www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2021; 10(11): 589-592 © 2021 TPI www.thepharmajournal.com Received: 04-07-2021

Accepted: 17-08-2021

Mahanand Sahu

Ph.D., Scholar, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

JR Patel

Principal Scientist, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

Dondeshwar Prasad Sarthi

Ph.D., Scholar, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

Sumit

Ph.D., Scholar, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

SN Singh

Ph.D., Scholar, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

Corresponding Author: Mahanand Sahu Ph.D., Scholar, Department of Agronomy, IGKV, Raipur, Chhattisgarh, India

Effect of sowing dates and varieties on growth and selected features of Horsegram [*Macrotyloma uniflorum* (Lam.) Verdc.] in Chhattisgarh plains under protective irrigation

Mahanand Sahu, JR Patel, Dondeshwar Prasad Sarthi, Sumit and SN Singh

Abstract

An field experiment was conducted during post *kharif* season 2018 at Instructional Farm, BTC College of Agriculture and Research Station, Bilaspur, IGKV, Raipur (C.G.). The experiment was laid in split plot design with two factors namely three sowing dates in the main plot *i.e.* D₁ (14th September), D₂ (20th September) and D₃ (26th September) with five varieties in sub plot viz., V₁ (Bilasa Kulthi), V₂ (Indira Kulthi-1), V₃ (Chhattisgarh Kulthi-2), V₄ (Chhattisgarh Kulthi-3) and V₅ (BSP 17-2). The result revealed that maximum plant height, number of pods plant⁻¹ (29.17), number of seeds pod⁻¹ (5.72), seed yield plant⁻¹ (3.93 g) and 1000 test weight (30.09 g) was recorded under D₁ (14th September) in sowing date and in case of varieties V₂ (Indira Kulthi-1) recorded maximum number of pods plant⁻¹ (33.29) number of seeds pod-1 (6.16), seed yield plant⁻¹ (4.56 g) and 1000 test weight (30.17 g). The seed yield (720.70 kg ha⁻¹) was recorded highest in D₁ (14th September) in sowing dates and in case of varieties V₂ (Indira Kulthi-1) is recorded maximum seed yield (697.04 kg ha⁻¹).

Keywords: Sowing date, variety, growth and yield

Introduction

Among the pulses, Horsegram [*Macrotyloma uniflorum* (Lam.) Verdc.] is an important post season *kharif* crop of the country commonly known as "Kulthi" belongs to the family fabaceae. Crop is an underutilized (Aiyer, 1990) ^[2] and unexplored (Reddy *et al.*, 2008) ^[15] arid tropical food legume. Horsegram as a legume, it maintains soil fertility through biological nitrogen fixation in soil through root nodules and act as organic manure as well. It is suitable as a cover crop, soil and water conservation and an excellent drought tolerant (Bhardwaj and Yadav, 2012) ^[4], salinity tolerant (Reddy *et al.*, 1998) ^[14] and heavy metal stress tolerant (Reddy *et al.*, 2005) ^[13] contingent crop.

Horsegram water is prescribed for eliminating jaundice in Andhra Pradesh. Horsegram seed comprises 57.0 per cent carbohydrate, 22.0 per cent protein and 2.5 per cent fat (Sudha *et al.*, 1995)^[16]. It is also an excellent source of iron, calcium and molybdenum. In India, horsegram occupies an area of 326 (000 ha) with a production of 117 (000 tonnes) with an average national productivity of 358 kg ha⁻¹ (Anonymous, 2016-17)^[1]. Horsegram is important pulse crop mostly grown in Karnataka, Odisha, Chhattisgarh, Andhra Pradesh, Tamil Nadu and Maharashtra which together contributes about 89.23 per cent area and 86.10 per cent production. Higher productivity of horsegram is obtained in Bihar (980 kg ha⁻¹).

In Chhattisgarh, horsegram occupies an area of 44.80 (000 ha) with a production of 16.80 (000 tonnes) and average productivity of 375 kg ha⁻¹ (Anonymous, 2016-17) ^[1]. Horsegram is an important pulse crop of the state and mostly grown in Sarguja, Jagdalpur, Kanker, Korba and Jashpur which together contributes about 69.74 per cent area and 76.61 per cent production. However, the productivity of horsegram is highest in Janjgir (375 kg ha⁻¹).

