www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2021; 10(10): 635-640 © 2021 TPI www.thepharmajournal.com

Received: 17-08-2021 Accepted: 30-09-2021

Nitesh SD

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Manoj Katiyar

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Sarvendra Kumar

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Mahak Singh

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Lokendra Singh

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Amar

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Yashwanth RD

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Corresponding Author: Nitesh SD

Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Eberhart and Russell approach genotype by environment interaction (GEI) for yield and yield component traits in *Vigna radiata* L. Wilczek genotypes

Nitesh SD, Manoj Katiyar, Sarvendra Kumar, Mahak Singh, Lokendra Singh, Amar and Yashwanth RD

Abstract

Present study was carried out to identify stable mungbean genotype across various environments as the performance of each genotype tends to vary when grown in different seasons. Forty homozygous genotypes were tester over three season *viz.*, *kharif* 2019, spring summer 2020 and summer 2020. Eberhart and Russell model of stability analysis was carried out which revealed significant effect of each environment on the genotypes, for all the ten agro-morphological traits except for number of branches per plant. Genotypes KM2355, LG544, and RMG1087 was found promising with stable performance across the three season; while the genotype KM2328 was identified as stable genotype under less favourable conditions. Finally, the genotypes, IPM147-1, NM159 and KM2312 were recognized as stable genotype under favourable conditions.

Keywords: Stability, mungbean, kharif, spring summer, summer

Introduction

Mungbean (*Vigna radiata* L.) is an important short-duration grain legume, well suited to small holder production under adverse climatic conditions. It is an important grain legume crop grown in India and has its origin from Indian region. Genotype \times Environment (GE) interaction is most commonly used statistical analysis for the evaluation of genotypes for yield performance over multi-environments for selection of stable genotypes. Adaptability of the genotype to perform well over diverse environmental condition is a requirement for the present era (Abheysiriwardena *et al.*, 1991)^[2]. Genotypes with low G×E interaction and high yield are desirable for crop breeders as well as farmers, because it indicate that the environments have less effect on the performance of genotypes and yield is greatly contributed by genetic component (Linnemann *et al.*, 1995)^[3]. The objectives of the present study were to investigate the performance and consistency of forty homozygous greengram genotypes for eleven agromorphological traits over different mungbean growing seasons of Uttar Pradesh, India using Eberhart and Russell model. Eberhart and Russell (1966) stated that a desirable cultivar should have an average yield performance that is higher under favorable conditions and less fluctuating under unfavorable conditions than that of the group of cultivars when tested in many environments.

Material and Methods

Forty genotypes of greengram were evaluated in randomized block design (RBD) with three replications. Field trials were conducted during *Kharif* 2018, *spring summer* 2019 and *summer* 2020 at Research farm, C.S. Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India representing three different growing seasons of greengram. Each genotype was sown in plot with three lines planted with spacing of 30×10 cm. All the recommended package of practices was followed for raising healthy crop in all the three seasons. Data was collected from five randomly selected plants from each genotype per replication. The data was recorded for eleven agro-morphological traits – days to 50percent flowering, plant height, number of branches per plant, number of pods per plant, number of seeds per pod, pod length, 100-seed weight, harvest index, seed yield per plant, days to maturity and protein content. Replicated data were analyzed as individual season-wise followed by pooled analysis. Further the data were subjected to stability analysis by Eberhart and Russell (1966) model as per the standard method, using R software package *stability* (Yassen *et al.*, 2018).

