www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2021; 10(6): 455-457 © 2021 TPI

www.thepharmajournal.com Received: 09-03-2021 Accepted: 20-04-2021

Ashwini G Patil

Department of Plant Pathology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

KT Apet

Department of Plant Pathology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

RC Agale

Department of Plant Pathology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Corresponding Author: Ashwini G Patil Department of Plant Pathology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Symptomatic and morpho-cultural variability among different isolates of *Xanthomonas campestris* pv. *Mangiferaeindicae* causing mango bacterial leaf spot

Ashwini G Patil, KT Apet and RC Agale

Abstract

Many commercial cultivars of mango are highly susceptible to bacterial leaf spot and infections can result in drastic yield losses. Symptomatic and morpho-cultural variability studied among different isolates of *Xanthomonas campestris* pv. *Mangiferaeindicae* causing mango bacterial leaf spot. Diseased samples collected from marathwada region expressed a wide range of variability in respect of lesion shape, size and colour etc. Cultural and morphological characters of different *Xanthomonas campetris* pv. *Mangiferaeindicae* isolates were studied on nutrient agar media. Eight isolates collected from different locations of Marathwada region differed in respect of cultural characteristics *viz.*, pigmentation, colony shape, elevation, margin, surface appearance and cell shape were studied using NA as basal culture medium. Among the eight isolates tested, six isolates *viz.*, Xcm1, Xcm3, Xcm4, Xcm6, Xcm7 and Xcm8 exhibited cream to white pigmentation while rest two (Xcm2 and Xcm5), exhibited white to pale yellow pigmentation. All the isolates had filiform colony shape, convex elevation and entire colony margin. However, all the isolates were morphologically single rods.

Keywords: Xanthomonas campestris pv. Mangiferaeindicae, bacterial leaf spot, mango, cultural morphological characters, nutrient agar

Introduction

Mango (*Mangifera indica*) is cultivated in most frost free tropical and warmer subtropical climates. It is the National fruit of India. Besides delicious taste, excellent flavour and attractive fragrance, it contains a variety of nutrients and rich in vitamin A & C. India ranks first in the production, consumption and export of mango all over the world with an area, production and productivity of 2262.8 000' ha, 19686.9 000' MT and 8.7 MT/ha respectively whereas, Maharashtra occupies an area of 157.07 ha, production 520.87 t and productivity of 3.58 mt/ha (Anonymous, 2019)^[2]. Mango bacterial leaf spot disease which is also known as mango canker, bacterial spot, bacterial canker, black spot, mango blight, bacterial black spot is caused by *Xanthomonas campestris* pv. *Mangiferaeindicae* (*Xcmi*) (Gupta and Sharma, 2000)^[7]. It is one of the most destructive bacterial disease of mango worldwide (Gagnevin and Pruvost, 2001)^[6]. The disease is most serious in areas of high temperature (14-38 ^oC) and high rainfall (more than 1000 mm per year); during the growing season (Das, 2003).

Many commercial cultivars are highly susceptible to bacterial leaf spot and infections can result in drastic yield losses associated with premature fruit drop, reduction of fruit quality, and induction of severe defoliation especially when storms or hurricanes are involved. From 50 to 80% fruit infection is common on very susceptible cultivars.

Material and methods

Isolation of the bacterium

The bacterial leaf spot diseased mango plant specimens (leaves, fruits and branches) collected from mango orchards distributed in various agro- climatic zones of Marathwada region, were subjected first to ooze test to confirm association of the bacterium and them subjected to isolations on nutrient agar (NA) medium, by employing standard procedure. Upon completion of the incubation period, single colonies of the bacterium develop on NA was picked up aseptically, transferred on to fresh NA Petri plates and incubated 28 ± 2 ⁰C, to obtained pure cultures of the bacterium isolates/strains. Applying same procedure, a total of eight isolates of *X. campestris* pv. *Mangiferaeindicae* were isolated. Pure cultures of the test bacterium strains were assigned the nomenclature, by considering the agro climatic zones and/or the mango plants from which day isolated. Pure culture thus obtained was preserved in refrigerator for further studies.

Morpho-cultural characterization

Morpho-cultural characters of *Xanthomonas campestris* pv. *Mangiferaeindicae* pathogen was studied by microscopic and visual observation *viz*. cell shape, flagellation, colony edge, elevation, Pigmentation and surface appearance.

