ISSN (E): 2277-7695
ISSN (P): 2349-8242
NAAS Rating: $\mathbf{5 . 2 3}$
TPI 2022; 11(10): 1080-1089 © 2022 TPI
www.thepharmajournal.com
Received: 01-07-2022
Accepted: 07-08-2022
Jaimin M Vadodariya
Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, India

Balvant C Patel

Department of Genetics and Plant Breeding, College of Agriculture, Anand Agricultural University, Vaso, Gujarat, India

Mukesh P Patel
Agriculture and Horticulture Research Station, Anand Agricultural University, Khambholaj, Gujarat, India

Sunil K Patel

Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, India

Sumit D Panchal
Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, India

Corresponding Author:

Jaimin M Vadodariya
Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, India

Heterosis estimation for seed cotton yield and its component traits in interspecific hybrids of cotton

Jaimin M Vadodariya, Balvant C Patel, Mukesh P Patel, Sunil K Patel and Sumit D Panchal

Abstract

This investigation was undertaken to obtain information on magnitude of heterobeltiosis and standard heterosis for seed cotton yield and its component traits in interspecific hybrids of cotton. The experimental material comprised of five female parents, nine male parents and their resultant 45 hybrids developed by line \times tester mating design and one standard check G. Cot. Hy. 102. The experiment was laid out in randomized complete block design with three replications at Regional Research Station, Anand Agricultural University, Anand during Kharif-2021. Among the 45 hybrids, 21 hybrids showed significantly positive heterosis over better parent and 11 hybrids showed positively significant heterosis over standard check G. Cot. Hy. 102 for seed cotton yield per plant. As per better parent heterosis, the best performing positively significant hybrids for seed cotton yield per plant were AHC-26 \times ARBB-27, G. Cot-12 \times GSB-43-1 and AHC- $26 \times$ DB- 1502 while as per standard heterosis, the outstanding positively significant hybrids for seed cotton yield per plant were AHC- $1 \times$ DB-1502, AHC-1 \times GSB-45 and AHC- $26 \times$ ARBB-27. These cross combinations can be further exploited in breeding programmes of cotton.

Keywords: Heterobeltiosis, standard heterosis, cotton, line \times tester mating design

Introduction

Cotton is also known as White Gold as well as King of fiber crops and mainly often crosspollinated crop which belongs to the family Malvaceae and genus Gossypium. Genus Gossypium includes approximately 50 species, out of which 43 are diploid and seven are tetraploid in nature but only four species are cultivated which are G. hirsutum L., G. barbadense L., G. arboreum L. and G. herbaceum L. Among the four cultivated species, G. arboreum L. and G. herbaceum L. are diploid $(2 \mathrm{n}=2 \mathrm{x}=26)$ in nature and known as old world cotton while, G. hirsutum L. and G. barbadense L. are tetraploid $(2 n=4 x=52)$ in nature and known as new world cotton. The species which are referred to as its progenitors are G. africanum L. and G. raimondii L. African linted diploid species (G. africanum L.) reached America through Pacific Ocean and after crossing with American lintless wild diploid species (G. raimondii L.) gave birth to tetraploid cotton. The chromosome doubling took place in nature resulting in the development of fertile amphidiploids (G. hirsutum L.).
India ranks first in terms of area (13.47 million hectares), while second in terms of production (12.88 million tonnes) among cotton growing countries after China, whereas, productivity is around $955.7 \mathrm{~kg} / \mathrm{ha}$ in India (Anon., 2020) ${ }^{[1]}$.
Cotton production in the country got momentum with release of the world's first cotton hybrid H-4 by Late Dr. C. T. Patel in the year 1970 from Main Cotton Research Station, GAU, Surat, Gujarat. The key characteristic of the species like, G. hirsutum L. having high yielding potential and G. barbadense L. has excellent fiber quality makes it possible to producing hybrids with higher yield and superior fiber quality through interspecific hybridization. India resides pioneer in commercialization of heterosis in cotton. Heterosis is the superiority of F_{1} hybrid in a desirable direction over either or both of the parents and standard check is manifested via an increase in vigour, growth rate, size, yield, quality and other important characteristics. Exploitation of heterosis on commercial scale leads to develop a number of high yielding hybrids, which proved to be most important genetic tool in enhancing yield potential of crops and considered as the most important breakthrough in the field of crop improvement.

Material and Methods

For present investigation the crossing program was undertaken during Kharif 2020 and evaluation was carried out in Kharif 2021 at the Regional Research Station, Anand Agricultural University, Anand. The experimental material comprised of five lines (G. hirsutum), nine testers (G. barbadense), 45 hybrids and one standard check. These lines and testers were crossed in line \times tester fashion to obtain 45 interspecific hybrids. The experiment was laid out in randomized complete block design with three replications. The lines were AHC-1 (L1), G. Cot-12 (L2), G. Cot-20 (L3), AHC-50 (L4) and AHC-26 (L5), and testers were ABC-1 (T1), ARBB-27 (T2). GSB-41 (T3), GSB-43-1 (T4), GSB-44 (T5), GSB-45 (T6), DB-1502 (T7), RHcb-1014 (T8) and DB1602 (T9) and one standard check was G. Cot. Hy. 102. The seeds of $45 \mathrm{~F}_{1} \mathrm{~s}$ were produced by hand pollination and parent seeds were obtained by selfing of parents. The package of practices will be followed as per the recommendations for raising the good and healthy crop. Observations were recorded for 16 different characters viz., days to 50% flowering, days to 50% boll bursting, plant height, monopodia per plant, sympodia per plant, bolls per plant, boll weight, ginning outturn, fiber fineness, fiber strength, fiber length, uniformity index, seed index, lint index, lint yield per plant and seed cotton yield per plant. The experimental plot wise mean values of five randomly selected plants were used in each statistical analysis for different characters. The estimation of heterosis over better parent and standard check
is more realistic. Hence, in the present investigation, heterosis was estimated over better parent and standard check, referred to as heterobeltiosis and standard heterosis, respectively.

Results and Discussion

The analysis of variance showed that mean sum of squares (Table 1) due to genotypes was highly significant for seed cotton yield and its component traits. This indicated that experimental material used in the present study had sufficient variability for different characters. Parental variances were found highly significant for all the characters except uniformity index. The variance of hybrids were found highly significant for all the characters indicating the presence of significant genetic variability among the hybrids for all the characters under study. The analysis of variance for parents vs. hybrids were also found highly significant for all characters indicating significant amount of heterosis generated in the present investigation.
For days to 50% flowering and days to 50% boll bursting, the parent which took minimum days was considered to be a better parent and for monopodia per plant and fiber fineness, the parent with minimal value was considered to be a better parent and accordingly heterosis were calculated. For these characters heterotic effect in the negative direction were desirable. The heterotic effects were desirable in positive direction for all the remaining characters except mentioned above.