Results and Discussion

Analysis of variance for Eberhart and Russell model revealed due to genotype were significant (p < 0.05) for most of the traits under study, except for plant height, number of branches per plant, and harvest index; indicating the presence of considerable genotypic variability among the genotypes. Combined environment and genotype \times environment interaction component of variance when tested against pooled error mean sum of squares was non-significant for all the eleven traits under study. Hence, further partitioning of combined environment and genotype × environment variance into linear and non-linear components showed that environment linear was also non-significant for all the characters. Genotype \times environment (linear) was significant for days to 50percent flowering, number of branches per plant and pod length; while remaining traits was non-significant. However, pooled deviation (non-linear component) when tested against pooled error was significant for days to 50percent flowering, plant height, number of branches per plant, number of pods per plant, pod length, 100-seed weight, harvest index, days to maturity and protein content; while non-significant for number of seeds per pod and seed yield per plant (Table 1). Similar works were done by Mondal et al. (2011)^[8] and Singh *et al.*, (2014)^[7].

Mean performance, regression (b_i) and squared deviation (S^2d_i) for eleven agro-morphological traits are presented in the Table 2. It is interesting to note that none of the homozygous lines was stable for all the characters. Forty homozygous genotypes with higher/lower mean values than grand mean were divided into four groups based on stability parameters *viz.*, regression coefficient and squared deviation, according to

the methodology followed by Mehra and Ramanujam (1979) ^[4] and Singh and Singh (1980) ^[5] (Table 3). Genotypes falling in group I have desirable mean, regression coefficient value around one with non-significant squared deviation. Under group II, genotypes with significantly less than unity regression value and non-significant squared deviation are taken. indicating suitability towards unfavourable environments. Again, the genotypes with significantly more than unity regression is also classified under group II indicating its suitability towards favourable environments. Finally, genotypes falling in group III and group IV cannot be predicted as they exhibit significant squared deviation, irrespective of the regression coefficient values. According to the grouping (Table 3), the genotypes KM2355, RMG1087, KM2260, MH1115, KM2364 and LGG544 were found stable for most of the traits under study. Under group II $(b_i < 1)$, the genotype KM2328 is found to be stable for days to 50percent flowering, number of branches per plant and protein content, perform better under unfavourable conditions. Genotype IPM147-1 and KM2312 were found to give stable performance during unfavourable conditions for seed yield per plant (Figure 1). The genotype NM159 placed under

group II ($b_i>1$) and is stable in favourable conditions for number of branches per plant, and pod length; while the genotype RMG1092 is stable in favourable conditions for the trait seed yield per plant. These results are in line with the reports of Raturi *et al.*, (2012)^[9] and Singh *et al* (2014)^[7].

Considering the overall performance, genotypes KM2355, LG544, and RMG1087 was found promising with stable performance and may be used for general cultivation across the mungbean growing seasons.

Traits	df	Days to 50 percent flowering	Plant height	Number of branches per plant	Number of pods per plant	Number of seeds per pod	Pod length	100-Seed weight	Harvest index	Seed yield per plant	Days to maturity	Protein content
Genotype	39	88.36***	8.721	0.3479	30.892*	1.717**	3.18***	0.2202*	5.30	5.4786***	80.504***	1.788***
Environment	2	2979.25***	202.814*	0.6234	178.388**	170.685***	938.48***	6.006***	3614.6***	33.213*	138.167***	59.700***
$\mathbf{G} \times \mathbf{E}$	78	48.94***	54.657***	1.4064***	48.199***	2.365***	8.10***	0.448***	17.4***	2.628**	56.625***	1.543***
$E + (G \times E)$	80	40.73	19.454	0.4623	17.151	2.191	10.45	0.1956	35.79	1.1310	19.554	0.999
Env (Linear)	1	1986.17	135.210	0.4156	118.925	113.790	625.65	4.0037	2409.74	22.1423	92.112	39.800
G × E (Linear)	39	27.10***	7.594	0.6291*	16.205	0.841	4.64***	0.1657	7.11	0.9191	21.803	0.590
Pooled Deviation	40	5.39***	28.124***	0.3008***	15.529***	0.717	0.74**	0.1295***	4.40***	0.8124	15.548***	0.428**
Pooled Error	240	2.90	3.459	0.0554	6.179	0.448	0.43	0.0655	1.16	0.5793	6.493	0.245

 Table 2: Stability parameters for eleven morphological traits across environments

