www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2021; 10(12): 2182-2187 © 2021 TPI

www.thepharmajournal.com Received: 10-10-2021 Accepted: 30-11-2021

Ajay Singh

Department of Fruit Science, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Ghanshyam D Sahu

Department of Fruit Science, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Aaisha Nasim

Department of Fruit Science, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Sanat Kumar Diwan

Department of Fruit Science, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Corresponding Author: Ajay Singh Department of Fruit Science, College of Agriculture, Indira

College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Studies on the different concentration of GA₃ and media for seed germination of Acid lime (*Citrus aurantifolia* Swingle) under protected structure

Ajay Singh, Ghanshyam D Sahu, Aaisha Nasim and Sanat Kumar Diwan

Abstract

The present investigation entitled "Studies on the different concentration of GA₃ and media for seed germination of Acid lime (*Citrus aurantifolia* Swingle) under protected structure." Was carried out during the year 2020-21. The experiment was conducted in completely randomized Design comprising of 13 treatments and 3 replication. The treatment consists of three concentrations i.e. 30 ppm, 60 ppm & 90 ppm of Gibberellic acid for 12 hours and have been used to different media (M₁) Soil, Sand, FYM, (M₂) Soil, Sand, Vermicompost, (M₃) Soil, Sand, FYM, Cocopeat and (M₄) Soil, Sand, Vermicompost, Cocopeat. The study revealed that growth parameters of Seed and physical parameters of growth in plants significantly affect of the seed germination of Acid lime seed. The seed germination was found to be highest in 90 ppm for 12 hours of GA₃ recorded significantly highest germination percentages, rate of seed germination, Number of shoots per plant, Number of leaves per plant and height of plants, fresh and dry weight of shoots (g), length of tap root (cm), average number of secondary roots and fiberous roots, survival percentage of plants and number of days to be ready for planting of sapling.

Keywords: Acid lime seeds, gibberellic acid and growing media

Introduction

Acid lime (*Citrus aurantifolia* Swingle) is the most commercially important fruit crops of India as well as world and is grown in over 100 countries and it is often regarded as golden fruit. The different common name of this species are Acid lime, Sour lime, Kagzi lime, Mexican lime and are believed to have originated from south- East Asia. It belongs to family Rutaceae, chromosome no. 2n = 18 is one of the most important citrus fruit as a major source of Vitamin C grown throughout the world (Anon., 2015) ^[1]. Among acid lime is commercially grown in tropical and subtropical regions of India and third most important fruit crop of India after mango and banana and the largest producer of acid lime in world (Chin and Roberts, 1980) ^[3]. It is highly susceptible to citrus gummosis and root rot nematode has poor tolerance to Phytophthora (Naqvi, 2000) ^[13] and mineral element are affected by rootstocks (Toplu *et al.*, 2008) ^[18]. The trees medium sized, hardy and semi-vigorous, growth upright with an irregular and loose crown, foliage not dense, light green, thorns numerous, fruit round and oblong, greenish yellow in colour and juice is highly acidic and its seeds are highly polyembryonic in nature and commercially propagated by seed and other methods of propagation done by grafting, budding, air-layering.