Table 1: Analysis of variances (mean squares) for various characters

Sources of variation			df	DFF	DFBB	PH	MPP	SPP	BPP	BW	GOT
Replications			2	4.82	26.74	680.47	0.23	3.70	234.13**	0.08	1.75
Genotypes			59	62.90**	223.23**	2572.69**	2.20**	21.25**	451.94**	1.12**	11.66**
(a)		Parents	13	92.36**	271.30**	1706.66**	2.92**	23.36**	178.01**	3.17**	10.13**
	1	Females	4	12.43**	29.93	3748.11**	1.60**	51.77**	198.56**	1.77**	3.74*
	ii	Males	8	6.34	147.42**	823.23**	3.06**	2.77	187.88**	0.25**	13.55**
	iii	Females vs. Males	1	1100.19**	2227.89**	608.30	7.14**	74.38**	16.92	32.15**	8.32**
(b)		Hybrids	44	55.44**	193.68**	771.20**	1.99**	11.52**	384.98**	0.48**	8.66**
(c)		rents vs. Hybrids	1	66.84**	1121.71**	95634.68**	3.91**	438.59**	7365.50**	3.24**	164.84**
Check vs. Hybrids			1	4.48	0.182	34.72	0.27	4.61	45.56	0.32**	10.44**
Error			118	3.32	14.21	223.46	0.08	1.69	43.86	0.04	1.15
Total			179	22.98	83.24	1002.89	0.78	8.16	180.49	0.39	4.62

Table 1: Cont...

Sources of variation			df	FF	FS	FL	UI	SI	LI	LYPP	SCYPP
Replications			2	0.01	1.17	1.14	3.05	0.60	0.01	178.87	2996.33**
Genotypes			59	0.57**	11.67**	18.94**	3.31**	8.50**	0.95**	638.43**	7801.02**
(a)		Parents	13	0.66**	20.92**	23.24**	2.31	2.78**	0.81**	449.82**	4603.10**
	1	Females	4	1.00**	1.61*	5.45**	2.40	4.95**	1.76**	259.96**	2144.20*
	ii	Males	8	0.46**	7.61**	8.63**	2.08	2.03**	0.37**	137.26*	1161.56
	iii	Females vs. Males	1	0.91**	204.63**	211.20**	3.73	0.10	0.51*	3709.66**	41970.96**
(b)		Hybrids	44	0.28**	5.81**	6.31**	3.25**	4.59**	0.70**	511.69**	5739.23**
(c)		rents vs. Hybrids	1	12.08**	160.85**	532.95**	15.20**	256.32**	14.67**	9282.65**	147889.78**
Check vs. Hybrids			1	0.41**	0.05	4.44*	6.86	6.65**	0.06	23.17	3.91
Error			118	0.02	0.61	0.71	1.87	0.24	0.11	59.60	625.48
Total			179	0.20	4.26	6.73	2.35	2.96	0.38	251.72	3017.09

[^0] index, SI - Seed index, LI - Lint index, LYPP - Lint yield per plant, SCYPP - Seed cotton yield per plant)

Table 2: Estimation of Heterobeltiosis (HB) and Standard heterosis (SH) for days to 50% flowering, days to 50% boll bursting, plant height and monopodia per plant

Hybrids	DFF		DFBB		PH		MPP	
	HB	SH	HB	SH	HB	SH	HB	SH
$\mathrm{L} 1 \times \mathrm{T} 1$	10.00**	0.48	14.63**	-0.26	16.16**	7.37	13.64	-7.41
$\mathrm{L} 1 \times \mathrm{T} 2$	10.00**	0.48	15.22**	0.26	20.67**	21.58**	12.47	-8.37
$\mathrm{L} 1 \times \mathrm{T} 3$	11.58**	1.92	17.91**	2.60	21.07**	11.91*	65.95**	35.21**
$\mathrm{L} 1 \times \mathrm{T} 4$	8.42**	-0.96	8.96**	-5.19*	14.90**	6.21	86.39**	51.86**
$\mathrm{L} 1 \times \mathrm{T} 5$	6.32**	-2.88	7.46**	-6.49**	13.81*	5.20	29.60**	5.59
$\mathrm{L} 1 \times$ T6	8.42**	-0.96	11.04**	-3.38	27.06**	17.44**	38.62**	12.94*
$\mathrm{L} 1 \times \mathrm{T} 7$	4.21	-4.81*	4.48	-9.09**	13.50*	4.91	38.90**	-7.41
$\mathrm{L} 1 \times \mathrm{T} 8$	4.21	-4.81*	4.78	-8.83**	13.78*	5.17	23.41**	0.54
$\mathrm{L} 1 \times$ T9	10.00**	0.48	17.91**	2.60	16.16**	7.37	43.19**	16.67*
$\mathrm{L} 2 \times \mathrm{T} 1$	6.00**	1.92	14.71**	1.30	6.12	-7.74	-10.92	-9.27
$\mathrm{L} 2 \times \mathrm{T} 2$	9.50**	5.29*	18.24**	4.42	3.92	4.71	23.62**	25.92**
$\mathrm{L} 2 \times \mathrm{T} 3$	18.50**	13.94**	30.00**	14.81**	16.51**	-0.93	32.73**	35.19**
$\mathrm{L} 2 \times \mathrm{T} 4$	2.50	-1.44	15.59**	2.08	17.69**	0.68	72.84**	76.05**
$\mathrm{L} 2 \times \mathrm{T} 5$	4.00	0.00	14.12**	0.78	21.68**	3.47	-15.55*	-29.63**
$\mathrm{L} 2 \times \mathrm{T} 6$	4.00	0.00	14.12**	0.78	17.08**	3.81	6.41	0.50
$\mathrm{L} 2 \times \mathrm{T} 7$	1.50	-2.40	5.88*	-6.49**	21.90**	3.66	33.39**	-11.09
$\mathrm{L} 2 \times \mathrm{T} 8$	2.00	-1.92	7.06*	-5.45*	26.22**	7.33	25.48**	18.51**
$\mathrm{L} 2 \times \mathrm{T} 9$	8.00**	3.85	20.88**	6.75**	15.21*	-2.03	61.86**	64.86**
$\mathrm{L} 3 \times \mathrm{T} 1$	19.37**	9.62**	28.48**	10.13**	23.76**	7.59	50.06**	0.03
$\mathrm{L} 3 \times \mathrm{T} 2$	23.56**	13.46**	29.09**	10.65**	19.84**	20.75**	61.12**	7.41
$\mathrm{L} 3 \times$ T3	22.51**	12.50**	27.58**	9.35**	39.97**	17.11**	61.18**	7.44
$\mathrm{L} 3 \times \mathrm{T} 4$	23.56**	13.46**	21.82**	4.42	35.30**	15.75**	61.10**	7.40
L3 \times T5	10.99**	1.92	13.03**	-3.12	31.36**	10.29*	30.54**	-12.98*
L3 \times T6	21.99**	12.02**	21.21**	3.90	18.49**	5.07	19.47*	-20.36**
$\mathrm{L} 3 \times \mathrm{T} 7$	10.47**	1.44	11.52**	-4.42	19.69**	-2.10	58.37**	5.56
L3 \times T8	9.95**	0.96	10.30**	-5.45*	24.11**	1.51	44.43**	-3.72
L3 \times T9	24.08**	13.94**	27.27**	9.09**	28.81**	5.36	66.68**	11.11
$\mathrm{L} 4 \times \mathrm{T} 1$	-0.53	-9.62**	2.57	-6.75**	6.41	-1.11	72.27**	14.83*
$\mathrm{L} 4 \times \mathrm{T} 2$	9.52**	-0.48	16.57**	5.97*	6.25	7.05	47.25**	-1.85
$\mathrm{L} 4 \times \mathrm{T} 3$	10.05**	0.00	16.86**	6.23*	15.81**	7.62	72.23**	14.80*
$\mathrm{L} 4 \times \mathrm{T} 4$	8.99**	-0.96	16.86**	6.23*	16.68**	8.44	50.06**	0.02
$\mathrm{L} 4 \times \mathrm{T} 5$	7.41**	-2.40	8.29**	-1.56	6.18	-1.32	58.37**	5.56
$\mathrm{L} 4 \times \mathrm{T} 6$	$7.41 * *$	-2.40	15.71**	5.19*	8.22	0.57	30.60**	-12.95*
$\mathrm{L} 4 \times \mathrm{T} 7$	5.29*	-4.33*	1.43	-7.79**	7.20	-0.38	11.11	-25.94**
$\mathrm{L} 4 \times \mathrm{T} 8$	4.76*	-4.81*	4.29	-5.19*	13.21*	5.20	58.37**	5.56
$\mathrm{L} 4 \times \mathrm{T} 9$	5.82*	-3.85	12.29**	2.08	17.65**	9.33	52.78**	1.83
$\mathrm{L} 5 \times \mathrm{T} 1$	0.99	-1.92	6.25*	-2.86	36.53**	18.69**	1.68	12.97*
$\mathrm{L} 5 \times \mathrm{T} 2$	0.99	-1.92	10.80**	1.30	15.87**	16.74**	8.33	20.36**
L5 \times T3	18.81**	15.38**	25.85**	15.06**	41.11**	18.07**	21.63**	35.14**
$\mathrm{L} 5 \times \mathrm{T} 4$	4.95*	1.92	17.33**	7.27**	33.51**	14.22**	31.57**	38.88**
L5 \times T5	0.99	-1.92	4.83	-4.16	26.83**	6.49	46.68**	22.22**
L5 \times T6	-4.95*	-7.69**	9.66**	0.26	24.32**	10.24*	17.63*	11.09
L5 \times T7	-1.98	-4.81*	1.70	-7.01**	31.68**	1.74	33.33**	-11.13
L5 \times T8	2.97	0.00	13.64**	3.90	32.81**	5.24	27.44**	20.37**
L5 \times T9	2.97	0.00	5.68*	-3.38	28.54**	2.48	38.40**	53.76**
S.Em. \pm	1.49		3.08		12.21		0.23	
Range								
Minimum	-4.95	-9.62	1.43	-9.09	3.92	-7.74	-15.55	-29.63
Maximum	24.08	15.38	30.00	15.06	41.11	21.58	86.39	76.05
Signi. cross	31	16	38	23	38	12	38	23
Positive	30	09	38	12	38	12	37	18
Negative	01	07	00	11	00	00	01	05

