
 

~ 577 ~ 

The Pharma Innovation Journal 2022; 11(1): 577-584 

  
 
 
 
 
 
 

 

 

 
ISSN (E): 2277- 7695 

ISSN (P): 2349-8242 

NAAS Rating: 5.23 

TPI 2022; 11(1): 577-584 

© 2022 TPI 

www.thepharmajournal.com  

Received: 02-11-2021 

Accepted: 08-12-2021 

 

BK Prasad  

Department of Genetics and 

Plant Breeding, Amar Singh 

College, Lakhaoti, Bulandshahr, 

Uttar Pradesh, India 

 

G Singh  

Department of Genetics and 

Plant Breeding, P.G. College,  

Ghazipur, Uttar Pradesh, India 

 

Rajendra Kumar 

ICAR-Indian Institute of Wheat 

and Barley Research, Karnal, 

Haryana, India 

 

AK Sharma 

Department of Agriculture 

Statistics, Amar Singh College, 

Lakhaoti, Bulandshahr, Uttar 

Pradesh, India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

G Singh  

Department of Genetics and 

Plant Breeding, P.G. College,  

Ghazipur, Uttar Pradesh, India 

 

 

 

 

 

 

 

 

 
 

 

Induced mutations in barley (Hordeum vulgare L.) 

 
BK Prasad, G Singh, Rajendra Kumar and AK Sharma 

 
Abstract 
Mutation induction has become an established tool in plant breeding to supplement existing germplasm 

and to improve cultivars in certain specific traits. Keeping various aspects of barley, large numbers of 

morphological (reduced plant height, earliness, lax panicle), biochemical (protein), and physiological or 

conditional (chlorophyll) mutants have been isolated, evaluated and released for commercial cultivation 

by different institutions of the world. In recent years, interest has rekindled in mutation research, since 

induced mutagenesis is gaining importance in plant molecular biology as a tool to identify and isolate 

genes and to study their structure and functions. This review is aimed to provide the up to date 

information on the various aspects of induced mutants of barley. 
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1. Introduction 

Barley is the world's fourth most important cereal crop after rice, wheat and maize. The recent 

increase in the demand of barley by newly established melting/brewing units in India have 

given a new base of life to the crop. Barley is now emerging as an industrial crop in our 

country. Therefore, genetic improvement of yield, quality of product, tolerance to biotic and 

abiotic stresses is necessary to meet the demand of society and industries. Progress in the 

genetic improvement of any crop mainly depends on the amount of variability present in the 

concerned crop. If variability is sufficient, it can be utilized by breeders either through 

selection or selection followed by hybridization (Joshna, 2000, Micke at al. 1990) [52 72]. 

Heritable variants occur spontaneously in nature but their frequency is quite low. The 

frequency of heritable mutants can be greatly enhanced by treating seeds and other plant parts 

with mutagens (Maluszynski, 1990, Singh, 2018, Kharkwal et al., 2004) [67, 99, 54]. In barley, a 

large number of mutants for different characters have been isolated and characterized by 

various workers. Some of them proved to be superior to best control lines, while some of them 

are used for academic interest (Kharkwal et al., 2009, 2012, Shu, et al., 2012) [55, 56]. Although 

information on various aspects of mutants are available and scattered in different research 

journals, proceedings, etc. This article presents a critical review on various aspects of induced 

mutants of barley. 

 

2. Mutants with reduced plant height  

Erectoides, semi-dwarf and dwarf mutants with reduced plant height belong to the most 

frequently arising types in mutation experiments. They do not represent a uniform group, 

either morphologically or genetically. The reduction in plant height in the mutants can be due 

to reduction either in internode number or length. The latter being due to reduction of either 

cell length (without any alteration in cell breadth) or cell number (Weber and Gottschalk, 

1973) [31]. In wheat, short internodes (Nilson et al., 1957, Kumar and Ramesh, 2001, Ramesh 

et al., 2003) [80, 89, 88] and coleoptiles (Allan et al., 1962) were found to be associated with a 

reduction in cell number. However, the better lodging resistance of erectoides mutants over 

semi-prostrate ones cannot be related to differences in cell number, but might be associated 

with structural properties of the stem (and possibly roots) that are functions of cell size 

(Blonstein and Gale, 1984, Kumar and Ramesh, 1996, Ramesh and Kumar, 2006) [10, 85, 86]. 