Materials and Methods

A field experiment was conducted at the Instructional Farm, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh during post *kharif* season of year 2018. The field experiment was laid out in split plot design with three replications. The treatment consisted of three sowing dates in main plot *i.e.* D₁ (14th September), D₂ (20th September) and D₃ (26th)

September) with five varieties in sub plot *viz.*, V₁ (Bilasa Kulthi), V₂ (Indira Kulthi-1), V₃ (Chhattisgarh Kulthi-2), V₄ (Chhattisgarh Kulthi-3) and V₅ (BSP 17-2). Horsegram was sown with a spacing of 30 cm \times 07 cm distance Gross and net plot size were 6 m \times 3 m and 5.72 m \times 2.40 m respectively. To evaluate the treatment effect, the various morphological observations, growth analysis were recorded in the experiment at 25, 50, 75 Days after sowing and at harvest stage. The observations on yield and yield attributing characters were recorded at harvest of the test crop. Data were analyzed statistically to determine the significance of the characters studied. Statistical data were analysed by standard procedure by Gomez and Gomez (1984)^[7] at the 5% level of significance.

Results and Discussion Initial and final plant population (m⁻²)

It results the effect of various treatments *i.e.* sowing dates, varieties and their interaction on initial and final plant population were non-significant. Initial and final plant population ranges from 37.66 to 41.87 and 36.67 to 39.73 (m⁻²), respectively.

Table 1: Show the plant population initial harvest

Treatment	Plant population (m ⁻²)				
I reatment	Initial (15 DAS)	At harvest			
A. Date of sowing (D)					
D _{1:} (14 th September)	40.85	39.01			
D _{2:} (20 th September)	38.59	36.73			
D _{3:} (26 th September)	39.65	38.04			
S. Em ±	0.62	0.44			
CD at 5%	NS	NS			
B. Varieties (V)					
V1: (Bilasa Kulthi)	39.64	36.95			
V _{2:} (Indira Kulthi-1)	37.66	36.67			
V _{3:} (Chhattisgarh Kulthi-2)	41.87	39.73			
V _{4:} (Chhattisgarh Kulthi-3)	39.73	38.16			
V _{5:} (BSP 17-2)	39.58	38.13			
S. Em ±	0.93	0.74			
CD at 5%	NS	NS			
Interaction(D×V)					
S. Em ±	1.62	1.28			
CD at 5%	NS	NS			

Effect of sowing dates on growth parameters

The plant height recorded under D₁ (14th September) at 25 (14.13 cm), 50 (33.93 cm), and 75 days after sowing (35.71 cm) as well as at harvest (32.45 cm) were significantly higher as compared to D₃ (26th September) under study. However, values obtained in D₂ (20th September) were at par with D₁ except at 50 days after sowing and which are also better than D₃ values. The possible reason of higher values of plant height under D₁ may be due to early sowing as compared to D₂ and D₃ which favour the growth and development of horsegram. Such types of result were also found by Nagaraju *et al.* (1995)^[9] Biswas *et al.* (2002)^[5] in blackgram.

Effect of varieties on growth parameters

Plant height recorded with V_1 (Bilasa Kulthi)) at 25 (13.60 cm), 50 (48.44 cm) and 75 days after sowing (51.96 cm) as well as at harvest (45.84 cm) were significantly highest as compared to other varieties. Variety V_5 (Indira Kulthi-1) was

significantly better than V_3 (Chhattisgarh Kulthi-2) and V_4 (Chhattisgarh Kulthi-3) which are statistically at par with V_2 except 50 and 75 days after sowing. The possible explanation of higher values under V_1 may be due to its genetical superior characters. The finding of Prakash *et al.*, (2008) ^[11] is in similar pattern of the present study.

 Table 2: Effect of sowing dates and varieties on Horsegram on plant height at different growth intervals

Tuestanont	Plant height (cm)							
Treatment	25 DAS	50 DAS	75 DAS	At harvest				
A. Dates of sowing (D)								
D _{1:} (14 th September)	14.13	33.93	35.71	32.45				
D _{2:} (20 th September)	13.79	26.99	34.61	31.51				
D _{3:} (26 th September)	10.15	26.72	29.27	25.65				
S. Em ±	0.17	1.33	1.08	0.64				
CD at 5%	0.68	5.22	4.25	2.53				
B. Varieties (V)								
V _{1:} (Bilasa Kulthi)	13.60	48.44	51.96	45.84				
V _{2:} (Indira Kulthi-1)	13.11	25.62	34.51	31.69				
V _{3:} (Chhattisgarh Kulthi-2)	12.33	22.80	25.49	22.27				
V4: (Chhattisgarh Kulthi-3)	12.11	23.20	26.13	23.16				
V _{5:} (BSP 17-2)	12.29	26.00	27.89	26.39				
S. Em ±	0.24	1.60	1.84	1.86				
CD at 5%	0.71	4.68	5.36	5.42				
Interaction(D×V)								
S. Em ±	0.42	2.78	3.18	3.21				
CD at 5%	NS	NS	NS	NS				