[^1]Table 3: Estimation of Heterobeltiosis (HB) and Standard heterosis (SH) for sympodia per plant, bolls per plant, boll weight and ginning outturn

Hybrids	SPP		BPP		BW		GOT	
	HB	SH	HB	SH	HB	SH	HB	SH
$\mathrm{L} 1 \times \mathrm{T} 1$	9.02	18.71**	5.45	-8.40	-33.37**	13.71**	-14.24**	1.33
$\mathrm{L} 1 \times \mathrm{T} 2$	11.09*	20.97**	-10.48	-20.12*	-30.59**	18.46**	-14.82**	-4.40
$\mathrm{L} 1 \times \mathrm{T} 3$	3.78	13.01*	24.49	-12.78	-23.30**	30.90**	-10.14**	0.85
$\mathrm{L} 1 \times \mathrm{T} 4$	0.29	9.21	90.54**	33.49**	-34.19**	12.32**	$-8.01 * *$	3.24
L1 \times T5	1.46	10.49*	18.83	-8.88	-32.72**	14.83**	-9.20 **	2.80
L1 \times T6	20.75**	31.49**	73.14**	21.30*	-24.91**	28.15**	-9.90 **	2.67
L1 \times T7	9.65*	19.40**	72.53**	34.56**	-25.01**	27.98**	-17.21**	2.84
$\mathrm{L} 1 \times \mathrm{T} 8$	0.59	9.54	68.40**	22.37*	-29.80**	19.81**	-13.03**	4.65
$\mathrm{L} 1 \times$ T9	15.46**	25.73**	-11.11	-24.26*	-33.49**	13.51**	$-16.63 * *$	1.13
$\mathrm{L} 2 \times \mathrm{T} 1$	4.85	9.54	10.22	-4.26	-20.16**	9.95*	-17.86**	-2.94
$\mathrm{L} 2 \times \mathrm{T} 2$	2.70	7.29	15.25	2.84	-19.42**	10.96*	-15.32**	-9.46**
$\mathrm{L} 2 \times \mathrm{T} 3$	-16.44**	-12.71*	49.56**	-19.64*	-21.57**	8.01	-0.35	4.28
$\mathrm{L} 2 \times \mathrm{T} 4$	-14.61**	-10.80*	80.63**	22.49*	-27.62**	-0.32	-6.76*	-2.04
$\mathrm{L} 2 \times \mathrm{T} 5$	4.55	9.22	21.91	-6.51	-25.70**	2.32	-6.04*	6.38*
$\mathrm{L} 2 \times \mathrm{T} 6$	-0.02	4.45	85.27**	-0.24	-18.76**	11.88*	-12.84**	-0.69
$\mathrm{L} 2 \times \mathrm{T} 7$	6.04	10.78*	37.03**	6.86	-30.06**	-3.68	$-13.52 * *$	7.42*
$\mathrm{L} 2 \times \mathrm{T} 8$	16.40**	21.60**	40.55**	2.13	-28.21**	-1.14	-15.16**	2.08
$\mathrm{L} 2 \times \mathrm{T} 9$	-0.90	3.53	-9.31	-22.72*	-35.08**	-10.60*	-19.93**	-2.87
L3 \times T1	11.79*	17.45**	38.96**	22.84*	8.21*	24.69**	-12.53**	3.36
$\mathrm{L} 3 \times \mathrm{T} 2$	0.92	6.03	24.93*	11.48	-6.61	7.62	-12.51**	-4.20
$\mathrm{L} 3 \times \mathrm{T} 3$	-3.00	1.91	2.41	-9.47	-3.47	11.23*	-6.87*	1.97
$\mathrm{L} 3 \times \mathrm{T} 4$	-10.87*	-6.35	41.63**	25.21**	-12.71**	0.59	5.70*	15.73**
L3 \times T5	9.10	14.63**	5.62	-6.63	-12.60**	0.72	-5.02	7.54*
L3 \times T6	14.65**	20.47**	1.34	-10.41	-4.26	10.33*	-5.31	7.90*
$\mathrm{L} 3 \times \mathrm{T} 7$	5.48	10.82*	24.90*	10.41	-10.46*	3.19	-13.38**	7.59*
L3 \times T8	-2.99	1.92	18.88	5.09	-7.03	7.14	-11.66**	6.30*
$\mathrm{L} 3 \times \mathrm{T} 9$	3.36	8.60	25.44*	10.89	-30.36**	-19.75**	$-7.89 * *$	11.74**
$\mathrm{L} 4 \times \mathrm{T} 1$	-11.63**	5.48	52.04**	32.07**	-18.12**	-4.09	-5.31*	11.89**
$\mathrm{L} 4 \times \mathrm{T} 2$	-18.08**	-2.22	9.81	-2.01	-10.83**	4.45	$-7.57 * *$	3.57
$\mathrm{L} 4 \times \mathrm{T} 3$	-2.13	16.82**	7.93	-11.36	-6.75	9.24	4.02	16.56**
$\mathrm{L} 4 \times \mathrm{T} 4$	-11.98**	5.06	-3.17	-20.47*	-10.50**	4.84	5.56*	18.29**
$\mathrm{L} 4 \times \mathrm{T} 5$	-12.49**	4.45	50.58**	23.67*	-9.96*	5.47	-0.47	12.69**
$\mathrm{L} 4 \times \mathrm{T} 6$	-15.14**	1.29	18.59	-2.60	-6.75	9.24	-4.85	8.42**
$\mathrm{L} 4 \times \mathrm{T} 7$	-6.63	11.45*	26.95*	4.26	-7.86	7.93	-8.94**	13.11**
$\mathrm{L} 4 \times \mathrm{T} 8$	-19.68**	-4.13	45.10**	19.17*	-3.97	12.49**	-5.14	14.14**
$\mathrm{L} 4 \times \mathrm{T} 9$	-7.42	10.50*	-32.64**	-42.60**	8.10*	26.63**	-6.35*	13.61**
L5 \times T1	47.29**	19.70**	26.16*	9.59	$-21.56 * *$	18.80**	-14.54**	0.99
$\mathrm{L} 5 \times \mathrm{T} 2$	31.52**	12.73*	33.95**	19.53*	-15.77**	27.56**	-12.02**	1.43
L5 \times T3	20.62**	7.59	-18.95	-50.89**	-18.67**	23.17**	-14.75**	-1.71
L5 \times T4	22.39**	6.05	-9.08	-38.34**	-28.48**	8.32	-8.01**	6.06
L5 \times T5	40.18**	24.15**	30.40*	0.00	-14.07**	30.14**	-11.72**	1.78
L5 \times T6	22.58**	17.14**	41.41*	-14.32	-7.99*	39.34**	-8.52**	5.47
$\mathrm{L} 5 \times \mathrm{T} 7$	41.09**	17.78**	36.27**	6.27	-12.16**	33.03**	-13.93**	6.91*
L5 \times T8	37.34**	18.15**	24.43	-9.59	-16.16**	26.96**	-15.16**	2.08
L5 \times T9	14.23**	7.01	-13.75	-26.51**	-22.06**	18.04**	-13.54**	4.88
S.Em. \pm	1.06		5.41		0.15		0.88	
Range								
Minimum	-19.68	-12.71	-32.64	-50.89	-35.08	-19.75	-19.93	-9.46
Maximum	47.29	31.49	90.54	34.56	8.21	39.34	5.70	18.29
Signi. cross	25	24	24	20	37	27	38	18
Positive	16	22	23	11	02	25	02	17
Negative	09	02	01	09	35	02	36	01