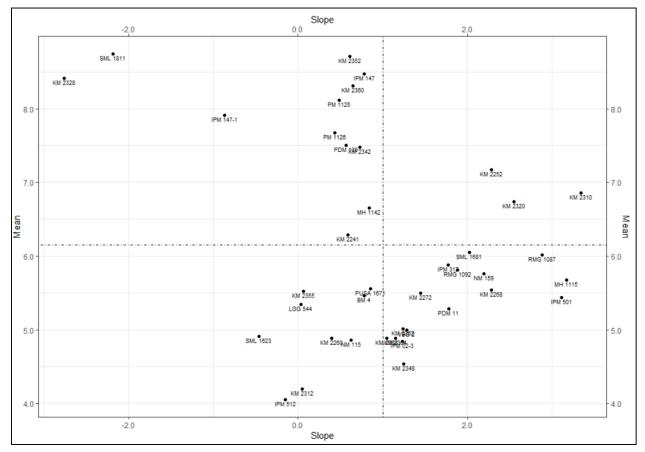
Genotype Days to 50percent flowering		wering		Plant height		Number o	f branches pe	er plant	
Genotype	bi	bi S^2d_i Pooled bi S^2d_i		$S^2 d_i$	Pooled	bi	$S^2 d_i$	Pooled	
KM 2241	0.5790	1.3536	32.5000	1.0742	43.3169***	34.3405	1.3487	0.5606***	3.1830
KM 2352	0.4825	0.9400	31.0000	0.8528	23.4314***	34.9313	-11.9149	0.0504	3.3517
PDM 139	0.1771	0.6090	32.8333	1.2166	16.6302*	34.7782	-9.6119	0.3095*	3.1598
PM 1125	-0.1839	3.8627	31.0833	0.6532	44.1317***	34.2735	-10.3977	0.2696*	3.1442
KM 2342	0.3139	1.6068	32.0000	0.8647	26.9728***	34.7787	-4.2044	0.4709***	3.1171
KM 2328	0.2492*	0.0832	31.8333	1.1073	3.8651	35.2148	-15.8147*	0.0018	3.3661
SML 1811	0.3860	0.6016	32.0000	1.2311	26.4186***	33.3046	-10.7597	0.2210*	3.4977
IPM 147	0.3536*	0.0818	31.4167	0.9123	16.9954*	35.4991	-10.5217	0.7298***	3.2490
IPM 147-1	0.3860	0.6016	32.5000	0.3892	12.1784	35.7282	-5.8526	0.0577	3.5038
KM 2360	0.4587	2.4287	31.7500	0.4693	12.0968	35.5884	-8.3065	0.1958	3.2400
KM 2348	0.3378	0.4606	30.7500	1.4544	20.5129*	33.4490	-6.6710	0.9381***	3.1498
IPM 02-3	0.4825	0.9400	31.0000	1.2872	27.5493***	33.9106	-8.7655	0.0781	3.2381
PUSA 1671	0.5790	1.3536	32.5000	1.2521	47.7507***	35.1130	-1.4228	0.4588***	3.0408
KM 2368	0.1448*	0.0846	30.2500	1.9195	6.5355	35.4034	-4.2386	0.0057	3.1163
KM 2362	0.2577	1.8685	29.6667	0.7933	17.1393*	33.8095	5.0134	0.5523***	2.0720