The mutant genes of short-stemmed genotypes may be dominant, recessive or intermediate. 

Though, single gene control of height is most common, two or more genes determining plant 

height in barley was also reported (Smith, 1951, Nilan, 1964) [101, 79]. Gene action for plant 

height is usually additive and less commonly due to dominance, overdominance, additive plus 

dominance, partial dominance or complementary gene action (Hockett and Nilan, 1985) [47].  
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Gene systems operating for length and number of internodes 

are different (Ceccarelli and Falcinelli, (Ceccarelli and 

Falcinelli, 1978) [14]. The reduction in culm length in several 

cases is associated with an improved straw stiffness resulting 

in an increased lodging resistance (Gottschalk and Wolff, 

1983) [31]. Further, high yield was also reported to be 

associated with short plants in several cases (Aastveit, 1961, 

Ali et al. 1978) [1, 3] though it was not always true (Lau 1974) [64]. 

There were several reports on induced plant height mutants in 

barley and some of them are listed in table-1. Genetic studies 

on mutants revealed that at least 26 different loci of the 

genome determined the erectoides habit in barley (Gustafsson, 

1969, Persson and Hagberg, 1969) [35, 82]. All erectoides genes 

display a pleiotropic action influencing the number and length 

of culm and spike internodes. The grain yield of most 

erectoides mutant was developed into commercial variety 

“Pallas barley” in Sweden and is widely grown in western 

Europe. It exhibits a pronounced lodging resistance and high 

productivity (Gustafsson and Ekman, 1967) [36]. Several other 

erectoides mutants were incorporated into cross breeding 

programmes (Scholz, 1967) [91]. Besides the typical erectoides 

mutants, other groups of short stemmed genotypes were also 

reported. Eight pleiotropic dwarf genes causing a reduction in 

internode length but not internode number were reported from 

Japan. Some of them exhibited improved stability of the stem 

and one mutant line even out-yielded the standard under 

specific ecological conditions (Konishi, 1976) [57]. In India, a 

fully fertile dwarf mutant variety with longer peduncle than 

the initial line was developed (Sethi, 1974, 1975) [96, 97]. One 

Riso mutant (No. 92650), induced by partially moderate 

fission neutrons in Danish Spring barley variety, Abed Bomi 

is 30 cm shorter than the mother variety but higher yielding 

than that of Bomi while all other short strawed mutants 

selected have shown a decreased grain yield. The better yield 

potential of this mutant lies in increased peduncle length and 

flag leaf area over that of the mother variety. Promising dwarf 

mutants with good yielding ability and high resistance to 

lodging were reported from several other countries including 

Denmark (Haahr and wettstein, 1976) [39] and Bulgaria 

(Stefanove et al., 1978) [105]. Some of the short stemmed 

barley mutants have been developed into commercial 

varieties.  

 
Table 1: Induced height mutants in barley 
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A number of sodium azide induced height mutants of 2-rowed 

barley cv. Proctors were utilized in investigations on the 

relationship between the extent and nature of shortening with 

alternations in cell size and cell number, and the pleiotropic 

effects of dwarfing genes on vegetative development and 

agronomic performance (Blonstein and Gale, 1984) [10]. These 

studies suggest that cell number may be the primary 

determinant of plant height. 

Semi-dwarf character was reported to be controlled either by 

single recessive gene or polygenically inherited (Ullrich and 

Muir, 1984) [116]. In mutant 648 AK, the gene responsible for 

dwarfing is located in locus ‘br’ on chromosome-1, while the 

gene ‘dw-1’ and ‘sd-b’, responsible for semi-dwarfism are 

located on chromosome -3 (Szarejko and Maluszynski, 1984, 

Maluszynski, 1984) [108, 66]. 

 

2. Mutants for early flowering and maturity 

Earlyness has been an important objective of breeding for 

barley crop grown under distinct ecological conditions. Very 

often it is combined with reduced production. Lateness is less 

desired as a mutant character. In some cases, however, late 

ripening genotypes are more favorable than their earlier 

ripening mother varieties. A number of early flowering 

mutants were induced in barley (Prasad and Ramesh, 1996) 
[85]. The causes of the genetically conditioned earliness may 

often lie in a changed photoperiodic reaction as observed in 

the early ripening barley mutant ea-a8 which was later 

developed and released as the commercial variety “Mari” 

(Hagberg, 1967) [41]. 

