www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(11): 2507-2511 © 2022 TPI www.thepharmajournal.com

Received: 16-09-2022 Accepted: 23-10-2022

Ravendra Kumar Agnihotri Bhagwant University, Ajmer, Rajasthan, India

Atin Kumar Bhagwant University, Ajmer, Rajasthan, India

Mahendra Nagar Bhagwant University, Ajmer, Rajasthan, India

Sandeep Kumar Bhagwant University, Ajmer, Rajasthan, India

Abhishek Tiwari Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India

Corresponding Author: Ravendra Kumar Agnihotri Bhagwant University, Ajmer, Rajasthan, India

Effect of various nutrient management modules on growth, yield and quality of wheat

Ravendra Kumar Agnihotri, Atin Kumar, Mahendra Nagar, Sandeep Kumar and Abhishek Tiwari

Abstract

The field experiment was conducted during Rabi 2014-15 and 2015-16 at Student's Instructional Farm of Bhagwant University, Ajmer, Rajasthan. The experiment was carried out in Randomized Block Design (RBD) having three replications and fourteen integrated nutrient management module combinations. The treatments T₁: RDF (150:60:40 kg ha⁻¹ NPK), T₂: RDF + 20kg ZnSO₄ ha⁻¹, T₃: RDF + 5 t FYM ha⁻¹, T₄: RDF + 2.5 t VC ha⁻¹, T₅: RDF + 5 t FYM + 20 kg ZnSO₄ ha⁻¹, T₆: RDF + 2.5 t VC + 2.5 t T7: 75% RDF(112.50:50:45 kg ha⁻¹), T8: 75% RDF +20kg ZnSO4 ha⁻¹, T9: 75% RDF + 10 t FYM ha⁻¹, T10: 75% RDF + 5 t VC ha⁻¹, T11: 75% RDF +10 t FYM + 20 kg ZnSO4 ha⁻¹, T12: 75% RDF + 5 t VC +20 kg ZnSO₄ ha⁻¹, T₁₃: 125% RDF (187.50:75:50 kg ha⁻¹), T₁₄: 125% RDF + 20 kg ZnSO₄ ha⁻¹ The Pooled data of rabi 2014-15 and 2015-16, Maximum growth, yield attributes and yield of wheat crop were recorded under the nutrient management module T₆ (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹) closely followed by T₅ (100% RDF+5 t FYM+20 kg ZnSO₄ ha⁻¹). Significantly higher grain and straw yield were recorded under treatment having T_6 (100% RDF +2.5 t VC + 20 kg ZnSO₄ ha⁻¹) over T_1 (100% RDF). The significant differences were found in case of protein content also. The highest value of pooled protein content was recorded in treatment T₆ (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹). On the basis of results summarized above, it may be concluded that nutrient management module 100% RDF+2.5 t VC+20 kg ZnSO4 ha⁻¹ proved best for improving nutrient uptake, yield attributes and yield of wheat as well as soil properties. Also the highest net return was recorded in the same treatment. Therefore, the nutrient management module 100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹ may safely be recommended for growing of wheat in eastern part of Rajasthan.

Keywords: FYM, vermicompost, sulphur, zinc, wheat

Introduction

The way India increased its wheat production and helped the food security system through "wheat revolution" is worth to be recommended. It was felt that the wheat revolution and green revolution have made it self-sufficient in food grains and there will be no going back to old import days when the food security was either "Ship to mouth" or "field to mouth". Wheat (Triticum aestivum L.) is one of the most important cereal crops of the world. Among the world's most important food grain, it ranks next to rice. It is eaten in various forms by more than one billion in the world. Wheat straw is a good source of feed for a large population of the cattle in our country. It has a relatively high content of niacin and thiamin that is why, wheat proteins are of special significance which are principally concerned in providing the 'gluten' which provides the frame work for sponge cellular texture of bread and baked products. It is primarily grown in temperate regions at high altitude as well as medium altitude in tropical and sub-tropical regions. It ranks first in the world among the cereals both in respect of acreage (221.50 m ha) and production (727.87 million metric t.) (Anonyms 2014-15). India is the second largest producer of wheat in the world. It is the second most important cereal crop after rice and this is a pre-dominant winter season crop of north western plain zones and during 2014-15 production in India was 95.85 million metric tons from an area of 30.47 million hectares with productivity of 3.15 metric tonnes ha-1 (Anonyms 2014-15). UP ranks first in respect of wheat crop coverage area (9.64 million hectares) and production (30.00 million tones) but average productivity is low (3.11 t ha-1) (Anonyms 2015-16).Farmyard manure is bulky organic manure resulting from decomposed mixture of dung and urine of farm animals. Application of FYM is of greater significance for sustainability as it has great potentiality to improve the physical properties of soil besides supplying nutrients. Each of these physical properties has large practical implication in maintaining soil as a medium of production and great role in halting environmental degradation. Maintaining and improving them in long run is essential part of sustaining the ecosystem.