Materials and Method

The Raipur district of Chhattisgarh is located at 21^{0} 16' n latitude and 81^{0} 36' east longitude on 305m above sea level. The average rainfall of this reaion is 1200 - 1400 mm. This location is classified as by (Köppen and Geiger). The average annual temperature in Raipur is 26.5 °C (79.8°F). The experiment was carried out at during 2020-21 at Precision Farming Development Centre (PFDC), Department of Fruit Science, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.). The uniform sized, fully matured and true to type fruits of acid lime seed were collected from Pendra road and Raipur. The seeds were extracted carefully, washed with clean water and dried in shade for a day. The shoft covering seed coat of Acid lime seed was removed with the help of hands and knife. Acid lime seed of remove of seed coat after sun drying for 1-2 days. One gram of GA₃ was dissolved in few ml of ethyl alcohol and volume was made to one liter by adding distilled water to obtain a concentration of 1000 ppm. For soaking, the desired concentrations of GA₃ were prepared from respective stock solutions by adding distilled water. In this stock solution to make of 30 ppm, 60ppm, and 90ppm of GA₃ solution of each concentration was taken in 100 ml in beakers. The uniform sized, healthy Acid lime seed were soked in 100 ml beakers for soaked 30, 60 and 90 ppm GA₃ solution in different treatment for 12 hours. Seeds of control treatment were soaked in distilled water. Preparation of different media components in this equal ratio of soil, sand, FYM, vermicompost and cocopeat. Four media component are $(M_1) = Soil + Sand + FYM$ (1:1:1), $(M_2) = Soil + Sand +$ Vermicompost (1:1:1), $(M_3) = Soil + Sand + FYM +$ Cocopeat (1:1:1:1) and $(M_4) = Soil + Sand + Vermicompost +$ Cocopeat (1:1:1:1). The acid lime seed sowing in polybag of 18×24 cm size filled with a different media components in this equal ratio respectively. The sowing of acid lime seed was done on 5 December 2020. On seed was dipped at 1-2 cm depth in each polybags. Seed sowing after watering was done. The experiment was designed in Completely Randomized Design (CRD) with three replications and 13 treatment combinations which were as follows: T₀, Control (Distilled water),(M₁₎, T₁, GA₃ 30 ppm, (M₁), T₂, GA₃ 30 ppm,(M₂), T₃, GA₃ 30 ppm, (M₃), T₄, GA₃ 30 ppm, (M₄), T₅, GA₃ 60 ppm, (M₁), T₆, GA₃ 60 ppm,(M₂), T₇,GA₃ 60 ppm, (M₃), T₈,GA₃ 60 ppm,(M₄), T₉,GA₃ 90 ppm, (M₁), T₁₀,GA₃ 90 ppm,(M₂), T₁₁, GA₃ 90 ppm, (M₃), T₁₂, GA₃ 90 ppm, (M₄) for 12 hours. The data observed to germination percentages, rate of seed germination, Number of shoots per plant, Number of leaves per plant and height of plants, fresh and dry weight of shoots (g), length of tap root (cm), average number of secondary roots and fiberous roots, survival percentage of plants and number of days to be ready for planting of sapling and was subjected to statistically by the method of analysis of variance. The significance of various treatments was judged and suggested by R. A. Fisher (1973)^[8].

Results and Discussion

The study revealed that growth parameters of Seed and physical parameters of growth in plants of acid lime seed. The significant maximum germination percentage (93.33%), germination rate of 93.33%, number of shoots per plant of 7.67, number of leaves per plant of 17.67, height 20.23 cm, fresh shoot weight of 9.87 g and dry shoot weight of 4.83 g., length of tap roots 21.07 cm, average number of secondary roots and fiberous roots of 9.33 and 92.00, survival percentage of 83.33% and minimum number of days to be ready for planting of sapling (120 days) was recorded under T₁₂ (GA₃ 90 ppm and M₄ for 12hr.) in acid lime sapling. The germination percentage of seeds was recorded at 30 DAS. The data of the present investigation revealed that the effect of different seed treatments showed significant effect on percentage of seed germination. The highest germination percentage of 93.33% was seen in T₁₂ (GA₃ @ 90 ppm and M_4 for 12 hours). Followed by T_8 (90.00%) and T_{11} (86.66%). The lowest germination percentage of 43.33% was in To

(control) (Table -1). Similar findings were also reported by Singh et al. (2017)^[16] in Rangpur Lime. The rate of seed germination. The highest germination rate of 93.33% (23.00, 26.00, 27.00, 28.00 and 28.00) was seen in T₁₂ (GA₃ @ 90 ppm and M₄ for 12 hours). The lowest germination rate of 43.33% (8.00, 10.00, 11.00, 13.00 and 13.00) was in To (control). The rate of seed germination was recorded at 20, 25, 30, 35 and 40 DAS (Table -2). Similar findings were also reported by Singh et al. (2017) [16] in Rangpur Lime. The effect of different seed treatments had a significant effect on of shoot. Maximum number of shoots per plant 7.67 was obtained under T₁₂ GA₃ @ 90 ppm and M₄ for 12 hr.). However, minimum number of shoots per plant of 2.33 was obtained in T₀ (control condition) at 90 DAS respectively (Table -3). Similar findings were also reported by Sinha et al. (2013)^[15] in kagzi lime.