The genetics of heading time is complicated because of the 

interaction of genotype, environment, vernalization and 

pleiotropic response (Yasuda, 1981) [122]. Both dominant and 

recessive genes for earliness, the Ea series, have been 

reported (Nilan, 1964) [79]. A photoperiod insensitive gene 

series eak (mat-a) containing 25 mutants was reported by 

Gustafsson et al. (1982) [37]. A number of early ripening 

mutants were also reported in barley by various workers. A 

very early ripening (by 15-18 days) mutant “54M17” was 

isolated from nitroso-ethyl urea (NEU) treated populations of 

winter barley cv. Ragia. This Mutant, however, was 

susceptible to mildew and had very poor winter hardiness and 

hence, it was used in cross breeding experiments with another 

winter hardy and mildew resistant mutant “52M1” of cv. 

Vogelsanger Gold leading to the development of super-early 

types with good yield (Shevtsov, 1985) [98]. 

 

3. Lax panicle mutants 

A balance between stimulating and inhibiting substances 

affecting the internodes of spike seems to exist in plants and 

in case of mutation arising in one of the loci controlling this 

trait, the balance will be modified in one direction or another. 

At least 26 loci were found to be influencing the balance 

giving denser spike. Several mutations changing this balance 

in the opposite direction giving laxer spikes have also been 

obtained (Ehrenberg et al., 1961, Persson and Hagberg, 1969) 
[26, 82]. However, most of these lax mutants were not 

genetically analyzed in detail. The morphological variation 

among mutants in this group, however, would indicate that 

several loci may mutate in this direction. However, partial 

dominance of several of the lax mutants was observed 

creating problems in interpretation of results from crossing 

experiments involving these mutants. 

The genes affecting the rachis of the spike and thus spike 

density and length have been listed by Sogaard et al. (1984) 

[104]. The rin (reduced internode number) loci control 

internode number. The gene L (lax spike) has been 

extensively studied and ten genetic symbols involving at least 

four separate loci have been assigned (Sogaard et al., 1984) 

[104]. Genetic analysis of spike has also indicated that there are 

additional genes besides L for compact spike (Takahashi et 

al., 1979) [109]. Lax spike was also associated with reduced 

kernel weight, lower wort/malt N ratio and lower amylase 

activity (McGuire and Hockett, 1983) [70]. 

Spike density was also influenced by a series of genes at 27 

separate loci designated ert-a though ert-zd for erectoides 

phenotype (Persson and Hagberg, 1969, Sogaard et al., 1984) 

[104, 82]. Some of the erectoides mutants are brachytic 

(Tsuchiya, 1984) [114]. Most of the ert mutants are recessive 

but some are partially dominant. When two or more mutations 

are in one plant, the effects are additive. 

 

4. Mutants for productive tiller number 
A number of mutants with increase/decrease in tillering have 

been reported in barley. The productive tiller or spike number 

per plant may be determined by simple recessive genes. Nilan 

(1964) [79] reported that uc and uc 2 produce only one or two 

spikes per plant, while rnt (changed to int; Tsuchiya, 1984) 
[114] usually produces two or three. Non-additive gene action 

for spike number was largely due to dominance and 

overdominance, but was greatly influenced by the 

environment (Hockett and Nilan, 1985) [47]. 

 

5. Chlorophyll mutants 

Most of the plant chlorophyll deficient mutants are controlled 

by nuclear genes, but some are maternally inherited 

(Tsuchiya, 1980b) [113]. The expression of these mutants may 

be affected by the environment (specially by temperature) and 

also by the genetic background of the cultivar in which they 

are found. There are a number of reports on induced 

chlorophyll deficient mutations in barley. The chlorophyll 

deficient seedling mutants fall into several phenotypically 

distinct classes: (i) albino – these lack chlorophyll and are 

entirely white; the genes controlling this lethal phenotype 

have been designated as alb-a through alb-ze by Swedish 

workers and include a total of 29 loci and 10 additional alleles 

(Sogaard et al., 1984) [104], (ii) viridis or light green – symbols 

vir-a through vir-zj have been assigned to these viable 

mutations and a total of 36 loci and 18 alleles have been 

identified (Sogaard et al., 1984) [104]. (iii) albo-viridis – 

mutants with albino and viridis phenotypes combined and are 

white with green tip; symbols y and yc have been assigned 

and are lethal when homozygous (Tsuchiya, 1984) [114], (iv) 

xantha – dark yellow coloured, lethal mutants, designated as 

xan-a through xan-u by Swedish workers and a total of 26 

loci and 66 alleles have been identified to be controlling this 

phenotype, (v) tigrina – seedlings with horizontal stripes on 

the leaves and the symbols tig-a through tig-o. (with 15 

separate loci and 14 alleles; Sogaard et al., 1984) [104] and zb 

(Tsuchiya, 1984) [114] have been assigned.  