[^2]Table 4: Estimation of Heterobeltiosis (HB) and Standard heterosis (SH) for fiber fineness, fiber strength, and fiber length and uniformity index

Hybrids	FF		FS		FL		UI	
	HB	SH	HB	SH	HB	SH	HB	SH
$\mathrm{L} 1 \times \mathrm{T} 1$	2.50	10.81**	0.00	5.99**	-2.61	-2.51	2.35	3.57**
$\mathrm{L} 1 \times \mathrm{T} 2$	-13.04**	8.11*	2.13	5.68**	15.48**	3.87	1.16	3.57**
$\mathrm{L} 1 \times \mathrm{T} 3$	-5.00	2.70	-1.83	1.26	-7.86**	-14.99**	-1.18	0.00
$\mathrm{L} 1 \times \mathrm{T} 4$	-17.78**	0.00	7.28**	6.94**	13.52**	4.74*	2.35	3.57**
$\mathrm{L} 1 \times \mathrm{T} 5$	-8.89**	10.81**	1.83	5.36**	13.64**	1.55	1.16	3.57**
L1 \times T6	-15.22**	5.41	8.20**	4.10*	10.19**	0.39	2.38	2.38
$\mathrm{L} 1 \times \mathrm{T} 7$	-19.57**	0.00	11.42**	1.58	15.28**	-3.68	-1.16	1.19
$\mathrm{L} 1 \times \mathrm{T} 8$	0.00	5.41	6.64**	1.26	8.72**	1.26	2.38	2.38
$\mathrm{L} 1 \times \mathrm{T} 9$	-11.36**	5.41	4.56*	8.52**	2.65	1.26	1.16	3.57**
$\mathrm{L} 2 \times \mathrm{T} 1$	-5.13	0.00	1.49	7.57**	-3.77	-3.68	2.35	3.57**
$\mathrm{L} 2 \times \mathrm{T} 2$	-5.13	0.00	2.74	6.31**	9.03**	-1.93	1.16	3.57**
$\mathrm{L} 2 \times \mathrm{T} 3$	-10.26**	-5.41	-5.20**	-2.21	12.89**	4.16*	-1.18	0.00
$\mathrm{L} 2 \times \mathrm{T} 4$	-10.26**	-5.41	6.65**	6.31**	9.12**	0.68	0.00	1.19
$\mathrm{L} 2 \times \mathrm{T} 5$	-7.69*	-2.70	0.91	4.42*	9.74**	-1.93	1.16	3.57**
$\mathrm{L} 2 \times \mathrm{T} 6$	-5.13	0.00	8.85**	4.73*	4.46*	-4.84*	3.57**	3.57**
$\mathrm{L} 2 \times \mathrm{T} 7$	-5.13	0.00	15.22**	5.05*	13.84**	-4.55*	0.00	2.38
$\mathrm{L} 2 \times \mathrm{T} 8$	-12.82**	-8.11*	6.98**	1.58	2.49	-4.55*	1.19	1.19
$\mathrm{L} 2 \times \mathrm{T} 9$	-15.38**	-10.81**	1.52	5.36**	0.00	-1.35	-3.49**	-1.19
$\mathrm{L} 3 \times \mathrm{T} 1$	5.00	13.51**	-6.25**	-0.63	-4.64*	-4.55*	0.00	1.19
$\mathrm{L} 3 \times \mathrm{T} 2$	-16.33**	10.81**	4.88*	8.52**	10.97**	-0.19	1.16	3.57**
$\mathrm{L} 3 \times$ T3	-2.50	5.41	0.31	3.47	7.23**	-1.06	-1.18	0.00
$\mathrm{L} 3 \times \mathrm{T} 4$	-17.78**	0.00	9.49**	9.15**	9.75**	1.26	1.18	2.38
L3 \times T5	-13.33**	5.41	3.66	7.26**	11.36**	-0.48	0.00	2.38
L3 \times T6	-20.41**	5.41	6.23**	2.21	-4.46*	$-12.96 * *$	0.00	1.19
$\mathrm{L} 3 \times \mathrm{T} 7$	-18.75**	5.41	15.22**	5.05*	13.19**	-5.42**	0.00	2.38
$\mathrm{L} 3 \times \mathrm{T} 8$	0.00	5.41	8.64**	3.15	4.67*	-2.51	1.18	2.38
$\mathrm{L} 3 \times \mathrm{T} 9$	-9.09**	8.11*	-3.04	0.63	0.59	-0.77	-1.16	1.19
$\mathrm{L} 4 \times \mathrm{T} 1$	10.00**	18.92**	-2.68	3.15	-4.06*	-3.97	1.18	2.38
$\mathrm{L} 4 \times \mathrm{T} 2$	-12.24**	16.22**	-0.61	2.84	15.81**	4.16*	0.00	2.38
$\mathrm{L} 4 \times \mathrm{T} 3$	-10.00**	-2.70	-2.14	0.95	6.92**	-1.35	0.00	1.19
$\mathrm{L} 4 \times \mathrm{T} 4$	-13.33**	5.41	-1.27	-1.58	14.47**	5.61**	1.18	2.38
$\mathrm{L} 4 \times \mathrm{T} 5$	-8.89**	10.81**	-6.10**	-2.84	9.09**	-2.51	0.00	2.38
$\mathrm{L} 4 \times \mathrm{T} 6$	-18.37**	8.11*	2.95	-0.95	9.24**	-0.48	1.19	1.19
$\mathrm{L} 4 \times \mathrm{T} 7$	-12.50**	13.51**	2.77	-6.31**	16.32**	-2.80	0.00	2.38
$\mathrm{L} 4 \times \mathrm{T} 8$	2.56	8.11*	1.66	-3.47	$6.85 * *$	-0.48	3.57**	3.57**
$\mathrm{L} 4 \times \mathrm{T} 9$	-15.91**	0.00	-9.42**	-5.99**	0.00	-1.35	-1.16	1.19
$\mathrm{L} 5 \times \mathrm{T} 1$	15.00**	24.32**	-2.38	3.47	2.61	2.71	-1.16	1.19
L5 \times T2	-12.50**	13.51**	-4.57*	-1.26	16.77**	5.03*	-1.16	1.19
L5 \times T3	-12.50**	-5.41	-8.26**	-5.36**	12.89**	4.16*	-2.33	0.00
L5 \times T4	-13.33**	5.41	9.18**	8.83**	11.64**	3.00	0.00	2.38
L5 \times T5	0.00	21.62**	-6.10**	-2.84	9.42**	-2.22	0.00	2.38
L5 \times T6	-8.33**	18.92**	1.64	-2.21	13.06**	3.00	0.00	2.38
L5 \times T7	-6.25*	21.62**	3.11	-5.99**	19.10**	-0.48	0.00	2.38
L5 \times T8	10.26**	16.22**	3.32	-1.89	12.46**	4.74*	-1.16	1.19
L5 \times T9	-4.55	13.51**	-6.69**	-3.15	3.63	2.22	-2.33	0.00
S.Em. \pm	0.12		0.64		0.69		1.12	
Range								
Minimum	-20.41	-10.81	-9.42	-6.31	-7.86	-14.99	-3.49	-1.19
Maximum	15.00	24.32	15.22	9.15	19.10	5.61	3.57	3.57
Signi. cross	32	21	23	22	36	14	03	11
Positive	03	19	15	18	32	07	02	11
Negative	29	02	08	04	04	07	01	00