0.1930*	0.1504	30.5000	1.1299	34.3872***	34.4555	-2.7369	0.1050	3.4486
0.2895	0.3384	34.0000	1.5235	13.5309*	35.0207	2.6166	0.0009	2.7478
0.1521	1.3928	29.5833	1.4756	22.5574*	33.8502	-3.7056	0.1882	3.5169
0.6034	3.4199	29.0000	-1.8712	22.4933*	34.5463	-6.0304	0.3859***	2.4522
0.8420	5.7577	40.5555	3.5089	9.9659	32.7311	6.7874	0.8314***	2.9302
2.2054	8.5664	40.8889	1.0226	1.0063	29.8453	10.2763	0.2143	2.9674
2.0075	5.4474	41.3333	1.8916	51.0361***	34.9063	9.0663	0.6641***	3.0119
1.9277	1.4904	41.0000	1.8263	36.6117***	36.9858	8.7064*	0.0002	2.6656
0.8942	0.3707	39.4444	4.7102	2.5706	30.5986	5.0425	0.4514***	3.1241
1.8641*	0.1222	44.0000	2.5645	9.4543	36.1844	8.4316	0.0094	2.4222
1.9749	10.5523	42.0000	0.7434	25.4605***	37.3830	2.2639	0.0047	2.6131
1.2192	18.8571*	41.6667	3.8827	11.4730	32.0678	6.8390*	0.0004	2.6585
1.7396	6.7046	41.2222	0.1905	24.5672***	38.2223	9.2805	0.1137	3.0688
1.3998	16.6989*	40.6667	-0.4874	19.9874*	32.6519	7.5248	0.0551	2.5338
2.0091	1.1350	42.3333	0.7238	8.0285	37.9984	4.0667	0.4492***	3.1242
2.2623	18.1716*	42.4445	1.1990	56.3890***	35.5076	9.6509	0.0408	2.5094
1.3357	52.1504***	40.5556	-1.0247	101.4012***	34.3891	11.1843	0.2875*	3.2420
2.1964	0.5391	44.1111	-1.5791	3.9966	35.0779	7.3566	0.2995*	2.8951
1.5742	1.1707	41.6667	-0.7262	0.4428	36.1293	4.9683	0.0658	2.7963
2.1842	5.7762	43.3334	1.3866	22.1176*	35.3179	1.8048	0.2632*	2.9166
1.0376	10.8396	41.4445	-0.9437	70.4765***	35.5511	5.3334	0.0173	2.4468
1.0815	0.8835	43.8889	-1.8355	21.5598*	34.3581	9.2979	0.1656	2.6786
1.2900	3.2205	41.2222	3.9628	38.2136***	35.6934	7.6367	1.3530***	3.0593
1.4324	25.0090**	44.0000	2.4362	13.0985	35.4436	9.2647	0.7814***	2.9558
1.2802	0.0278	39.7778	-1.1875	158.5972***	32.5300	7.1936	0.3860***	3.1678
	36.8431			34.6892			2.9846	
	0.2895 0.1521 0.6034 0.8420 2.2054 2.0075 1.9277 0.8942 1.8641* 1.9749 1.2192 1.7396 1.3998 2.0091 2.2623 1.3357 2.1964 1.5742 2.1842 1.0376 1.0815 1.2900 1.4324	0.2895 0.3384 0.1521 1.3928 0.6034 3.4199 0.8420 5.7577 2.2054 8.5664 2.0075 5.4474 1.9277 1.4904 0.8942 0.3707 1.8641* 0.1222 1.9749 10.5523 1.2192 18.8571* 1.7396 6.7046 1.3998 16.6989* 2.0091 1.1350 2.2623 18.1716* 1.3357 52.1504*** 2.1964 0.5391 1.5742 1.1707 2.1842 5.7762 1.0376 10.8396 1.0815 0.8835 1.2900 3.2205 1.4324 25.0090** 1.2802 0.0278	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Cont....