The maximum number of leaves per plant of 10.67, 14.67 and 17.67 was obtained under T_{12} (GA₃ @ 90 ppm, M₄ for 12 hours) at 30, 60 and 90 DAS respectively. Whereas, minimum number of leaves of 2.67, 4.67 and 6.33 was obtained in T_0 (control) at 30, 60 and 90 DAS respectively (Table -4). The result of the present investigation is also supported by Kalalbandi et al. (2003) [10] in Kagzi lime. The maximum height of 6.27 cm, 14.87 cm and 20.23 cm was obtained under T₁₂ (GA₃ @ 90 ppm, M₄ for 12 hours). However, minimum height of 2.33 cm, 4.23 cm and 7.27 cm was obtained in T_0 (control) at 30, 60 and 90 DAS respectively (Table -5). These results are in conformity with results reported by Singh et al. (2017)^[17] in Rungpur lime. The maximum fresh shoot weight of 9.87 g and dry shoot weight of 4.83 g. at obtained under T₁₂ (GA₃ @ 90 ppm, M₄ for 12 hours). Whereas, minimum fresh shoot weight of 4.70 g. and dry shoot weight of 2.07 g. at was obtained in T_0 (control) at 90 DAS (Table -6). The result is supported by the findings Choudhary and Chakrawar (1982)^[5] in lime. Maximum length of tap roots 21.07 cm at was obtained under T_{12} (GA3 @ 90 ppm, M_4 for 12 hours). However, minimum length of tap roots 11.80 cm was obtained in T₀ (control) at 90 DAS (Table- 7). The maximum average number of secondary roots and fiberous roots of 9.33 and 92.00 at was obtained under T₁₂ (GA₃ @ 90 ppm and M₄ for 12 hr.). Whereas, minimum average number of secoundry roots and fiberous roots of 3.33 and 62.33 was obtained in T_0 (control) at 90 DAS (Table-8). The similar reported by Singh et al. (2017) ^[17] in Rangpur Lime. The maximum survival percentage of 92.85% at was obtained under T₁₂ (GA₃ @ 90 ppm and M₄ for 12hr.). However, minimum survival percentage of 38.46% was obtained in T₀ (control) (Table-9). Similar findings were also reported by Khatana et al. (2015) ^[11] in kagzi Lime. The minimum number of days to be ready for planting of sapling (120 days) was taken to under T₁₂ (GA₃ @ 90 ppm and M₄ for 12hr.). Whereas, maximum number of days to be ready for planting of sapling (160 days) was taken to under T_0 (control) (Table-10). The gibberellic acid treatment the result of the present investigation is in close conformity with the findings of Vasantha et al. (2014)^[19].

Table 1: Effect of different seed treatment and media on percentage of seed germination

Treatment		Germination % of seed	
T ₀	Control (Distilled water)	$(M_1) = Soil + Sand + FYM$	43.33
T ₁	GA ₃ (30 ppm for 12 hours)	$(M_1) = Soil + Sand + FYM$	53.33
T ₂	GA ₃ (30 ppm for 12 hours)	(M_2) = Soil +Sand +Vermicompost	70.00
T ₃	GA ₃ (30 ppm for 12 hours)	$(M_3) =$ Soil +Sand +FYM +Cocopeat	73.33
T ₄	GA ₃ (30 ppm for 12 hours)	(M ₄) =Soil +Sand +Vermicompost +Cocopeat	83.32
T ₅	GA ₃ (60 ppm for 12 hours)	(M_1) = Soil +Sand + FYM	63.33

T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)= Soil +Sand +Vermicompost	76.66
T ₇	GA ₃ (60 ppm for 12 hours)	$(M_3) =$ Soil +Sand +FYM +Cocopeat	83.33
T ₈	GA ₃ (60 ppm for 12 hours)	(M ₄) =Soil +Sand +Vermicompost +Cocopeat	90.00
T ₉	GA ₃ (90 ppm for 12 hours)	(M_1) = Soil +Sand + FYM	66.66
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M_2) = Soil +Sand +Vermicompost	80.00
T ₁₁	GA ₃ (90 ppm for 12 hours)	$(M_3) =$ Soil +Sand +FYM +Cocopeat	86.66
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M ₄) =Soil +Sand +Vermicompost +Cocopeat	93.33
	0.53		
	1.56		

Table 2: Effect of different seed treatment and media on rate of seed germination