The field experiment was conducted during *Rabi* 2014-15 and 2015-16 at Student's Instructional Farm of Bhagwant University, Ajmer, Rajasthan. The experiment was carried out in Randomized Block Design (RBD) having three replications and fourteen integrated nutrient management module combinations. Geographically the experimental site is situated at 26.47^{0} North latitude and 81.12^{0} East longitude with an elevation of about 113 m from mean sea level in the Gangatic Plain Zone of Eastern Rajasthan,

Application of FYM and Vermicompost, Fertilizer application

Farm yard manure and Vermicompost as per treatment were incorporated uniformly in the plots before 15 days of sowing of wheat. N, P_2O_5 and K_2O *i.e.*, @ 150, 60 and 40 kg ha⁻¹, respectively was considered as 100% recommended dose of fertilizer. Nitrogen was applied in splits through urea. Full dose of phosphorus, potassium and half dose of nitrogen were applied at the time of sowing and rest half dose of nitrogen was applied in two split doses at the time of first irrigation and second irrigation. Basal application of phosphorus and potassium was made through DAP and MOP, respectively as per treatment.

Results and Discussion

Growth, yield contributing characters, yield and quality of wheat

- 1. The maximum plant height was recorded under the treatment T_6 (100% RDF+2.5 t VC+20kg ZnSO₄ha⁻¹) which was significantly superior over T_1 (100% RDF) at all the growth stages except at 30 DAS.
- 2. The maximum chlorophyll content in leaves was also recorded under the treatment receiving T_6 (100%)

RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹) which was significantly superior over T_1 (100% RDF) at all the growth stages except at 90 DAS.

- 3. The dry matter accumulation of wheat increased significantly with all the organic and zinc sulphate treated plots as compared to T_1 (100% RDF) at all the growth stages. The maximum dry matter accumulation was observed under the treatment T_6 (100% RDF+2.5 t VC+20kg ZnSO₄ ha⁻¹).
- 4. The maximum number of effective shoots m^{-2} were recorded under the treatment T_6 (100% RDF+2.5 t VC+20kg ZnSO₄ ha⁻¹) which was significantly superior over T_1 (100% RDF).
- 5. The length of spike as well as no of grains spike⁻¹ of wheat increased significantly with all the organic and zinc sulphate treated plots as compared to T_1 (100% RDF). The maximum length of spike was observed under the treatment T_6 (100% RDF+2.5 t VC+20kg ZnS₀₄ha⁻¹) which was significantly superior over T_1 (100% RDF).
- Various treatments did not affect the test weight of wheat significantly. However, the maximum value in respect to test weight was recorded under the treatment T₆ (100% RDF+2.5 t VC+20kg ZnSO₄ha⁻¹) followed by T₅ (100% RDF+5 t FYM+20kg ZnSO₄ha⁻¹).
- 7. The yield of grain and straw was higher with vermicompost plus zinc sulphate followed by FYM plus zinc sulphate than recommended dose of chemical fertilizer. The treatment T_6 (100% RDF+2.5 t VC+20kg ZnSO₄ha⁻¹) produced highest grain and straw yield which was significantly superior over T_1 (100% RDF).
- 8. The maximum value in respect to harvest index was recorded under the treatment T_6 (100% RDF+2.5 t VC+20kg ZnSO₄ha⁻¹) while minimum in treatment T_7 (75% RDF).