Effect of sowing dates on yield attributes

The no. of pods plant⁻¹ was significantly higher in D₁ (29.17 pods plant⁻¹) than the D₂ (26.80 pods plant⁻¹) and D₃ (23.19 pods plant⁻¹). Further, D₂ (20th September) was significantly higher than D₃ (26th September). The results are in conformation with the finding of Hussain, (1989) ^[9]. The number of seeds pod⁻¹ recorded in studied crop were significantly higher in D₁ (5.72 seeds pod⁻¹) than D₂ (5.65 seeds pod⁻¹) and D₃ (5.47 seeds pod⁻¹). However, D₂ is significantly higher than D₃ and sowing date D₂ is at par with D₁. The highest seed yield plant⁻¹ was recorded in D₁ (3.93 g) which was significantly higher than the D₂ (3.12 g) and D₃ (2.98 g). The test weight of D₁ (30.09 g) was significantly higher as compare to D₃ (29.57 g) under study. However, values obtained in D₂ (29.87 g) were at par with D₁. These are in agreement with the results described by Naidu *et al.* (2017)^[10].

Effect of varieties on yield attributes

The number of pods plant⁻¹ were significantly higher in V₂ (33.29 pods plant⁻¹) than V₁ (26.24 pods plant⁻¹), V₃ (21.20 pods plant⁻¹) and V₄ (19.53 pods plant⁻¹). Variety V₅ (BSP 17-2) *i.e.* 31.67 number of pods plant⁻¹ was statistically at par withV₂ (Indira Kulthi-1). Among the varieties, maximum no. of seeds pod⁻¹ (6.16) was found with variety V₂ (Indira Kulthi-1) which was significantly better over all other varieties. It was followed by V₁ (5.84 seeds pod⁻¹), V₅ (5.56 seeds pod⁻¹), V₄ (5.28 seeds pod⁻¹) and V₃ (5.23 seeds pod⁻¹). Significantly higher grain yield plant⁻¹ (4.56 g) was recorded in V₂ (Indira Kulthi-1) followed by V₅ (3.53 g), V₄ (2.90 g), V₁ (2.90 g) and V₃. However, values obtained in V₅ (3.53 g) were at par with V₂. The significantly higher test weight of studied crop was recorded in V₂ (30.17 g) followed by V₁ (30.15 g), V₅ (29.79 g), V₄ (29.55 g) and V₃ (29.54 g).

	Yield attributing characters			
Treatment	Number of pods plant ⁻¹	Number of seeds pod ⁻¹	Seed yield plant ⁻¹ (g)	Test weight(g)
A. Dates of sowing (D)		·	· · · · · · · · · · · · · · · · · · ·	
D _{1:} (14 th September)	29.17	5.72	3.93	30.09
D _{2:} (20 th September)	26.80	5.65	3.12	29.87
D _{3:} (26 th September)	23.19	5.47	2.98	29.57
S. Em ±	0.55	0.04	0.16	0.06
CD at 5%	2.15	0.15	0.61	0.24
	B.	Varieties (V)	-	
V1: (Bilasa Kulthi)	26.24	5.84	2.88	30.15
V _{2:} (Indira Kulthi-1)	33.29	6.16	4.56	30.17
V3: (Chhattisgarh Kulthi-2)	21.20	5.23	2.84	29.54
V4: (Chhattisgarh Kulthi-3)	19.53	5.28	2.90	29.55
V _{5:} (BSP 17-2)	31.67	5.56	3.53	29.79
S. Em ±	1.56	0.04	0.37	0.10
CD at 5%	4.57	0.12	1.07	0.30
	Int	eraction(D×V)		
S. Em ±	2.71	0.07	0.64	0.18
CD at 5%	NS	NS	NS	NS