Construct	Cenotype 100-seed weight			Iarvest index			l yield per pl	ant	
Genotype	bi	$S^2 d_i$	Pooled	bi	$S^2 d_i$	Pooled	bi	$S^2 d_i$	Pooled
KM 2241	-0.0340	0.0265	2.4291	0.3280	0.5527	31.9449	0.5920	0.2140	6.2921
KM 2352	0.3155	0.5668***	2.8078	0.3813*	0.0103	35.0133	0.6088	0.0366	8.7111
PDM 139	1.0238	0.2486	2.7521	1.1431	5.8069*	35.3036	0.5673	0.0070	7.5062
PM 1125	-1.5917	0.0490	3.1715	1.4465	1.1448	32.9459	0.4850	0.0009	8.1128
KM 2342	2.2335	0.1632	2.8583	1.1122	19.4504***	33.4207	0.7296	0.0009	7.4767
KM 2328	1.0023	0.3605*	3.1534	1.2926	0.1496	35.0790	-2.7608	0.2077	8.4121
SML 1811	-1.3288	0.0043	2.5293	1.2698	0.2718	35.9263	-2.1875	0.1805	8.7473
IPM 147	-0.3851***	0.0000	2.5344	0.8966	15.3749***	35.4691	0.7803	0.0053	8.4755
IPM 147-1	2.9524	0.3960*	3.0572	0.8654	15.9233***	34.4092	-0.8694*	0.0026	7.9107
KM 2360	0.3780	0.0669	3.0582	0.8903	16.8072***	36.8407	0.6447	0.0687	8.3143
KM 2348	-0.6970	0.0510	2.8517	1.1196	15.6758***	34.5619	1.2442	2.3161*	4.5372
IPM 02-3	-0.1458*	0.0002	2.9439	1.2693	12.4538***	34.6981	1.2338	2.1718	4.8424
PUSA 1671	-1.5246	0.0095	3.2936	1.2515	13.9076***	34.4325	0.8543	0.0028	5.5607
KM 2368	1.5227	0.1565	2.9326	1.4023*	0.0139	34.1368	1.0501	2.9667*	4.8835
KM 2362	1.4756	0.2171	3.0444	0.5532	7.5349*	32.1304	1.2387	1.2149	5.0131
KM 2364	-0.1222	0.1369	3.1173	1.0573	4.2996	32.5110	1.1521	1.5456	4.8873
PM 1126	2.3751	0.6304***	3.0928	0.8408	0.3097	35.6402	0.4309	0.0223	7.6772
KM 2355	1.4263	0.2121	2.9238	0.0682	0.6693	34.3907	0.0671	0.1858	5.5227
MH 1142	0.6917	0.0081	2.2574	0.2170***	0.0000	29.8312	0.8401	0.0025	6.6536
VBG 2	2.1803***	0.0000	3.0131	0.6646	2.9282	32.9029	1.2840	1.0329	4.9936
MH 1115	2.5178	0.0102	2.9310	0.9085	1.0980	32.9973	3.1742	0.3381	5.6720
NM 115	2.8000	0.0341	3.3879	1.2409	7.1694*	33.3856	0.6290	0.1180	4.8572
NM 159	0.6261	0.2622*	3.3435	1.1362	0.0366	34.5444	2.1920	0.6563	5.7621
LGG 544	1.4645	0.0017	3.3144	1.1013	0.9528	33.7789	0.0370	0.4401	5.3453
SML 1623	0.7904	0.0031	3.1843	1.3377	0.2866	34.5255	-0.4610	2.4727*	4.9112
BM 4	0.7056	0.1661	3.0379	1.4530***	0.0004	35.3023	0.7849	1.1055	5.4618
SML 1681	0.1342	0.0029	3.2287	1.0505	1.3049	35.5238	2.0261	0.2677	6.0500
IPM 312	0.5309	0.0366	3.1896	0.9089	7.7340*	34.5317	1.7703	0.1785	5.8824
IPM 501	1.3260	0.1901	3.1697	1.1774	5.0547*	35.1738	3.1117	0.0590	5.4373
IPM 512	3.6448	0.1433	3.4596	1.3409*	0.0370	35.0678	-0.1503	1.9994	4.0500
PDM 11	0.2116	0.0064	2.9986	1.2536	0.0286	35.5427	1.7832	0.0293	5.2888
KM 2252	-0.1886	0.0322	2.8835	1.2926	0.0362	34.6007	2.2849	0.0518	7.1747
KM 2260	1.8904	0.0172	3.3727	1.3622*	0.0084	34.3947	0.3976	1.7772	4.8878
KM 2268	1.5989	0.5387***	3.0968	1.0091	1.6330	33.4546	2.2853	1.2495	5.5417
KM 2272	0.8702	0.0282	3.1833	1.3226	0.3565	34.1346	1.4453	1.0548	5.5005
RMG 1087	1.4501	0.0003	2.8399	0.8907	3.2656	34.7133	2.8860	0.1668	6.0159
KM 2310	2.7616*	0.0015	3.4584	0.6027	0.6267	34.4367	3.3396	0.0782	6.8590
KM 2312	1.3113	0.2811*	3.2896	0.8763	0.7440	32.4405	0.0478*	0.0018	4.1993

