et al.* Evaluation of Pigeonpea (*Cajanus cajan*) based intercropping systems under Semi-arid Vertisol in Scarcity Zone of Maharashtra. Indian journal of Dryland Agricultural Research and Development 2014;29(1):27-34.
- Mahto DK, Ahmad S, Singh S, Srivastava GP. Soil fertility and nutrient uptake in finger millet (*Eleusine coracana* L.) based Int. J Curr. Microbiol. App. Sci 2018;7(6):2653-2658 2658 intercropping systems. Journal of Research (BAU) 2007;19(1):87-90.
- 3. Prasad K, Shrivastava RC. Pigeonpea (*Cajanus cajan*) and soyabean (*Glycine max*) intercropping system under rainfed situation. Indian journal agricultural science 2011;61:243-246.
- 4. Siddique KHM, Johansen C, Turner NC, Jeuffroy MH, Hashem A, Sakar D, *et al.* Innovations in agronomy for food legumes. A review Agronomy for sustainable development 2012;32:45-64.
- 5. Udhaya ND, Kuzhanthaivel RL. Analysis of light transmission ratio and yield advantages of pigeonpea in relation to intercrop and different plant population. African J. Agric. Res 2015;10(8):731-736.
- 6. Willey RW. Intercropping, its importance and research needs. Part-1. Competition and yield advantages. Field crops Abstr 1979;32:1-10.