Treatment		30 DA	S	60 DAS			90 DAS			At harvest		
Treatment	2019-20	202-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled
T_1	17	17	17	46	47	46	79	80	80	82	83	83
T_2	17	18	17	49	49	49	84	84	84	87	88	88
T ₃	18	18	18	50	50	50	85	87	86	89	90	90
T_4	18	18	18	51	51	51	87	88	88	90	92	91
T ₅	18	18	18	53	54	54	92	93	92	96	97	96
T_6	18	18	18	54	55	55	93	95	94	97	98	97
T ₇	17	17	17	44	46	45	75	75	75	78	82	80
T_8	17	17	17	45	46	45	76	76	76	80	83	81
T9	17	17	17	46	47	46	78	80	79	81	83	82
T10	17	17	17	47	48	47	81	82	82	84	85	85
T11	18	18	18	51	52	52	88	89	89	92	93	92
T12	18	18	18	52	53	52	89	90	90	93	94	93
T13	18	18	18	47	47	47	80	81	81	83	84	84
T_{14}	18	19	18	49	50	49	84	85	85	88	89	88
S.Em±	0.72	0.73	0.51	2.26	2.03	1.52	3.88	3.47	2.60	4.04	3.63	2.71
C.D. at 5%	NS	NS	NS	6.57	5.90	4.31	11.28	10.09	7.39	11.74	10.54	7.70

Table 4: Effect of nutrient management modules on plant height (cm) at different stages of wheat crop

 $\begin{array}{l} T_{1:} RDF \ (150:60:40 \ kg \ ha^{-1} \ NPK), \ T_{2:} \ RDF \ + \ 20 kg \ ZnSO_4 \ ha^{-1}, \ T_{3:} \ RDF \ + \ 5 \ t \ FYM \ ha^{-1}, \ T_{4:} \ RDF \ + \ 2.5 \ t \ VC \ ha^{-1}, \ T_{5:} \ RDF \ + \ 5 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{6:} \ RDF \ + \ 2.5 \ t \ VC \ ha^{-1}, \ T_{7:} \ 75\% \ RDF \ + \ 10 \ t \ FYM \ ha^{-1}, \ T_{8:} \ 75\% \ RDF \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{9:} \ 75\% \ RDF \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 10 \ t \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ RDF \ + \$

The Pharma Innovation Journal

https://www.thepharmajournal.com

Table 2: Effect of nutrient management modules on chlorophyll content in leaves (mg g⁻¹ fresh weight) at different stages of wheat crop

Treatment		30 DAS			60 DAS		90 DAS			
Treatment	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	
T_1	1.62	1.64	1.63	2.59	2.63	2.61	1.59	1.61	1.60	
T_2	1.68	1.70	1.69	2.75	2.79	2.77	1.61	1.63	1.62	
T3	1.72	1.74	1.73	2.87	2.91	2.89	1.62	1.64	1.63	
T_4	1.74	1.76	1.75	2.93	2.97	2.95	1.63	1.65	1.64	
T5	1.82	1.84	1.83	3.11	3.15	3.13	1.66	1.68	1.67	
T_6	1.85	1.87	1.86	3.18	3.22	3.20	1.67	1.69	1.68	
T ₇	1.48	1.55	1.52	2.43	2.55	2.49	1.30	1.37	1.33	
T_8	1.57	1.63	1.60	2.48	2.58	2.53	1.48	1.54	1.51	
T 9	1.60	1.62	1.61	2.55	2.58	2.56	1.57	1.59	1.58	
T_{10}	1.66	1.68	1.67	2.71	2.74	2.72	1.61	1.63	1.62	
T11	1.76	1.78	1.77	3.00	3.04	3.02	1.64	1.66	1.65	
T ₁₂	1.79	1.81	1.80	3.05	3.09	3.07	1.65	1.67	1.66	
T13	1.65	1.67	1.66	2.64	2.67	2.66	1.61	1.63	1.62	
T_{14}	1.70	1.72	1.71	2.82	2.86	2.84	1.62	1.64	1.63	
S.Em±	0.07	0.07	0.05	0.11	0.12	0.08	0.07	0.07	0.05	
C.D. at 5%	0.21	0.20	0.14	0.33	0.34	0.23	0.19	0.19	0.13	