RMG 1092	3.4904	0.0507	3.1264	0.7927	1.4607	32.9211	1.8806*	0.0005	5.8099
KM 2320	0.3159	0.0693	3.0403	0.8724	10.8769***	32.7509	2.5505	8.2645***	6.7378
Mean		3.0340			34.1452			6.1494	


	Г		_	Protein content				
Genotype		Days to maturity						
	<i>bi</i>	$S^2 d_i$	Pooled	<i>bi</i>		Pooled		
KM 2241 KM 2352	-3.3827	57.3121***	71.7563	0.3269 0.7640	0.1975	21.1304 22.2651		
	-1.3714 -3.0294*	0.4210	78.2072	-0.4274	0.0166			
PDM 139		0.1662	74.5082	0.2557*	0.1508	20.3361		
PM 1125	-2.5894	2.9254	67.7741		0.0006	21.3188		
KM 2342	-2.1313	0.2245	74.4998	1.1803	0.0086	21.4824		
KM 2328	-0.5925	0.1163	71.5714	0.6943	0.0073	21.8841		
SML 1811	-1.9360	0.2755	68.5381	0.0896	0.0402	22.2559		
IPM 147	-1.8263	0.3756	69.6982	1.5961	0.3618	22.6127		
IPM 147-1	-1.2583	0.2289	74.7453	1.4810	0.0405	23.0820		
KM 2360	-3.5438	8.4457	70.0295	1.6883	0.5370	22.1246		
KM 2348	-0.8476	0.7321	72.7642	3.4167	0.7847	22.7163		
IPM 02-3	-0.2401	0.4871	66.7821	1.8188	1.3675*	23.9257		
PUSA 1671	-4.6311	9.4334	69.9543	1.6403	3.0220***	22.9644		
KM 2368	-1.1425	17.9160	66.9340	0.1183	0.3048	21.3786		
KM 2362	1.1418	3.6670	68.0998	-0.4978	0.2849	23.9098		
KM 2364	-0.1207	0.4418	71.9622	1.5053	0.2330	24.0974		
PM 1126	-1.2122	21.8870	74.6056	-0.1659	1.0083*	23.4896		
KM 2355	-0.9580	1.0509	69.9499	-0.0976	0.1119	21.8125		
MH 1142	-0.7852	0.2631	75.3537	0.1568	4.3164***	22.2950		
VBG 2	4.3962	33.4874*	65.1930	1.1027	0.0041	22.7483		
MH 1115	5.6205	138.0391***	60.0710	1.7169	0.1668	23.1191		
NM 115	-1.6707	21.6229	64.8549	1.5896	0.0895	22.6415		
NM 159	2.9229	39.6985*	60.0679	1.0828	0.2644	22.6302		
LGG 544	4.8291	2.8737	64.2841	1.3698	0.0177	22.1848		
SML 1623	0.0356	31.2157*	61.6077	1.3148	0.0804	22.9551		
BM 4	5.2642	52.2057***	62.1173	0.3827	0.3939	22.7657		
SML 1681	4.3223	4.4489	62.3871	0.2932	0.7484	22.7026		
IPM 312	3.1465	1.1498	58.7203	1.0461	0.0081	22.9764		
IPM 501	1.7499	17.4409	65.7259	1.2078	0.0033	22.5955		
IPM 512	2.5194	55.8462***	64.0191	1.0442	0.0465	22.6995		
PDM 11	4.2492	6.6062	59.3323	1.2748	0.0211	23.1732		
KM 2252	1.5066	7.0300	63.7990	1.1917	0.1321	22.6514		
KM 2260	3.6420	13.1404	63.5662	1.5650	0.7916	22.5496		
KM 2268	2.2056	0.2737	64.9693	0.4575***	0.0001	22.7791		
KM 2272	1.2778	15.2793	66.3740	0.8456	0.0637	23.0541		
RMG 1087	6.7546	9.2928	60.6366	1.5422	0.6877	23.7572		
KM 2310	5.8885	27.6199*	62.4711	1.9826	0.0481	22.7915		
KM 2312	5.7140	0.4984	61.2078	0.6759	0.5352	22.5747		
RMG 1092	1.7635	1.5696	61.9250	1.6133	0.1995	22.2934		
KM 2320	4.3191	16.2267	63.5748	1.1573	0.0039	23.0335		
Mean		66.8660			22.5939			