 A mutant characterized by light green coloured leaves with 

reduced chlorophyll formation but with larger foliage, larger 

internodes of the ears and longer awns was isolated in barley. 

This mutant corresponds to certain viridis mutants which are 

visible when homozygous but late ripening and low in yield 

(Ramesh and Kumar, 2005) [87]. Besides chlorophyll mutants 

that die at seedling stage, there also arise certain mutants now 
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and again that are viable and produce germinable seed year 

after year. Their seedlings are often pale green to yellowish 

green, and the fully grown plants have a paler tone of colour 

and show considerable delay in heading and ripening 

(Gustafsson, 1947) [34]. These belong to the viridis group. 

Characteristic discoloration of the basal parts of the lower 

sheath and stem nodes, ligule and joints between sheath and 

blade was observed in virescent mutants (Tsuchiya, 1980a) 
[112]. The lemma and palea of the mutants are mostly 

chlorophyll less and are white or ivory coloured but terminate 

into green tips with green awns. 

The complementary dominant genes Ch-a, and Ch-e, which 

may be lethal, semi-lethal or fertile in different crosses, give 

chlorotic plant in the F1 (Takahashi et al., 1976) [110]. Albino 

lemma, yellow spike and white spike (Grandpa) have also 

been described (Tsuchiya, 1980a; Sogaard et al; 1984) [112, 

104]. Most of the chlorophyll deficient types are recessive 

mutations (Hockett and Nilan, 1985) [47]. 

 

6. Protein mutants 
Seed protein content is generally considered to be a complex 

character controlled by many genes located on several 

chromosomes (Frey, 1977, Konzak et al., 1978, Coffman and 

Juliano, 1979, Soave et al., 1979, 1981). The negative 

correlation between protein content and some yield attributes, 

generally observed, can hardly be broken (Scholz, 1971, 

1972, 1975) [92, 93, 94]. Investigations on mutants, however, 

show that this correlation obviously does not exist in mutants 

having only a small increase in protein content. There are 

even examples of positive correlation between protein content 

and grain yield (Ulonska et al., 1975, Hadjichristodoulou and 

Della, 1978, Walther and Seibold, 1979) [11, 40, 118]. 

Hiproly, an erectoides, primitive, naked barley, is 

characterized by both high content of total protein (17%) and 

lysine (4.1%). Hiproly is agronomically poor due to weak 

straw, poor thresh ability and low yield. The lysine character 

is inherited as a simple recessive trait which is not necessarily 

connected with high protein content (Hagberg et al., 1970, 

1979, Munck et al., 1970, 1979) [42, 43, 77, 76]. By incorporation 

of the lys gene into genomes of several high yielding bread 

barley varieties, high lysine strains with improvements in seed 

production and seed size were produced. 

Higher grain protein percentage was associated with two-

rowed than six-rowed genotypes in barley (Barbacki, 1976, 

Roy et al., 1977) [8, 90]. Hull-less barley generally have higher 

grain protein percentage than hulled ones (Barbacki, 1976) [8]. 

Tetraploid forms usually have 30-40% higher grain protein in 

the seed than diploid forms (Gaul et al., 1970) [30]. 