Treatment	Treatments Details	Madia	Number of seed germination				
Treatment	Treatments Details	Wieula	20 DAS	25 DAS	30 DAS	35 DAS	40 DAS
T ₀	Control (Distilled water)	(M ₁)	8.00	10.00	11.00	13.00	13.00
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	11.00	14.00	15.00	16.00	16.00
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	13.00	19.00	20.00	21.00	21.00
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	16.00	21.00	22.00	22.00	22.00
T4	GA ₃ (30 ppm for 12 hours)	(M4)	18.00	23.00	24.00	25.00	25.00
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	11.00	16.00	18.00	19.00	19.00
T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)	17.00	19.00	22.00	23.00	23.00
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	19.00	22.00	24.00	25.00	25.00
T ₈	GA ₃ (60 ppm for 12 hours)	(M4)	20.00	24.00	26.00	27.00	27.00
T ₉	GA ₃ (90 ppm for 12 hours)	(M ₁)	14.00	18.00	20.00	20.00	20.00
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M ₂)	19.00	21.00	22.00	24.00	24.00
T ₁₁	GA ₃ (90 ppm for 12 hours)	(M ₃)	21.00	23.00	25.00	26.00	26.00
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M ₄)	23.00	26.00	27.00	28.00	28.00
S.Em±			3.64	2.48	2.48	0.68	0.68
CD at 5%			11.27	7.68	7.68	2.13	2.13

Table 3: Effect of different seed treatment and media on number of shoots per plant

Treatment		Number of shoots per plant	
T ₀	Control (Distilled water)	(M_1) = Soil + Sand + FYM	2.33
T ₁	GA ₃ (30 ppm for 12 hours)	(M_1) = Soil +Sand + FYM	2.67
T ₂	GA ₃ (30 ppm for 12 hours)	(M_2) = Soil +Sand + Vermicompost	3.00
T ₃	GA ₃ (30 ppm for 12 hours)	$(M_3) =$ Soil + Sand + FYM +Cocopeat	4.67
T ₄	GA ₃ (30 ppm for 12 hours)	(M ₄) =Soil +Sand +Vermicompost +Cocopeat	5.67
T ₅	GA ₃ (60 ppm for 12 hours)	(M_1) = Soil +Sand + FYM	3.33
T ₆	GA ₃ (60 ppm for 12 hours)	(M_2) = Soil +Sand + Vermicompost	4.33
T ₇	GA ₃ (60 ppm for 12 hours)	$(M_3) =$ Soil +Sand + FYM +Cocopeat	5.33
T ₈	GA ₃ (60 ppm for 12 hours)	(M ₄) =Soil +Sand + Vermicompost + Cocopeat	6.33
T ₉	GA ₃ (90 ppm for 12 hours)	(M_1) = Soil +Sand + FYM	3.33
T10	GA ₃ (90 ppm for 12 hours)	(M ₂)= Soil +Sand + Vermicompost	4.33
T ₁₁	GA ₃ (90 ppm for 12 hours)	$(M_3) =$ Soil +Sand + FYM + Cocopeat	6.67
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M ₄) =Soil +Sand + Vermicompost +Cocopeat	7.67
		0.24	
		CD at 5%	0.71

Table 4: Effect of different seed treatment and media on number of leaves per plant

Treatment	Treatments Details	Treatments Details Madia		Number of leaves per plant			
Treatment	I reatments Details	Meula	30 DAS	60 DAS	90 DAS		
T ₀	Control (Distilled water)	(M ₁)	2.67	4.67	6.33		
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	3.67	5.67	7.00		
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	4.67	6.67	8.67		
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	5.67	8.67	11.67		
T_4	GA ₃ (30 ppm for 12 hours)	(M ₄)	6.67	9.67	12.67		
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	4.33	6.33	7.67		
T ₆	GA_3 (60 ppm for 12 hours)	(M ₂)	5.00	7.00	10.33		
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	6.00	9.00	10.67		
T ₈ GA ₃ (60 ppm for 12 hours)		(M4)	7.67	12.67	14.67		
T ₉	GA ₃ (90 ppm for 12 hours)	(M ₁)	4.00	6.00	8.00		
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M ₂)	8.00	12.33	13.67		
T ₁₁	GA ₃ (90 ppm for 12 hours)	(M ₃)	10.33	13.67	15.67		
T12 GA3 (90 ppm for 12 hours) (M4)		(M4)	10.67	14.67	17.67		
S.Em±			0.22	0.22	0.29		
	CD at 5%		0.65	0.65	0.84		