Table 3: Effect of sowing dates and varieties on Horsegram on yield attributes

Effect of sowing dates on yield

Sowing date D₁ (14th September) produced significantly highest seed yield (720.70 kg ha⁻¹) as compared to D_2 (567.54 kg ha⁻¹) and D_3 (525.61 kg ha⁻¹). Similarly D_2 also recorded significant higher yield as compared to D₃. Sowing date D₃ produced 525.61 kg ha⁻¹ and is stood 3rd in position. Production of lower value of yield and yield attributing characters of seed by the crop may be there possible reason of reduction in yield under delayed in sowing, The results confirm the findings of Rafey *et al.* (1988)^[12], Bajpai *et al.* (1990)^[3] and Nagaraju et al. (1995)^[9]. Sowing date D₁ (14th September) produced significantly highest straw yield (1106.41 kg ha⁻¹) as compared to D_2 (939.36 kg ha⁻¹) and D_3 (878.99 kg ha⁻¹). Similarly, D_2 also recorded significant higher yield compared to D₃. Sowing date D₃ produced 878.99 kg ha⁻¹ and is in 3rd position. The result confirms the investigation of Rafey et al. (1988)^[12], Bajpai et al. (1990)^[3], Bobade et al. (2018)^[6] and Nagaraju et al. (1995)^[9]. D₁ (14th September) produced significantly highest biological yield $(1823.78 \text{ kg ha}^{-1})$ as compared to D₂ (1506.87 kg ha⁻¹) and D₃ (1404.54 kg ha⁻¹). Similarly, D₂ also registered notable higher yield (1506.87 kg ha⁻¹) compared to D₃. The result confirms the investigation of Rafey et al. (1988) [12], Bajpai et al. (1990)^[3] Bobde et al. (2018) and Nagaraju et al. (1995)^[9]. The sowing date D₁ (14th September) observed higher harvest index (39.51%) followed by D₂ (37.66%) and D₃ (37.42%).

This result confirms the finding of Bobde *et al.* (2017) in kharif green gram.

Effect of varieties on yield

The variety V₂ (Indira Kulthi-1) produced significantly highest seed yield (697.04 kg ha-1) among the all other varieties. Variety V_5 (638.32 kg ha⁻¹) and V_1 (602.85 kg ha⁻¹) yielded statistically at par yield and significantly higher than V_4 (560.74 kg ha⁻¹) and V_3 (524.13 kg ha⁻¹). Variety V_4 and V_3 observed statistically similar and stood 3rd in position. The possible reason of higher yield of variety V_2 is that this variety recorded higher growth and yielding attributing parameters as compared to other varieties. Such types of varietal differences were also reported by Nagaraju et al. $(1995)^{[9]}$ and Suthar *et al.* $(2017)^{[17]}$ in horsegram. Variety V₂ (Indira Kulthi-1) produced significantly highest straw yield $(1246.11 \text{ kg ha}^{-1})$ compared to all other varieties. Variety V₁ (Bilasa Kulthi) yielded (913.08 kg ha⁻¹) statistically at par with V₅ (946.97). Variety V₂ (Indira Kulthi-1) produced significantly highest biological yield (1943.15 kg ha⁻¹) of horsegram as compared to all other varieties. Variety V₁ (1515.78 kg ha⁻¹) was at par with V₅ (1585.35 kg ha⁻¹). V₃ (Chhattisgarh Kulthi-2) and V₄ (Chhattisgarh Kulthi-3) observed statistically similar and stood 3^{rd} in position. The V_5 variety recorded peak harvest index (40.26%) and least harvest index was recorded by V_2 (35.87%).

Table 4: Effect of sowing dates and varieties on Horsegram on yield

Treatment	Seed yield (kg ha ⁻¹)	Straw yield (kg ha ⁻¹)	Biological yield (kg ha ⁻¹)	Harvest Index (%)
	A. Dat	es of sowing (D)		•
D _{1:} (14 th September)	720.70	1106.41	1823.78	39.51
D _{2:} (20 th September)	567.54	939.36	1506.87	37.66
D ₃ : (26 th September)	525.61	878.99	1404.54	37.42
S. Em ±	25.76	41.88	35.69	-
CD at 5%	101.13	164.43	140.12	-
	В.	Varieties (V)		
V _{1:} (Bilasa Kulthi)	602.85	913.08	1515.78	39.77
V _{2:} (Indira Kulthi-1)	697.04	1246.11	1943.15	35.87
V _{3:} (Chhattisgarh Kulthi-2)	524.13	823.86	1347.99	38.88
V4: (Chhattisgarh Kulthi-3)	560.74	944.59	1499.70	37.39
V _{5:} (BSP 17-2)	638.32	946.97	1585.35	40.26
S. Em ±	39.75	88.13	118.39	-
CD at 5%	116.01	257.25	345.55	-
	Inte	raction (D×V)		
S. Em ±	68.84	152.65	205.05	-
CD at 5%	NS	NS	NS	-

I express gratitude to my advisor Dr. J.R. Patel, and all the faculty members of BTC College of Agriculture and Research Station, Bilaspur, (C.G.) Department of Agronomy for support and guidance to carry out the whole experimental research study.