A natural high amylase (~40% of total starch) mutant 

containing higher percentage of lysine than parental variety 

was isolated from 6-rowed barley cv. Glacier. A number of 

induced protein mutants (notch 1, notch 2, C-61, C-63, C-64, 

and Riso mutants) in cvs. Carlsberg II and Bomi were found 

to contain increased protein and lysine contents (Doll, 1972, 

1973, 1975, 1977, Ingversen et al., 1973, Doll et al., 1974, 

Doll and Koie, 1975) [19, 20, 21, 23, 49, 25]. These mutants however, 

showed reduced yield. In Riso mutants, the gene responsible 

for alterations in the composition of seed proteins, 

carbohydrates and grain weight lies on chromosomes 7 near 

the centromere region. It was designed as lys3a, and allelic to 

lys3b and lys3c of mutants 18 and 19 (Karlsson, 1977, Jensen, 

1979) [53, 51] but non-allelic to gene lys of hiproly (Muench et 

al.1976) [75]. In addition, the gene was found to be closely 

associated to sex3c, expressing shrunken endosperm (Ullrich 

and Eslick, 1978) [115]. The reduction in yield of high protein 

mutants is mainly due to reduced seed size while the number 

of seeds per unit area is more or less unchanged (Doll and 

Koie, 1978, Oram and Doll, 1981) [24, 81]. 

The barley seed proteins are located in protein bodies which 

predominantly consist of a homogeneous sphere accompanied 

by a granular component. The former obviously represent a 

storage organelle with a higher concentration of prolamins 

while the letter is associated with glutelins. In seed mutants, 

the granular component is the most prominent one (Ingversen, 

1975) [48] while the amount of prolamins is considerably 

reduced. In some of the protein mutants increased protein is 

found to be combined with an increased seed weight. Further, 

they have more balanced content of nutritionally valuable 

substances. Crossing experiments involving some of the high 

protein mutants indicated that the seed size and mg protein 

per seed are controlled by the same gene and the increased 

protein content is due to a longer period of deposition (Favret 

et al., 1970) [27]. 

In ‘Notch mutants’, that carried increased protein and lysine 

contents of about 40% and 20% respectively, over parent 

(Bansal, 1972) [6], the albumin and globulin fractions are 

increased (Balaravi et al., 1976, Singh and Sastry, 1977) [5, 100] 

with an increased embryo/endosperm ratio. Major differences 

in seed carbohydrate composition are also noticed in these 

mutants. Increased protein percentage in cereal grain could be 

due either to a pleiotropic effect of a block in carbohydrate 

synthesis or to a real increase in protein synthesis. However, 

the studies of Balaravi et al., (1976) [5] reveal that the increase 

in protein content need not necessarily alter carbohydrate 

content or composition. Genetic and biochemical studies on 

developing grains reveal that the increased protein content in 

‘Notch mutants’ is due to an actual increase in protein 

synthesis. The high protein trait of Notch mutant has also 

been transferred to low genotypes (Bansal and Bhaskaran, 

1973) [7].  

 

7. Mutants for high alpha-amylase activity  

Alpha-amylase activity is an important quality factor in 

malting barley. Selection of lines with high levels of alpha-

amylase is one of the major goals of malting barley breeders. 

In this direction, Kumar and Ramesh (2004) [61] evaluated 

seeds of number of induced mutants (viz., chlorina, lax spike, 

early maturing, semi-dwarf early maturing and dwarf), 

isolated from gamma rays treated seeds of barley variety, 

K169 and concluded that alpha-amylase activity was 

increased in seeds of all mutants over that of parent variety, K 

169. They further reported that enzyme activity showed an 

increase in the imbibed seed compared to fresh seed and four 

days old seedlings. This is expected as the alpha-amylase is 

synthesized de novo in the cells of aleurone layer in response 

to gibberellins secreted by embryo upon germination (Ho, 

1979, Jacobsen and Chandler,1987) [46, 50] while in the 

seedling the enzyme activity declines because of fall in the 

substrate. Research in physiology and molecular biology has 

shown that alpha-amylase activity in barley is influenced by 

allelic differences at several loci located on chromosome 1 

and 6 (Hayter and Riggs, 1973, Brown and Jacobsen, 1982) 

[45, 12]. An expression of alpha-amylase activity was not highly 

affected by the environment (Hayter and Riggs, 1973) [45]. 

However, Sekiguchi et al., (1984) [95] concluded that selection 

for alpha-amylase activity could be effective despite a large 

environmental effect. The mutants with enhanced amylase 

activity can profitably be utilized in the breeding programmes 
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for development of superior barley varieties for the malt 

industry. 