Treatment	Treatments Datails	Madia	Height of the plant (cm)		
Treatment	I reatments Details	Media	30 DAS	60 DAS	90 DAS
T ₀	Control (Distilled water)	(M ₁)	2.33	4.23	7.27
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	2.40	5.67	7.80
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	2.53	6.27	8.57
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	2.83	7.23	10.57
T_4	GA ₃ (30 ppm for 12 hours)	(M ₄)	3.43	8.73	12.63
T ₅	GA ₃ (60 ppm for 12 hours)		2.63	6.87	10.17
T ₆	T_6 GA ₃ (60 ppm for 12 hours)		3.27	8.20	12.27
T ₇ GA ₃ (60 ppm for 12 hours)		(M ₃)	3.67	9.47	12.87
T ₈ GA ₃ (60 ppm for 12 hours)		(M ₄)	5.37	11.87	15.23
T ₉	T ₉ GA ₃ (90 ppm for 12 hours)		3.63	8.27	12.37
T10	GA ₃ (90 ppm for 12 hours)	(M ₂)	3.77	9.73	13.80
T ₁₁	T ₁₁ GA ₃ (90 ppm for 12 hours)		5.90	13.57	18.50
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M4)	6.27	14.87	20.23
	0.07	0.02	0.029		
	CD at 5%		0.22	0.08	0.084

Table 5: Effect of different seed treatment and media on height of the plant (cm)

Table 6: Effect of different seed treatment and media on fresh and dry weight of shoot (g)

Treatment	Treatments Details	Media	Fresh weight of shoots (g.)	Dry weight of shoots (g.)
T ₀	Control (Distilled water)	(M ₁)	4.70	2.07
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	5.77	2.17
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	6.30	2.23
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	7.73	2.87
T_4	GA ₃ (30 ppm for 12 hours)	(M ₄)	8.20	3.37
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	6.50	2.37
T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)	7.47	2.57
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	8.13	3.13
T ₈	GA ₃ (60 ppm for 12 hours)	(M4)	8.67	4.13
T9	GA ₃ (90 ppm for 12 hours)	(M ₁)	6.43	2.40
T10	GA ₃ (90 ppm for 12 hours)	(M ₂)	7.87	3.33
T11	GA ₃ (90 ppm for 12 hours)	(M ₃)	8.37	3.77
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M4)	9.87	4.83
	S.Em±		0.03	0.06
	CD at 5%		0.10	0.17

Table 7: Effect of different seed treatment and media on length of tap roots (cm)

Treatment		Treatments details				
T ₀	Control (Distilled water)	(M_1) = Soil + Sand + FYM	11.80			
T ₁	GA ₃ (30 ppm for 12 hours)	(M_1) = Soil + Sand + FYM	12.77			
T ₂	GA ₃ (30 ppm for 12 hours)	(M_2) = Soil +Sand + Vermicompost	13.37			
T ₃	GA ₃ (30 ppm for 12 hours)	$(M_3) =$ Soil +Sand + FYM +Cocopeat	14.80			
T ₄	GA ₃ (30 ppm for 12 hours)	$(M_4) = Soil + Sand + Vermicompost + Cocopeat$	16.80			
T ₅	GA ₃ (60 ppm for 12 hours)	$(M_1) = Soil + Sand + FYM$	13.73			
T ₆	GA ₃ (60 ppm for 12 hours)	$(M_2) = Soil + Sand + Vermicompost$	14.87			
T ₇	GA ₃ (60 ppm for 12 hours)	$(M_3) = Soil + Sand + FYM + Cocopeat$	16.23			
T ₈	GA ₃ (60 ppm for 12 hours)	$(M_4) = Soil + Sand + Vermicompost + Cocopeat$	17.80			
T ₉	GA ₃ (90 ppm for 12 hours)	$(M_1) = Soil + Sand + FYM$	14.60			
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M_2) = Soil + Sand +Vermicompost	17.27			
T11	GA ₃ (90 ppm for 12 hours)	$(M_3) =$ Soil + Sand +FYM + Cocopeat	18.17			
T12	GA ₃ (90 ppm for 12 hours)	(M ₄) =Soil +Sand +Vermicompost +Cocopeat	21.07			
	0.05					
		CD at 5%	0.15			