[^3]Table 5: Estimation of Heterobeltiosis (HB) and Standard heterosis (SH) for seed index, lint index, lint yield per plant and seed cotton yield per plant

Hybrids	SI		LI		LYPP		SCYPP	
	HB	SH	HB	SH	HB	SH	HB	SH
$\mathrm{L} 1 \times \mathrm{T} 1$	16.27**	-9.94**	-5.45	-8.23	-20.65*	2.72	-12.15	1.04
$\mathrm{L} 1 \times \mathrm{T} 2$	19.51**	-7.34*	-4.29	-12.84**	-32.04**	-12.02	-20.06*	-8.04
$\mathrm{L} 1 \times \mathrm{T} 3$	25.58**	-2.74	8.02	-1.63	-13.18	12.40	-3.35	11.17
$\mathrm{L} 1 \times \mathrm{T} 4$	21.07**	-5.71*	8.25	-1.43	16.44	50.75**	26.92**	45.99**
$\mathrm{L} 1 \times \mathrm{T} 5$	23.09**	-4.66	8.78	-0.94	-19.13*	4.69	-11.53	1.76
L1 \times T6	29.69**	7.29*	11.85*	11.92*	21.48*	57.27**	33.15**	53.15**
L1 \times T7	17.66**	-8.86**	3.98	-5.31	26.64**	63.95**	38.73**	59.57**
L1 \times T8	20.61**	-6.58*	9.33	-0.44	16.88	51.32**	25.41*	44.25**
L1 \times T9	20.15**	-6.94*	1.13	-5.53	-34.15**	-14.75	-27.06**	-16.10
$\mathrm{L} 2 \times \mathrm{T} 1$	20.79**	$-7.83 * *$	-8.91	-11.58*	28.26	0.44	39.09*	3.62
$\mathrm{L} 2 \times \mathrm{T} 2$	26.86**	-1.64	0.55	-14.14**	17.05	-1.84	39.89**	9.24
$\mathrm{L} 2 \times \mathrm{T} 3$	20.82**	-7.27*	21.75**	-2.00	14.82	-10.29	15.51	-13.95
$\mathrm{L} 2 \times \mathrm{T} 4$	16.44**	$-9.32 * *$	6.11	-11.81*	51.24**	18.18	61.53**	20.33
$\mathrm{L} 2 \times \mathrm{T} 5$	22.44**	$-7.51 * *$	11.92*	0.91	21.78	-4.84	20.46	-10.26
$\mathrm{L} 2 \times \mathrm{T} 6$	21.51**	0.53	-0.45	-0.39	37.19*	7.20	44.48**	7.63
$\mathrm{L} 2 \times \mathrm{T} 7$	22.48**	-12.12**	11.19*	-2.72	38.30*	8.07	35.38*	0.85
$\mathrm{L} 2 \times \mathrm{T} 8$	32.38**	-5.02	10.18	-2.27	26.90	-0.84	30.30*	-2.93
$\mathrm{L} 2 \times \mathrm{T} 9$	28.88**	$-7.53 * *$	-4.94	-11.20*	-17.53	-35.56**	-10.71	-33.48**
$\mathrm{L} 3 \times \mathrm{T} 1$	25.84**	-3.98	3.76	0.71	39.96**	50.11**	47.55**	44.71**
$\mathrm{L} 3 \times \mathrm{T} 2$	21.54**	-5.77*	4.09	-11.12*	5.28	12.92	20.25	17.94
L3 \times T3	22.81**	-5.74*	20.31**	-3.15	-4.92	1.97	1.83	-0.12
$\mathrm{L} 3 \times \mathrm{T} 4$	17.35**	-8.60**	35.82**	12.88**	34.84**	44.62**	27.34*	24.89*
L3 \times T5	22.38**	$-7.56 * *$	13.55*	2.38	-8.02	-1.35	-6.66	-8.45
L3 \times T6	9.27**	-9.60 **	0.66	0.72	-1.24	5.93	-0.15	-2.07
L3 \times T7	36.95**	$-12.65 * *$	10.66	-3.18	11.29	19.37	13.14	10.96
L3 \times T8	34.57**	-8.66**	12.17*	-0.51	8.90	16.80	11.90	9.75
L3 \times T9	27.43**	-9.98**	12.88*	5.44	-8.17	-1.51	-10.22	-11.95
$\mathrm{L} 4 \times \mathrm{T} 1$	5.81	-19.26**	-2.48	-5.34	28.74*	36.38**	29.53*	22.00
$\mathrm{L} 4 \times \mathrm{T} 2$	3.88	-19.46**	-0.98	-15.45**	-1.93	3.89	6.32	0.14
$\mathrm{L} 4 \times \mathrm{T} 3$	9.58**	-15.89**	30.87**	5.45	5.91	12.19	1.93	-4.00
$\mathrm{L} 4 \times \mathrm{T} 4$	8.88*	-15.20**	30.25**	8.26	-9.83	-4.48	-14.26	-19.24
$\mathrm{L} 4 \times \mathrm{T} 5$	9.72*	-17.12**	9.02	-1.70	38.32**	46.53**	37.94**	29.92**
$\mathrm{L} 4 \times \mathrm{T} 6$	14.45**	-5.31	6.03	6.09	8.17	14.59	11.97	5.46
$\mathrm{L} 4 \times \mathrm{T} 7$	13.24**	-22.43**	5.66	-7.55	17.16	24.11	16.32	9.56
$\mathrm{L} 4 \times \mathrm{T} 8$	19.37**	-18.23**	11.32*	-1.26	31.62**	39.43**	29.68*	22.14
$\mathrm{L} 4 \times \mathrm{T} 9$	12.99**	-20.17**	2.66	-4.10	-27.42*	-23.11	-27.98*	-32.17**
L5 \times T1	25.27**	9.08**	3.50	10.56*	27.22*	31.02*	45.53**	29.83**
$\mathrm{L} 5 \times \mathrm{T} 2$	24.71**	8.59**	3.69	10.77*	45.91**	50.27**	65.57**	47.72**
L5 \times T3	21.23**	5.56*	-3.43	3.16	-44.17**	-42.50**	-34.60**	-41.65**
L5 \times T4	22.17**	6.38*	8.32	15.71**	-33.67**	-31.69*	-27.53*	-35.35**
L5 \times T5	28.61**	11.99**	7.41	14.74**	26.13*	29.90*	42.93**	27.51*
L5 \times T6	29.74**	12.97**	14.02**	21.81**	19.87	23.45	31.34*	17.18
$\mathrm{L} 5 \times \mathrm{T} 7$	17.23**	2.08	4.98	12.15*	$39.41^{* *}$	43.57**	50.31**	34.10 **
L5 \times T8	19.24**	3.83	0.07	6.90	11.27	14.60	25.56*	12.02
L5 \times T9	19.14**	3.74	3.72	10.79*	-13.45	-10.87	-4.49	-14.79
S.Em. \pm	0.40		0.27		6.30		20.42	
Range								
Minimum	3.88	-22.43	-8.91	-15.45	-44.17	-42.50	-34.60	-41.65
Maximum	36.95	12.97	35.82	21.81	51.24	63.95	65.57	59.57
Signi. cross	43	35	13	16	21	16	26	15
Positive	43	07	13	09	14	13	21	11
Negative	00	28	00	07	07	03	05	04