 $\frac{1}{1: \text{RDF} (150:60:40 \text{ kg ha}^{-1} \text{NPK}), \text{ T}_2: \text{RDF} + 20 \text{kg ZnSO4 ha}^{-1}, \text{ T}_3: \text{RDF} + 5 \text{ t FYM ha}^{-1}, \text{ T}_4: \text{RDF} + 2.5 \text{ t VC ha}^{-1}, \text{ T}_5: \text{RDF} + 5 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_7: 75\% \text{ RDF} + 2.5 \text{ t VC ha}^{-1}, \text{ T}_5: \text{RDF} + 5 \text{ t FYM h}^{-1}, \text{ T}_7: 75\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, \text{ T}_7: 75\% \text{ RDF} + 5 \text{ t VC ha}^{-1}, \text{ T}_9: 75\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, \text{ T}_{10}: 75\% \text{ RDF} + 5 \text{ t VC ha}^{-1}, \text{ T}_{11}: 75\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg} ZnSO4 ha}^{-1}, \text{ T}_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, \text{ T}_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 10 \text{$

Table 3: Effect of nutrient management modules on dry matter accumulation (g m⁻²) at different stages of wheat crop

Treatments		30 DAS			60 DAS		90 DAS			
Treatments	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	
T1	102	103	102	331	336	333	544	551	548	
T2	107	109	108	348	353	351	575	582	579	
T3	110	111	110	358	362	360	587	595	591	
T4	111	113	112	362	367	365	597	604	600	
T5	118	119	119	374	379	377	631	639	635	
T ₆	119	121	120	383	388	385	639	647	643	
T7	96	101	98	299	314	306	513	539	526	
T ₈	98	102	100	319	332	325	525	546	536	
T9	101	102	102	326	330	328	541	548	545	
T10	104	105	105	341	346	344	556	564	560	
T11	113	115	114	369	374	372	606	614	610	
T ₁₂	114	116	115	374	378	376	612	620	616	
T13	103	104	103	339	343	341	550	557	554	
T14	108	109	109	353	358	356	578	585	582	
S.Em±	4.40	4.47	3.14	16.27	14.53	10.21	23.57	29.94	16.80	
CD at 5%	12.80	12.99	8 90	47.28	42.25	28.98	68 52	69 57	47.67	

 $\frac{1}{12.50} + \frac{1}{12.50} +$

 Table 4: Effect of nutrient management modules on effective shoot (m⁻²), length of spike, no. of grains spike⁻¹ and test weight of wheat crop

Treatments	Effective shoots m ⁻²			Lengt	h of spike	(cm)	No. of grains spike-1			Te	Test weight (g)		
Treatments	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	
T1	357.72	362.37	360.05	12.73	12.90	12.81	41.66	42.20	41.93	38.40	38.90	38.65	
T ₂	378.05	382.96	380.50	13.45	13.62	13.54	44.33	44.91	44.62	39.12	39.63	39.37	
T ₃	386.18	391.20	388.69	13.89	14.07	13.98	46.00	46.60	46.30	39.40	39.91	39.66	
T 4	392.27	397.37	394.82	14.21	14.39	14.30	48.33	48.96	48.64	39.64	40.16	39.90	
T5	414.63	420.02	417.33	14.95	15.14	15.05	51.00	51.66	51.33	40.56	41.09	40.82	
T ₆	420.32	425.79	423.05	15.24	15.44	15.34	52.33	53.01	52.67	41.72	42.26	41.99	
T ₇	337.40	354.26	345.83	12.05	12.65	12.35	38.66	40.59	39.63	36.82	38.66	37.74	
T8	345.53	359.35	352.44	12.28	12.77	12.53	39.00	40.56	39.78	37.58	39.08	38.33	
T9	353.66	360.64	357.15	12.51	12.67	12.59	40.66	41.19	40.92	38.24	38.74	38.49	
T10	365.85	370.61	368.23	13.22	13.39	13.31	43.00	43.56	43.28	39.05	39.56	39.30	
T ₁₁	398.37	403.55	400.96	14.45	14.64	14.54	49.66	50.31	49.98	39.82	40.34	40.08	
T ₁₂	402.44	407.67	405.05	14.68	14.87	14.78	50.33	50.98	50.66	40.31	40.83	40.57	
T13	361.79	366.49	364.14	12.94	13.20	13.07	42.33	43.17	42.75	38.76	39.53	39.14	
T14	80.08	385.02	382.55	13.67	13.85	13.76	45.00	45.59	45.29	39.30	39.81	39.56	
S.Em±	17.54	15.74	11.78	0.64	0.57	0.43	2.12	1.89	1.42	1.84	1.62	1.23	
C.D. at 5%	50.98	45.75	33.44	1.85	1.65	1.21	6.16	5.51	4.03	NS	NS	NS	