Result and discussions

1. Symptomatic variability of virulent pathogen in the field

During the collection of samples bacterial leaf spot symptoms expressed variability in respect of their lesion shape, size and colour etc.

Table 1: Symptomatic	variability among the ba	cterial leaf spot specimens c	ollected from different agro climatic zones of	f Marathwada region

Icolato nomo	Agro climatic zone	Location	Symptoms			
Isolate name			Lesion shape	Lesion size (mm)	Lesion colour	
Xcm1	SC	Anandwadi	Circular to irregular	2	Dark brown with yellow halo	
Xcm2	AR	Pachod	Circular to irregular	2.5	Brown with yellow halo	
Xcm3	AR	Antarweli	Circular to irregular	2	Dark brown	
Xcm4	AR	Kalamb	Circular to irregular	2	Light brown with yellow halo	
Xcm5	AR	Latur	Circular to irregular	1	Brown with yellow halo	
Xcm6	AR	Zari	Circular to irregular	1	Black	
Xcm7	MR	Mudkhed	Circular to irregular	3	Dark brown with yellow halo	
Xcm8	MR	Aundha	Circular to irregular	2	Brown with yellow halo	

Results (Table 1 and Plate I) revealed that lesion shape were circular to irregular on mango leaves, grown in the all agroclimatic zone of the Marathwada region. The size of the leaf lesion was also varied, ranged from 1 mm to 3 mm in dia., maximum lesion size was found in Mudkhed (Xcm7) isolate (3mm) from moderate rainfall zone followed by Antarweli (Xcm2), Pachod (Xcm1), Anandwadi (Xcm3), Kalamb (Xcm4) and Aundha *i.e* 2 mm from three agro-climatic zones of marathwada region. However, minimum lesion size was found in isolates Xcm5 and Xcm6 collected from latur and zari respectively Assured rainfall zone *i.e* 1 mm. Colour of lesion on mango leaves was mostly brown with yellow halo in agro-climatic zones *viz.*, SC, AR, MR and dark brown with yellow halo in agro-climatic zones *viz.*, AR and MR.

2. Morpho-cultural characters

Cultural characteristics *viz.*, pigmentation, colony shape, elevation, margin, surface appearance and cell shape of different eight test isolates were studied using NA as basal culture medium. Cell shape was observed using binocular microscope (400X).

Results (Table 2, Plate II) revealed that, of the eight isolates tested, four isolates *viz.*, Xcm1, Xcm4, Xcm5 and Xcm7 exhibited creamy white pigmentation, Xcm2 and Xcm6, exhibited Creamy white with pale yellow ting pigmentation while rest two isolates *viz.*, Xcm3 and Xcm8 exhibited creamy white to pale yellow pigmentation. All the isolates had filiform colony shape, convex elevation and six isolates *viz.*, Xcm1, Xcm3, Xcm5, Xcm6 and Xcm8 had entire colony margin and rest three isolates Xcm2, Xcm4 and Xcm7 had irregular margin.

Sr. No.	Isolates	Pigmentation	Elevation	Margin	Surface	Cell shape
1	Xcm1	Creamy white	Convex	Entire margin	Smooth and glistening	Single rods
2	Xcm2	Creamy white with pale yellow sting	Convex	Irregular margin	Smooth and glistening	Single rods
3	Xcm3	Creamy white to pale yellow	Convex	Entire margin	Smooth and glistening	Single rods
4	Xcm4	Creamy white	Convex	Irregular margin	Smooth and glistening	Single rods
5	Xcm5	Creamy white	Convex	Entire margin	Smooth and glistening	Single rods
6	Xcm6	Creamy white with pale yellow sting	Convex	Entire margin	Smooth and glistening	Single rods
7	Xcm7	Creamy white	Convex	Irregular margin	Smooth and glistening	Single rods
8	Xcm8	Creamy white to pale yellow	Convex	Entire margin	Smooth and glistening	Single rods

Table 2: Morphological and cultural characteristics of Xanthomonas campestris pv. Mangiferaeindicae isolates