*, ** Significant at 0.05 and 0.01 levels of probability, respectively

Fig 1: Field view of cotton evaluation block at RRS, AAU, Anand (Kharif 2021-22)

Fig 2: Heterobeltiosis and standard heterosis of all hybrids for seed cotton yield per plant

Days to $\mathbf{5 0 \%}$ flowering

As per better parent heterosis, the best performing negatively significant hybrids for days to 50% flowering were AHC- $26 \times$ GSB-45 (-4.95\%), AHC-26 \times DB-1502 (-1.98%) and AHC$50 \times$ ABC-1 (-0.53%). As per standard heterosis, the best performing negatively significant hybrids were AHC-50 \times ABC-1 (-9.62%), AHC-26 \times GSB-45 (-7.69%) and AHC- $1 \times$ DB-1502, AHC-1 \times RHcb-1014, AHC-50 \times RHcb-1014, AHC-26 \times DB-1502 (-4.81%). The results are in close agreement with Gohil et al. (2017) ${ }^{[3]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Udaya et al. (2020) ${ }^{[13]}$ for both heterobeltiosis and standard heterosis while, Malathi et al. (2019) ${ }^{[6]}$ showed similar results for heterobeltiosis and Sawarkar et al. (2015) ${ }^{[11]}$ showed similar results for standard heterosis only.

Days to $\mathbf{5 0 \%}$ boll bursting

According to better parent heterosis, none of the hybrids showed negatively significant heterotic effects for days to 50% boll bursting. While, as per the standard heterosis, best performing negatively significant hybrids were AHC $-1 \times$ DB1502 (-9.09\%), AHC-1 \times RHcb-1014 (-8.83\%) and AHC-50
\times DB-1502 (-7.79%). The outcome of this experiment is in contradictory for heterobeltiosis however, it shows similarity for standard heterosis with the results of Sawarkar et al. (2015) ${ }^{[11]}$ and Vavdiya et al. (2019) ${ }^{[14]}$.

Plant height

The best performing positively significant hybrid for plant height as per better parent heterosis were AHC- $26 \times$ GSB-41 (41.11\%), G. Cot-20 \times GSB-41 (39.97\%) and AHC-26 \times ABC-1 (36.53\%). As per standard heterosis, the best performing positively significant hybrids were AHC-1 \times ARBB-27 (21.58\%), G. Cot-20 \times ARBB-27 (20.75\%) and AHC-26 \times ABC-1 (18.69\%). Significantly positive heterobeltiosis and standard heterosis was also reported by Gohil et al. (2017) ${ }^{[3]}$, Malathi et al. (2019) ${ }^{[6]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Naik et al. (2020b) ${ }^{[9]}$. Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported similar findings for standard heterosis.

Monopodia per plant

As per better parent heterosis, the best performing negatively
significant hybrid were G. Cot-12 \times GSB-44 (-15.55%) and G. Cot-12 \times ABC-1 (-10.92%). As per standard heterosis, the best performing negatively significant hybrids were G. Cot-12 \times GSB-44 (-29.63\%), AHC-50 \times DB-1502 (-25.94%) and G. Cot- $20 \times$ GSB-45 (-20.36%). These results are in concurrence with Gohil et al. (2017) ${ }^{[3]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Sudha et al. (2020) ${ }^{[12]}$ for heterobeltiosis and standard heterosis. Udaya et al. (2020) ${ }^{[13]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported significantly negative standard heterosis only.

Sympodia per plant

According to better parent heterosis, the best performing positively significant hybrid were AHC-26 \times ABC-1 (47.29\%), AHC-26 \times DB-1502 (41.09\%) and AHC-26 \times GSB-44 (40.18\%). As per standard heterosis, the best performing positively significant hybrids were AHC-1 \times GSB-45 (31.49\%), AHC-1 \times DB-1602 (25.73\%) and AHC-26 \times GSB-44 (24.15\%). The present findings are in fidelity with the reports of Gohil et al. (2017) ${ }^{[3]}$, Malathi et al. (2019) ${ }^{[6]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Sudha et al. (2020) ${ }^{[12]}$ for heterobeltiosis and standard heterosis and Udaya et al. (2020) ${ }^{[13]}$ for standard heterosis only.

Bolls per plant

The best performing positively significant hybrid as per better parent heterosis were AHC-1 \times GSB-43-1 (90.54\%), G. Cot$12 \times$ GSB-45 (85.27\%) and G. Cot-12 \times GSB-43-1 (80.63\%). As per standard heterosis, the best performing positively significant hybrids were AHC-1 \times DB-1502 (34.56\%), AHC$1 \times$ GSB-43-1 (33.49\%) and AHC-50 \times ABC-1 (32.07\%). The present findings are in accordance with the reports of Patel et al. (2015) ${ }^{[10]}$, Gohil et al. (2017) ${ }^{[3]}$, Vavdiya et al. (2019) ${ }^{[14]}$, Naik et al. (2020b) ${ }^{[9]}$ and Sudha et al. (2020) ${ }^{[12]}$ for both heterobeltiosis and standard heterosis while, with reports of Malathi et al. (2019) ${ }^{[6]}$, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ for heterobeltiosis only and with Sawarkar et al. (2015) ${ }^{[11]}$, Monicashree et al. (2017) ${ }^{[7]}$, Udaya et al. (2020) ${ }^{[13]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ for standard heterosis only.