Table 8: Effect of different seed treatment and media on average number of secoundry roots and fiberous roots

Treatment	Treatments Details	Media	Average number of secondary roots	Average number of Fiberous roots
T ₀	Control (Distilled water)	(M ₁)	3.33	62.33
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	4.33	67.67
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	5.33	72.00
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	5.67	82.00
T 4	GA ₃ (30 ppm for 12 hours)	(M4)	6.67	86.33
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	4.67	70.00
T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)	5.33	77.00
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	6.67	84.33

T ₈	GA ₃ (60 ppm for 12 hours)	(M4)	7.33	87.00
T9	GA ₃ (90 ppm for 12 hours)	(M ₁)	5.33	71.33
T10	GA ₃ (90 ppm for 12 hours)	(M ₂)	7.00	78.67
T11	GA ₃ (90 ppm for 12 hours)	(M ₃)	8.33	88.33
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M4)	9.33	92.00
	S.Em±		0.34	0.36
	CD at 5%		1.00	1.07

Table 9: Effect of different seed treatment and media on survival percentage of plants

Treatment	Treatments details	Media	Survival % of plant
T ₀	Control (Distilled water)	(M ₁)	38.46
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	50.00
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	66.66
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	72.72
T_4	GA ₃ (30 ppm for 12 hours)	(M4)	76.00
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	63.15
T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)	73.91
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	80.00
T ₈	GA ₃ (60 ppm for 12 hours)	(M4)	88.88
Т9	GA ₃ (90 ppm for 12 hours)	(M ₁)	65.00
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M ₂)	75.00
T11	GA ₃ (90 ppm for 12 hours)	(M ₃)	84.61
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M4)	92.85
	S.Em±		0.48
	CD at 5%		1.39

Table 10: Effect of different seed treatment and media on number of days to be ready for planting of sapling

Treatment	Treatments details	Media	Number of days to be ready for planting of sapling
T ₀	Control (Distilled water)	(M ₁)	160
T ₁	GA ₃ (30 ppm for 12 hours)	(M ₁)	158
T ₂	GA ₃ (30 ppm for 12 hours)	(M ₂)	152
T ₃	GA ₃ (30 ppm for 12 hours)	(M ₃)	146
T ₄	GA ₃ (30 ppm for 12 hours)	(M4)	140
T ₅	GA ₃ (60 ppm for 12 hours)	(M ₁)	155
T ₆	GA ₃ (60 ppm for 12 hours)	(M ₂)	150
T ₇	GA ₃ (60 ppm for 12 hours)	(M ₃)	135
T ₈	GA ₃ (60 ppm for 12 hours)	(M4)	130
T ₉	GA ₃ (90 ppm for 12 hours)	(M ₁)	154
T ₁₀	GA ₃ (90 ppm for 12 hours)	(M ₂)	148
T ₁₁	GA ₃ (90 ppm for 12 hours)	(M ₃)	125
T ₁₂	GA ₃ (90 ppm for 12 hours)	(M4)	120
	S.Em±		1.87
	CD at 5%		5.44

Conclusions

From the result of the present investigation, it can concluded that the effect of GA_3 and different media components had significant effect on seed germination and Physical parameters of growth in acid lime sapling.

This experiment after found to be superior over other treatments for initiation of germination. However, all parameters like seed germination percentage, Rate of seed germination, number of shoots per plant, number of leaves per plant, height of plant (cm), fresh and dry weight of shoots (g), length of tap root (cm), average number of secondary roots and fiberous roots, survival percentage of plant and number of days to be ready for planting were found significantly superior over other treatments under T₁₂ (GA₃ @ 90 ppm for 12 hr. and used to M₄= Soil, Snad, Vermicompost and Cocopeat).

Reference

 Anonymous. Indian Horticulture Database. National Horticulture Board, Ministry of Horticulture, New Delhi. 2015. http.www.nhb.gov.in. Accessed on June, 5.