 $\frac{1}{11: \text{RDF}} (150:60:40 \text{ kg ha}^{-1} \text{NPK}), T_2: \text{RDF} + 20 \text{ kg ZnSO4 ha}^{-1}, T_3: \text{RDF} + 5 \text{ t FYM ha}^{-1}, T_4: \text{RDF} + 2.5 \text{ t VC ha}^{-1}, T_5: \text{RDF} + 5 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_6: \text{RDF} + 2.5 \text{ t VC ha}^{-1}, T_7: 75\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, T_8: 75\% \text{ RDF} + 20 \text{ kg ZnSO4 ha}^{-1}, T_9: 75\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, T_{10}: 75\% \text{ RDF} + 5 \text{ t VC ha}^{-1}, T_{11}: 75\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{12}: 75\% \text{ RDF} + 5 \text{ t VC} + 20 \text{ kg ZnSO4 ha}^{-1}, T_{13}: 125\% \text{ RDF} + 10 \text{ t FYM} + 10 \text$

Table 5: Effect of nutrient management	modules on grain, stra	aw yield and harvest i	ndex of wheat crop
		····	in the second seco

			Yi	Howast Index (9/)						
Treatments		Grain			Straw		marvest muex (%)			
	2019-20	202-21	Pooled	2019-20	2020-21	Pooled	2019-20	2020-21	Pooled	
T _{1.}	41.51	42.05	41.78	62.26	63.07	62.67	39.97	40.00	39.99	
T2	42.45	43.00	42.73	65.80	66.66	66.23	39.29	39.22	39.26	
T3	44.81	45.39	45.10	66.74	67.60	67.17	40.14	40.17	40.15	
T4	45.52	46.11	45.81	67.77	68.65	68.21	40.17	40.18	40.17	
T5	47.74	48.36	48.05	68.83	69.73	69.28	41.02	40.95	40.99	
T ₆	50.47	51.13	50.80	70.61	71.53	71.07	41.66	41.68	41.67	
T7	35.38	35.84	35.61	56.60	57.34	56.97	38.43	38.46	38.44	
T8	35.99	36.46	36.22	57.59	58.33	57.96	38.46	38.46	38.46	
T9	36.56	37.28	36.92	58.88	59.65	59.26	38.19	38.46	38.33	
T ₁₀	42.08	42.62	42.35	63.68	64.51	64.09	39.88	39.79	39.83	
T ₁₁	46.23	46.83	46.53	66.87	67.74	67.31	40.89	40.87	40.88	
T ₁₂	47.64	48.26	47.95	67.80	68.68	68.24	41.26	41.27	41.26	
T ₁₃	41.79	42.34	42.06	63.25	64.08	63.67	39.86	39.78	39.82	
T ₁₄	44.10	44.68	44.39	66.16	67.02	66.59	39.95	40.00	39.97	
S.Em±	1.98	1.80	1.34	2.65	2.69	1.89				
CD at 5%	5 76	5 23	3 79	7 71	7 81	5 35				