Boll weight

As per better parent heterosis, the best performing positively significant hybrid for boll weight were G. Cot-20 $\times \mathrm{ABC}-1$ (8.21%) and AHC-50 \times DB-1602 (8.10%). As per standard heterosis, the best performing positively significant hybrids were AHC-26 \times GSB-45 (39.34\%), AHC-26 \times DB-1502 (33.03%) and AHC-1 \times GSB-41 (30.90%). These results are in akin with the reports of Patel et al. (2015) ${ }^{[10]}$, Gohil et al. (2017), Vavdiya et al. (2019) ${ }^{[14]}$, Naik et al. (2020b) ${ }^{[9]}$ and Sudha et al. (2020) ${ }^{[12]}$ for both heterobeltiosis and standard heterosis while, Malathi et al. (2019) ${ }^{[6]}$, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ found similar results only for heterobeltiosis. Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported significant positive standard heterosis for boll weight.

Ginning outturn

According to better parent heterosis, the best performing positively significant hybrid for ginning outturn were G. Cot$20 \times$ GSB-43-1 (5.70\%), AHC-50 \times GSB-43-1 (5.56\%) and AHC-50 \times GSB-41 (4.02%). As per standard heterosis, the best performing positively significant hybrids were AHC-50 \times

GSB-43-1 (18.29\%), AHC-50 \times GSB-41 (16.56\%) and G. Cot-20 \times GSB-43-1 (15.73\%). Above results were in close agreement with Vavdiya et al. (2019) ${ }^{[14]}$ and Naik et al. (2020b) ${ }^{[9]}$ for heterobeltiosis and standard heterosis both. While, significant and positive standard heterosis was also reported by Patel et al. (2015) ${ }^{[10]}$, Udaya et al. (2020) ${ }^{[13]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$.

Fiber fineness

The best performing negatively significant hybrid as per better parent heterosis were G. Cot-20 \times GSB-45 (-20.41%), AHC-1 \times DB-1502 (-19.57%) and G. Cot-20 \times DB-1502 (18.75%). As per standard heterosis, the best performing negatively significant hybrids were G. Cot-12 \times DB-1602 (10.81%), G. Cot-12 \times RHcb-1014 (-8.11%) and G. Cot-12 \times GSB-41, G. Cot-12 \times GSB-43-1, AHC-26 \times GSB-41 (5.41%). The results of this investigation show similarity with the earlier works of Naik et al. (2020a) for heterobeltiosis and standard heterosis. Sawarkar et al. (2015) ${ }^{[11]}$, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ reported similar findings for heterobeltiosis while, Monicashree et al. (2017) ${ }^{[7]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported similar findings for standard heterosis only.

Fiber strength

As per better parent heterosis, the best performing positively significant hybrid were G. Cot-12 \times DB-1502, G. Cot-20 \times DB-1502 (15.22\%), AHC-1 \times DB-1502 (11.42\%) and G. Cot$20 \times$ GSB-43-1 (9.49%). As per standard heterosis, the best performing positively significant hybrids were G. Cot-20 \times GSB-43-1 (9.15\%), AHC-26 \times GSB-43-1 (8.83\%) and AHC$1 \times$ DB-1602, G. Cot-20 \times ARBB-27 (8.52\%). As observed in the present investigation, Naik et al. (2020a) had also reported the significantly positive heterobeltiosis and standard heterosis while, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ reported significant positive heterobeltiosis and Sawarkar et al. (2015) ${ }^{[11]}$, Monicashree et al. (2017) ${ }^{[7]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported significant and positive standard heterosis for fiber strength.

Fiber length

According to better parent heterosis, the best performing positively significant hybrid were AHC-26 \times DB-1502 (19.10%), AHC- $26 \times$ ARBB-27 (16.77%) and AHC-50 \times DB1502 (16.32\%). As per standard heterosis, the hybrids AHC$50 \times$ GSB-43-1 (5.61\%), AHC-26 \times ARBB-27 (5.03\%) and AHC-1 \times GSB-43-1, AHC-26 \times RHcb-1014 (4.74\%) were best performing. Naik et al. (2020a) had also reported significant and positive heterobeltiosis and standard heterosis. Similar results were also reported by Hamed and Said (2021) ${ }^{[4]}$ for heterobeltiosis and Patel et al. (2015) ${ }^{[10]}$, Sawarkar et al. (2015) ${ }^{[11]}$, Gohil et al. (2017) ${ }^{[3]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ for standard heterosis.

Uniformity index

As per better parent heterosis, the best performing positively significant hybrid for were G. Cot-12 \times GSB-45, AHC-50 \times RHcb-1014 (3.57\%), AHC-1 \times GSB-45, AHC- $1 \times$ RHcb1014 (2.38\%) and AHC-1 \times ABC-1, AHC- $1 \times$ GSB-43-1, G. Cot-12 \times ABC-1 (2.35\%) for uniformity index. As per standard heterosis, the best performing positively significant hybrids were AHC- $1 \times$ GSB-44 (3.57\%), G. Cot-12 \times ABC-1 (3.57%) and AHC-50 \times RHcb-1014 (3.57\%). Hibbiny et al.
(2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ also reported significant positive heterobeltiosis while, Monicashree et al. (2017) ${ }^{[7]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ reported significantly positive standard heterosis only.

Seed index

As per better parent heterosis, the best performing positively significant hybrid for seed index were G. Cot-20 \times DB-1502 (36.95\%), G. Cot-20 \times RHcb-1014 (34.57\%) and G. Cot-12 \times RHcb-1014 (32.38\%). As per standard heterosis, the best performing positively significant hybrids were AHC-26 \times GSB-45 (12.97\%), AHC-26 \times GSB-44 (11.99\%) and AHC-26 \times ABC-1 (9.08%) for seed index. Similar results were obtained by Gohil et al. (2017) ${ }^{[3]}$, Malathi et al. (2019) ${ }^{[6]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Naik et al. (2020b) ${ }^{[9]}$ for both heterobeltiosis as well as standard heterosis while, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ found significant positive heterobeltiosis and Monicashre et al. (2017), Sudha et al. (2020) ${ }^{[12]}$, Udaya et al. (2020) ${ }^{[13]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ found significantly positive standard heterosis for seed index.

Lint index

The best performing positively significant hybrid according to better parent heterosis were G. Cot-20 \times GSB-43-1 (35.82\%), AHC-50 \times GSB-41 (30.87\%) and AHC-50 \times GSB-43-1 (30.25\%). As per standard heterosis, the best performing positively significant hybrids were AHC-26 \times GSB-45 (21.81%) followed by AHC-26 \times GSB-43-1 (15.71%) and AHC-26 \times GSB-44 (14.74\%). Significant and positive heterobeltiosis and standard heterosis were also reported by Gohil et al. (2017) ${ }^{[3]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Sudha et al. (2020) ${ }^{[12]}$. Hibbiny et al. (2020) ${ }^{[5]}$, and Hamed and Said (2021) ${ }^{[4]}$ also found significant positive heterobeltiosis while, Udaya et al. (2020) ${ }^{[13]}$ and Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ found significant positive standard heterosis.