Cont

 Table 3: Grouping of mungbean homozygous genotypes based on stability parameters

Traits	Group I	Group	o II	Group III	Group IV	
Traits	Group I	(bi<1)	(bi>1)	Group III	Group IV	
Days to 50	KM2241, KM2352, PDM139, PM1125,	KM2328,				
percent	KM2342, SML1811, IPM 147-1, KM2360,	IPM147,	SML1623	SML1681,	IPM501,	
flowering	KM2348, IPM02-3, PUSA 1671, KM2362,	KM2368,	514121025	PDM11, KM225	52, RMG1092	
nowening	PM1126, KM2355, MH1142	KM2364				
				KM2241, KM2352, H	,	
	KM2328, IPM 147-1, KM2360, SML1623, IPM512, KM2260, KM2268, RMG1092			KM2342, SML1811, IPM 147,		
				KM2348, IPM 02-3, PUSA1671,		
Plant height		-	_	KM2362, KM2364, PM1126,		
i mini norgini				KM2355, MH1142, NM115, NM159,		
	11112200, 11112200, 1111010)2			BM4, IPM312, IPM501, PDM11,		
				KM2252, KM227	, , ,	
				KM2310, KM23	,	
Number of	KM2352. IPM 147-1.			KM2241, PDM		
branches per	KM2360, IPM 02-3, KM2368,	KM2328	NM159	KM2342, SML1	- , .,	
plant	KM2264, KM2355, IPM 312	11112320	SML1681	KM2348, PUSA1	, , ,	
Plan	11112207, 11112333, 11 WI 312			MH1142, VBG2, N	M115, LGG544,	