 

8. Mutant with starch metabolism  

Starch is the major reserve of plants and serves as the primary 

carbohydrate component in human and livestock diets and has 

also numerous industrial applications. In view of above, 

mutants for biosynthetic or regulatory genes of starch 

metabolism often produce starch granules with abnormal 

morphological and molecular features that could be of interest 

for technological applications. In this direction, Bovina et al., 

(2011) [11] identified 29 mutations in sodium - azide-

mutazined population and highlighted that five genes, viz., 

Bmy1, GBSSI, LDA1, SSI and SSII are related to starch 

metabolism. Almost all the mutations detected were CG–TA 

transitions and several (~ 60%) implied a change in amino-

acid sequence and therefore possible phenotypic effects. Four 

mutants showed non-sense or splice-junction alterations, 

which could drastically affect the protein function.  

 

9. Mutant with potential cause of roots growing straight 

downwards 

The ability of plant roots to efficiently access water and 

nutrients sets up strong plant health and resilience to weather 

events such as heat waves and drought. Gwendolyn et al., 

(2021) [38] discovered a barley mutant, in which the roots 

grow straight down, rather than the typical growth pattern of 

spreading sideways or outwards. A variation in the angle of 

root growth can affect the way roots anchor to, and explore, 

different soil layers to capture nutrients and water. This could 

open up opportunities for breeding more drought-resistant 

varieties. Researchers compared the genome of mutant with 

normally grown barley plants and discovered that the 

mutation was located on chromosome number five, which 

they named “enhanced gravitropism 2”, or egt2. It basically 

means to enhance the gravity of the soil. Further researchers 

confirmed that egt2 characteristics were maintained when 

plants grow in the soil. Researchers also demonstrated that 

egt2 is indeed responsible for the vertical growth of the roots 

by artificially creating such a mutation in normal barley plants 

using the CRISPR/Cas9 gene scissors. The result shows a 

similar appearance of the roots.  

 

10. Induced Mutants for functional analysis of genes  

Mutants are essential for functional analysis of genes. There 

are many techniques, available today, of creating mutants that 

can be used to study gene function. Among these techniques, 

there are standard chemical or physical mutagenic treatments 

causing mutations that are spread throughout the genome, as 

well as modern techniques of gene editing, such as 

CRISPR/Cas9-based system that can be used for creation of 

mutations within a specific target gene (Cong et al., 2013) [17]. 

In case of barley, protocols for CRISPR /Cas9 are well 

established only for one variety “Golden Promise” (a Scottish 

cultivar developed in 1967, Lawrenson et al., 2015) [65], while 

transformation efficiency of modern barley cultivars is still 

insufficient for a routine use. Therefore, the TILLING 

(Targeting Induced Local Lesions IN Genomes) Methods are 

still relevant for functional analysis of genes in barley. In this 

regard, several Hor TILLING populations have been created 

for barley (Caldwell et al., 2004, Talamè et al., 2008, 

Gottwald et al., 2009, Lababidi et al., 2009, Miriam et al., 

2018) [13, 111, 32, 63, 73], and the release and assembling of barley 

genome sequence have facilitated the use of TILLING 

platforms for functional genomics studies (International 

Barley Genome Sequencing Beier et al., 2017; Mascher et al., 

2017) [9, 68] and pre-breeding programs of barley. The 

HorTILLUS population has proved its utility as a reverse 

genetics tool in many barley studies concerning e.g., 

brassinosteroid metabolism (Gruszka et al., 2016) [69], DNA 

repair (Stolarek et al., 2015a,b) [106, 107], strigolactone 

signaling (Marzec et al., 2016) [69], waterlogging tolerance 

(Mendiondo et al., 2016) [71], or drought and ABA response 

(Daszkowska-Golec et al., 2017) [18]. In another study, 

screening for mutations was performed for 32 genes related to 

different aspects of plant growth and development. For each 

gene fragment, 3,072–6,912 M2 plants were used for 

mutation identification using LI-COR sequencer. In total, 382 

mutations were found in 182.2 Mb screened. The average 

mutation density in the HorTILLUS, estimated as 1 mutation 

per 477 kb, is among the highest mutation densities reported 

for barley. The majority of mutations were G/C to A/T 

transitions, however about 8% transversions were also 

detected. Sixty-one percent of mutations found in coding 

regions were missense, 37.5% silent and 1.1% nonsense. In 

each gene, the missense mutations with a potential effect on 

protein function were identified (Miriam et al., 2018) [73]. 

Miriam et al. (2018) [73] also concluded that the HorTILLUS 

population proved to be a useful tool, both in functional 

genomic studies and in forward selection of barley mutants 

with required phenotypic changes. 
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