How to cite this article

Sahu, M., Patel, J.R., Sarthi, D.P., Sumit, Satya, S.N. (2021). Effect of sowing dates and varieties on growth and selected features of horsegram [*Macrotyloma uniflorum* (Lam.) Verdc.] in Chhattisgarh plains under protective irrigation. Biological Forum An International Journal,

References

- 1. Anonymous. Ministry of Agriculture and Farmers Welfare, Government of India. (ON1704), 2016-17.
- 2. Aiyer YN. Horsegram, In: Field Crops of India, Bangalore Press, Bangalore 1990, 115-117.
- 3. Bajpai RP, Singh VK, Dwivedi RK. Performance of horsegram on different dates of sowing, phosphorus levels and intercropping. Indian Journal of Pulses Research, 1990;3(2):159-162.
- 4. Bhardwaj J, Yadav SK. Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (*Macrotyloma uniflorum*) under drought stress. Am J Plant Physiol 2012;7(1):17.
- 5. Biswas M, Begum AA, Afzal A, Mia FU, Hamid A. Effect of sowing dates on the growth and yield of black gram varieties. Pakistan Journal of Biological Sciences 2002;5(3):272-274.
- Bobade BR, Asewar BV, Vikhe RR. Influence of dates of sowing on kharif green gram [*Vigna radiate* (L.) Wilczek] varieties under varied weather conditions. Trends in Biosciences 2018;11(6):794-796.
- Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. John Wiley & Sons, Singapore. 1984.
- Hussain MZ. Physiological analysis of the effect of sowing dates on phenology growth and yield of horsegram (*Macrotyloma uniflorum*) cultivars. B.Sc. (Ag.) Plant Physiology Thesis, Sri Venkaleswara Agricultural College Andhra Pradesh Agricultural University Tirupati, 1989.
- 9. Nagaraju AP, Yadahalli YH, Shivanandaiah MP, Shambulingappa KG. Response of horsegram (*Macrotyloma uniflorum*) cultivars to seeding date and spacing. Indian Journal Agronomy, 1995;40(4):626-629.
- Naidu CR, Reddy GK, Sumathi V, Reddy PVM. Response of soybean varieties to different sowing times. Journal of Pharmacognosy and Phytochemistry 2017;6(5):1092-1095.
- 11. Prakash BG, Guled MB, Bhosale AM. Identification of suitable horsegram varieties for Northern dry zone of Karnataka. Karnataka Journal of Agricultural Science 2008;21(3):343-345.
- Rafey A, Prasad RB, Srivastava VC. Studies on seeding time of horsegram (*Mycrotyloma uniflorum* Lam Varde). Indian Journal of Agronomy 1988;33(3):335-336.
- 13. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram (*Macrotyloma uniflorum* (Lam.) Verdc.) and bengalgram (*Cicer*

http://www.thepharmajournal.com

arietinum L.). Chemosphere 2005;60:97-104.

- Reddy SP, Ramanjulu S, Sudhakar C, Veeranjaneyulu K Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, *Macrotyloma uniflorum* (Lam.). Photosynthetica, 1998;35(1):99-105.
- 15. Reddy PCO, Sairanganayakulu G, Thippeswamy M, Reddy PS, Reddy MK, Sudhakar C. Identification of stress induced genes from the drought tolerance semi arid legume crop horsegram (*Macrotyloma uniflorum* (Lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Science 2008;175(3):372-384.
- 16. Sudha N, Begum JM, Shambulingappa KG, Babu CK. Nutrients and some anti-nutrients in horsegram (*Macrotyloma uniflorum* (Lam.) Verdc). Food and Nutrition Bulletin 1995;16(1):100.
- 17. Suthar R, Patel PH, Kumar A, Urmila. Effect of horsegram varieties and different row spacing on yield attributes and yield. Life Science International Research Journal special issue 2017, 4.