Lint yield per plant

As per better parent heterosis, the best performing positively significant hybrid were G. Cot-12 \times GSB-43-1 (51.24\%), AHC-26 \times ARBB-27 (45.91\%) and G. Cot-20 \times ABC-1 (39.96%). As per standard heterosis, the hybrids AHC-1 \times DB-1502 (63.95\%), AHC-1 \times GSB-45 (57.27\%) and AHC-1 \times RHcb-1014 (51.32%) were best performing. The results are in conformity with the reports of Patel et al. (2015) ${ }^{[10]}$, Gohil et al. (2017) ${ }^{[3]}$ and Sudha et al. (2020) ${ }^{[12]}$ for heterobeltiosis as well as standard heterosis while, Hibbiny et al. (2020) ${ }^{[5]}$ and Hamed and Said (2021) ${ }^{[4]}$ got similar results for heterobeltiosis.

Seed cotton yield per plant

According to better parent heterosis, the best performing positively significant hybrid for seed cotton yield per plant were AHC- $26 \times$ ARBB-27 (65.57%) followed by G. Cot-12 \times GSB-43-1 (61.53\%) and AHC-26 \times DB-1502 (50.31\%). While, as per standard heterosis, the outstanding and positively significant hybrids were AHC-1 \times DB-1502 (59.57\%), AHC-1 \times GSB-45 (53.15\%) and AHC-26 \times ARBB-27 (47.72\%). The earlier investigation of Patel et al. (2015) ${ }^{[10]}$, Sawarkar et al. (2015) ${ }^{[11]}$, Gohil et al. (2017) ${ }^{[3]}$, Malathi et al. (2019) ${ }^{[16]}$, Vavdiya et al. (2019) ${ }^{[14]}$ and Naik et al. (2020) showed agreement with the present result of heterobeltiosis and standard heterosis and those of Hibbiny et
al. (2020) ${ }^{[5]}$, Sudha et al. (2020) ${ }^{[12]}$ and Hamed and Said $(2021){ }^{[4]}$ showed similarly significant positive heterobeltiosis. The earlier studies of Monicashree et al. (2017) ${ }^{[7]}$, Udaya et al. (2020) ${ }^{[13]}$, Gnanasekaran and Thiyagu (2021) ${ }^{[21]}$ supports the present result of positive and significant SH .

Conclusions

Significant levels of desirable heterobeltiosis and standard heterosis was registered in the current investigation for seed cotton yield per plant and its component traits. These suggests the possibility for improvement of cotton through heterosis breeding. Out of 45 hybrids developed, AHC- $1 \times$ DB-1502, AHC- $1 \times$ GSB-45, AHC-26 \times ARBB-27, AHC- $1 \times$ GSB-43-1 and G. Cot- $20 \times$ ABC-1 were most promising cross combinations for seed cotton yield per plant on the basis of standard heterosis. Therefore, these cross combinations may be favoured for commercial cultivation as hybrids after critical evaluation in varied environments or over locations. These hybrids may also be further advanced for development of superior desirable recombinants as improved varieties.

Acknowledgement

The authors are thankful to Anand Agricultural University, Anand, Gujarat, India for providing required facilities to carried out the research experiment.

References

1. Anonymous. Area, production and productivity data; c2020. Retrieved from https://commodities.cmie.com
2. Gnanasekaran M, Thiyagu K. Gene action, combining ability and standard heterosis for seed cotton yield and fiber quality components in upland cotton. Electronic Journal of Plant Breeding. 2021;12(2):325-334. https://doi.org/10.37992/2021.1202.048
3. Gohil SB, Parmar MB, Chaudhari DJ. Study of heterosis in interspecific hybrids of cotton (Gossypium hirsutum L. \times Gossypium barbadense L.). Journal of Pharmacognosy and Phytochemistry. 2017;6(4):804-810.
4. Hamed HH, Said SRN. Estimation of heterosis and combining ability for yield and fiber quality traits by using line \times tester analysis in cotton (G. barbadense L.). Menoufia Journal of Plant Production. 2021;6(1):35-51.
5. Hibbiny YA, Ramadan BM, Max MS. Heterosis and combining ability for yield and fiber quality in cotton (Gossypium barbadense L.) using half diallel mating system. Menoufia Journal of Plant Production. 2020;5(5):233-248.
6. Malathi S, Patil RS, Saritha HS. Heterosis studies in interspecific cotton hybrids (Gossypium hirsutum L. \times Gossypium barbadense L.) under irrigated condition. Electronic Journal of Plant Breeding. 2019;10(2):852861. https://doi.org/10.5958/0975-928X.2019.00112.1
7. Monicashree C, Balu PA, Gunasekaran M. Combining ability and heterosis studies on yield and fiber quality traits in upland cotton (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Science. 2017;6(8):912-927. http://dx.doi.org/10.20546/ijcmas
8. Naik KS, Satish Y, Babu DP. Heterosis studies for yield and fiber quality traits in American cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding. 2020a;11:(3):831-835.
https://doi.org/10.37992/2020.1103.136
9. Naik KS, Satish Y, Babu DP. Studies on heterosis for yield and yield attributing traits in American cotton (Gossypium hirsutum L.). International Journal of Chemical Studies. 2020b;8(1):2064-2068. https://doi.org/10.22271/chemi.2020.v8.i1ae. 8568
10. Patel NN, Patil SS, Patel SR, Jadhav BD. Estimation of heterosis for seed cotton yield and its component characters in upland cotton (Gossypium hirsutum L.). Trends in Bioscience. 2015;8(4):925-928.
11. Sawarkar M, Solanke A, Mhasal GS, Deshmukh SB. Combining ability and heterosis for seed cotton yield, its components and quality traits in Gossypium hirsutum L. Indian Journal of Agricultural Research. 2015;49(2):154159. https://doi.org/10.5958/0976-058X.2015.00022.0
12. Sudha R, Chapara MR, Satish Y. Heterosis for seed cotton yield and yield contributing traits in cotton (Gossypium hirsutum L.). International Journal of chemical Studies. 2020;8(3):2496-2500. doi.org/10.22271/chemi.2020.v8.i3aj. 9581
13. Udaya V, Saritha HS, Patil RS. Heterosis studies for seed cotton yield and fiber quality traits in upland cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research. 2020;1(5):1-5.
14. Vavdiya PA, Chovatia VP, Madariya RB, Mehta DR, Solanki HV. Heterosis studies for seed cotton yield and its components over environments in cotton. Journal of Pharmacognosy and Phytochemistry. 2019;8(2):20492053.

[^0]: *, ** Significant at 0.05 and 0.01 levels of probability, respectively
 (DFF - Days to 50% flowering, DFBB - Days to 50% boll bursting, PH - Plant height, MPP - Monopodia per plant, SPP - Sympodia per plant, BPP - Bolls per plant, BW - Boll weight, GOT - Ginning outturn, FF - Fiber fineness, FS - Fiber strength, FL - Fiber length, UI - Uniformity

[^1]: *, ** Significant at 0.05 and 0.01 levels of probability, respectively

[^2]: *, ** Significant at 0.05 and 0.01 levels of probability, respectively

[^3]: *, ** Significant at 0.05 and 0.01 levels of probability, respectively