- 2. Al-Musawi MA, Al-Moussawi SM, Zn Impact on Germination and Seedling Growth of Acid Lime. Annals of Biology. 2020;36(3):406-411.
- 3. Chin HF, Roberts EH. Recalcitrant crop seeds. Recalcitrant crop seeds. 1980.
- 4. Chin HF, Roberts EH. Recalcitrant crop seeds. Recalcitrant crop seeds. 1980.
- 5. Choudhary BK, Chakrawar VK. Effect of seed treatment using some chemicals on shoot and root growth of Rangpur lime. Journal of Maharashtra Agricultural University. 1982;1(1):56-60.
- 6. Dhaka SS, Paul SL. A study on lime (*Citrus aurantifolia*) seed germination as affected by gibberellic acid. Annals of Horticulture. 2009.
- De Oliveira Aparecido LE, De Meneses KC, Torsoni GB, De Lima RF, Costa CTS. Köppen-Geiger and Camargo climate classifications for the Midwest of Brasil. Theoretical and Applied Climatology. 2020;142(3):1133-1145.
- 8. Fisher RA. Experiments for nonlinear functions (ra Fisher Memorial Lecture). Journal of the American

Statistical Association, 1973;68(344):771-781.

- Harsha HR, Venkata Rao, Dayamani KJ, Shivanna M. Pummelo (*Citrus maxima* Merill) seedlings growth as influenced by plant growth regulators and macronutrients. International Journal of Current Microbiology and Applied Sciences. 2017;6(12):1750-1754.
- Kalalbandi BM, Dabhade RS, Ghadge PM, Bhagat V. Effect of giberrelic acid, naphthalene acetic acid and potassium nitrate on germination and growth of kagzi lime. Annals of Plant Physiology. 2003;17(1):84-87.
- 11. Khatana KJ, Jadav RG, Nehete DS. Influence of GA₃ on germination and growth of acid lime cv. acid lime seed (*Citrus aurantifolia* Swingle) under field as well as net house Conditions. The Asian Journal of Horticulture. 2015. DOI: 10.15740/Has/Tajh/10.1/11-16.
- 12. Meshram PC, Joshi PS, Bhoyar RK, Sahoo AK. Effect of different plant growth regulators on seedling growth of acid lime. Res. Envrn. Life Sci, 2015;8(4):725-728.
- 13. Naqvi SAMH. Managing phytophthora disease in citrus. Indian Hort. 2000;44(4):5-9.
- 14. Prajapati DG, Satodiya BN, Desai AB, Nagar PK. Influence of storage periodand growing media on seed germination and growth of acid lime seedlings (*Citrus aurantifolia* Swingle) Cv. Kagzi. Journal of Pharmacognosy and Phytochemistry. 2017;6(4):1641-1645.
- 15. Sinha D, Patil SK. Evaluation of insecticides and natural products against citrus leaf miner in acid lime. Annals of Plant Protection Sciences. 2013;21(1):30-32.
- 16. Singh D, Dilip WS, Moharana D, Rout S, Patra SS. Effect of gibberellic acid (GA₃) different concentrations at different time intervals on seed germination and seedling growth of Rangpur Lime. Journal of Agroecology and Natural Resource Management. 2017. p-ISSN: 2394-0786, e-ISSN: 2394-0794.
- Singh R, Gurjar B, Baghel SS. Seed germination and seedling vigour of Kagzi Lime (*Citrus aurantifolia* Swingle) as influenced by growth regulators and fungicide. International Journal of Pure and Applied Bioscience. 2017;5(4):2105-2109.
- Toplu C, Kaplankiran M, Demirekser TH, Yildiz E. The effects of citrus rootstock on valencia late and rohde red valencia oranges for some plant nutrient element. African J Biotech. 2008;7(24):4441-4445.
- Vasantha PT, Vijendrakumar RC, Guruprasad TR, Mahadevmma M, Santosh KV. Studies on effect of growth regulators and biofertilizers on seed germination and seedling growth of tamarind (*Tamarindus indica* L.), Plant Archives. 2014;14(1):155-160.
- 20. Yadav RK, Jain MC, Jhakar RP. Effect of media on growth and development of acid lime (*Citrus aurantifolia* Swingle) seedling with or without *Azotobacter*. African Journal of Agricultural Research. 2012;7(48):6421-6426.
- Yadav SV, Patil MB, Mahorkar KD. Effect of Growth Regulators and Chemicals on Germination and Growth of Rangpur Lime Seedlings under Nursery Condition. Int. J Curr. Microbiol. App. Sci. 2020;9(3):836-841.