				IPM512, KKM2252, KM2260, KM2272, KM2312, RMG1092, KM2320
Number of pods per plant	IPM 02-3, PUSA 1671, VBG2, MH1115, NM115, SML 1623, BM4, SML1681, IPM512, PDM11, KM2252, KM2260, KM2272, KM2310, RMG1092, KM2320	-	KM2362	PM1125, KM2328, SML1811, IPM 147-1, KM2360, NM159, IPM501, KM2268, KM2312
Number of seeds per pod	KM2352, SML1811, IPM147, KM2348, KM2364, MH1115, NM159, LGG544, SML1623, BM4, SML1681, IPM501, PDM11, KM2252, KM2260, RMG1087, RMG1092, KM2320	-	-	VBG2, IPM321, IPM512, KM2268
Pod length	VBG2, NM115, LGG544, SML1623, BM4, IPM501, PDM11, KM2252, KM2260, KM2268, KM2272, RMG1087, KM2310, RMG1092, KM2320	KM2241, PUSA1671 KM2362	MH1115 NM159	IPM 02-3, KM2368, SML1681, IPM312, IPM512, KM2312
100-Seed weight	PM1125, KM2360, PUSA1671, KM2362, KM2364, NM115, LGG544, SML1623, BM4, SML1681, IPM312, IPM501, IPM512, KM2260, KM2272, RMG1092, KM2320	IPM 147, IPM 02-3	VBG2 KM2310	KM2352, KM2328, IPM 147-1, PM1126, NM159, KM2268, KM2312
Harvest index	KM2328, SML1811, PM1126, KM2355, NM159, SML1623, SML1681, PDM11, KM2252, RMG1087 and KM2310	KM2352 MH1142	KM2368, BM4, IPM512 KM2260	PDM139, KM2342, IPM147, IPM 147-1, KM2360, KM2348, IPM 02-3, PUSA1671, KM2362, NM115, IPM312, IPM501, KM2320
Seed yield per plant	KM2241, KM2352, PDM139, PM1125, KM2342, KM2328, SML1811, IPM147, KM2360, PM1126, MH1142, KM2252, KM2310	IPM 147-1 KM2312	RMG1092	KM2348, KM2368, SML1623, KM2320
Days to maturity	IPM 02-3, NM115, LGG544, SML1681, IPM312, IPM501, PDM11, KM2252, KM2260, KM2268, KM2272, RMG1087, KM2312, RMG1092, KM2320	PDM139	-	KM2241, VBG2, MH1115, NM159, SML1623, BM4, IPM512, KM2310
Protein content	IPM 147, IPM 147-1, KM2348, KM2362, KM2364, VBG2, MH1115, NM115, NM159, SML1623, BM4, SML1681, IPM312, IPM501, IPM512, PDM11, KM2252, KM2272, RMG1087, KM2310, KM2320	PM1125 KM2268	-	IPM 02-3, PUSA1671, PM1126, MH1142

Fig 1: Regression coefficient vs. mean for seed yield per plant

References

- 1. Mohammad Yaseen, Kent M, Eskridge, Ghulam Murtaza. *stability*: Stability analysis of genotype by environment interaction (GEI) 2018. R package version 0.5.0. https://cran.rproject.org/web/packages/stability/stability.pdf
- Abeysiriwardena DS, Deze Burs GR, Jr Rase PE. Analysis of multi environment yield trails for testing adaptability of crop genotypes. Topical Agriculturist 1991;147:85-97
- Linnemann A, Westphal E, Wessel M. Photoperiod regulation of development and growth in Bambara ground (*Vigna subterranean*). Field Crops Research 1995;40:39-47
- 4. Mehra RB, Ramanujam S. Adaptation in segregating population of Bengal gram. Indian Journal of Genetics and Plant Breeding 1979;39:492-500.
- 5. Singh RB, Singh SV. Phenotypic stability and adaptability of durum and bread wheat for grain yield. Indian Journal of Genetics 1980;40:86-92.
- 6. Eberhart SA, Russell WA. Stability parameters for comparing varieties. Crop Sciences 1996;6:36-40.
- Singh CM, Mishra SB, Anil Pandey, Madhuri Arya. Eberhart-Russell' and AMMI approaches of genotype by environment interaction (GEI) for yield and yield component traits in *Vigna radiata* L. Wilczek. International Journal of Agriculture, Environment and Biotechnology 2014;7:277-292.
- Mondal MMA, Fakir MSA, Juraimi AS, Hakim MA, Islam MM, Shamsuddaha ATM. Effect of flowering behavior and pod maturity synchrony on yield of mungbean (*Vigna radiata* L. Wilczek). Australian Journal of Crop Science 2011;5:945-953.
- 9. Raturi A, Singh SK, Sharma V, Pathak R. Stability and environmental indices analyses for yield attributing traits in Indian *Vigna radiata* genotypes under arid conditions. Asian Journal of Agricultural Sciences 2012;4:126-133.