Similar results were also reported earlier by many workers. (Ah-You *et al.*, 2007; Khalid and Sinha, 2008; Singh and Thind, 2014; Kharde *et al.*, 2018) ^[1, 8, 11, 9]. Manicom and Wallis (1984) ^[10] described that all strains isolated of *X. campestris* pv. *Mangiferaeindicae* were rod shaped and motile by means of single polar flagellum. On nutrient agar the cell was 0.4 to 0.5 by 1.0 to 1.1 μ m round, shallowly, convex colonies with entire margins were formed. The colour was initially smoke gray but soon became white to cream. With the age, the colonies became pale yellowish brown. Thiruamlesh (2012) ^[12] reported that isolates of *X. campestris* pv. *Mangiferaeindicae* were motile and small rods singly or in pairs and produced white to yellow, mucoid, circular, raised 1

to 2 mm colonies on YNA and NA medium. Bandi (2019)^[4] studied cultural variability of eight isolates of *X. campestris* pv. *Mangiferaeindicae*. The results revealed that the isolates differed with respect to colony characters such as size, shape, colour and appearance. Xcm1, Xcm2 and Xcm5 developed small to medium bacterial colonies and Xcm3, Xcm4, Xcm7 and Xcm8 developed medium to large colonies. The isolates Xcm1, Xcm3, Xcm5, Xcm6, Xcm7 and Xcm8 were having circular to irregular shape. Xcm2 and Xcm4 were having circular in shape. Isolates Xcm1, Xcm2, Xcm5 and Xcm7 were creamish white and isolates Xcm3, Xcm4, Xcm6 and Xcm8 formed creamish colonies.

Plate I: Symptomatic variability among the bacterial leaf spot specimens

Isolates	Locations
Xcm-1	Anandwadi
Xcm-2	Pachod
Xcm-3	Antarweli
Xcm-4	Kalamb
Xcm-5	Latur
Xcm-6	Zari
Xcm-7	Mudkhed
Xcm-8	Aundha

Plate II: Pure culture of X. campestris pv. Mangiferaeindicae

Plate III: Morphocultural variability among the test isolates of *X. campestris* pv. *Mangiferaeindicae*

References

- Ah-you N, Gagnevin L, Chiroleu F, Pruvost O. Pathological variation within *Xanthomonas campestris* pv. *Mangiferaeindicae* support its separation into three distinct pathovars that can be distinguished by AFLP. J. Phytopath 2007;97(12):1568-77.
- 2. Anonymous. Indian Horticulture Data Base. National Horticulture Board 2019, 42-67.
- 3. Anonymous. National Mango Database 2018.
- Bandi NT. Studies on bacterial leaf spot of mango caused by *Xanthomonas campestris* pv. *Mangiferaeindicae* (Patel *et al.*) Robbs *et al.* Thesis submitted to Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani (MS) 2019.
- Das R, Mondal B, Mondal P, Khatua DC, Mukherjee N. Biological management of citrus canker on acid lime through *Bacillus subtilis* (S-12) in West Bengal. Indian. J Biopest 2014;7:38-41.
- Gagnevin L, Pruvost O. Epidemology and Control of Mango bacterial black spot. J American Phytopath 2001;85(9):928-935.
- 7. Gupta VK, Sharma SK. (Eds). Diseases of fruit crops. Kalyani publishers, Ludhiana 2001.
- 8. Khalid A, Sinha AP. Cultural, morphological and biochemical variability in *Xanthomonas oryzae* pv. *oryzae*. Ann. Pl. Protect. Sci 2008;16(2):485-547.
- 9. Kharde RR, Lavale SA, Ghorpade BB. Molecular diversity among the isolates of *Xanthomonas axonopodis* pv. *citri* causing bacterial canker in citrus. Int. J Curr. Microbiol. App. Sci 2018;7(8):2375-2384.
- Manicom BQ, Wallis FM. Further characterization of Xanthomonas campestris pv. Mangiferaeindicae. Internat. J Syst. Bacterial 1984;34(1):77-79.
- 11. Singh D, Thind SK. Prevalence, isolation and standardization of growth media for *Xanthomonas axonopodis* pv. *citri* causing citrus canker. Pl. Dis. Res 2014;29(2):188-192.
- 12. Thirumalesh BV. Characterization of *Xanthomonas campestris* pv. *Mangiferaeindicae* causing bacterial black spot of Mango. Thesis submitted to Kuvempu University 2012.