 $\begin{array}{l} T_{1:} RDF \ (150:60:40 \ kg \ ha^{-1} \ NPK), \ T_{2:} \ RDF \ + \ 20 kg \ ZnSO_4 \ ha^{-1}, \ T_{3:} \ RDF \ + \ 5 \ t \ FYM \ ha^{-1}, \ T_{4:} \ RDF \ + \ 2.5 \ t \ VC \ ha^{-1}, \ T_{5:} \ RDF \ + \ 5 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{6:} \ RDF \ + \ 2.5 \ t \ VC \ ha^{-1}, \ T_{7:} \ 75\% \ RDF \ + \ 10 \ t \ FYM \ ha^{-1}, \ T_{8:} \ 75\% \ RDF \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{9:} \ 75\% \ RDF \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{9:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ ha^{-1}, \ T_{9:} \ 75\% \ RDF \ + \ 10 \ t \ FYM \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ FYM \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{12:} \ 75\% \ RDF \ + \ 5 \ t \ VC \ + \ 20 \ kg \ ZnSO_4 \ ha^{-1}, \ T_{13:} \ 125\% \ RDF \ + \ 10 \ t \ SMDF \ + \ 10 \ t \ SMDF \ + \ 10 \ t \ SMDF \ + \ 10 \ t \ 10 \ t$

Conclusion

- 1. Maximum growth, yield attributes and yield of wheat crop were recorded under the nutrient management module T₆ (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹) closely followed by T₅ (100% RDF+5 t FYM+20 kg ZnSO₄ ha⁻¹). Significantly higher grain and straw yield were recorded under treatment having T₆ (100% RDF +2.5 t VC + 20 kg ZnSO₄ ha⁻¹) over T₁ (100% RDF). The significant differences were found in case of protein content also. The highest value of pooled protein content was recorded in treatment T₆ (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹).
- 2. Organic carbon content of soil increased in all the treatments consisting FYM or vermicompost in combination with inorganic fertilizers over inorganic fertilizers alone. Maximum organic carbon content of soil was observed under treatment T₆ (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹).Maximum reduction of pH and EC was observed under treatment T₁₁ having 75% RDF + 10 t FYM+ 20 kg ZnSO₄ ha⁻¹. However, differences in pH and EC were found non-significant. Tremendous improvement in available N, P, K, S and Zn contents of soil after harvest stage were estimated under the plots having T₆ (100% RDF +2.5 t VC + 20 kg ZnSO₄ ha⁻¹). closely followed by T₅ (100% RDF + 5 t FYM + 20 kg ZnSO₄ ha⁻¹).
- 3. The maximum N, P, K, S and Zn uptake were noticed under the treatment T_6 (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹) followed by treatment T_5 (100% RDF + 5 t FYM+20 kg ZnSO₄ ha⁻¹).
- 4. The higher net return (₹ 68538ha⁻¹) and benefit cost ratio (2.71) were in treatment T_6 (100% RDF+2.5 t VC+20 kg ZnSO₄ ha⁻¹) closely followed by treatment T_5 (100% RDF+5 t FYM+20 kg ZnSO₄ ha⁻¹).

On the basis of results summarized above, it may be concluded that nutrient management module 100% RDF+2.5 t VC+20 kg ZnSO4 ha-1 proved best for improving nutrient uptake, yield attributes and yield of wheat as well as soil properties. Also the highest net return was recorded in the same treatment. Therefore, the nutrient management module 100% RDF+2.5 t VC+20 kg ZnSO4 ha-1 may safely be recommended for growing of wheat in eastern part of Rajasthan.

References

- 1. Abdol Amir Yousefi, Mehdi Sadeghi. Effect of vermicompost and urea chemical fertilizers on yield and yield components of wheat (*Triticum aestivum*) in the field condition. International Journal of Agriculture and Crop Sciences. 2014;7(12)1227-1230.
- 2. Anonyms. Annual report of Food Agriculture Organization; c2015-16.
- Arnon DJ. Copper enzymes in isolated chloroplast. Polyphenol oxidase in vetavulgaris. Plant physiol. 1949;24:1-15.
- Arya VG, Duhan BS, Dev Raj VS, Ramprakash. Response of different organic manures on yield and micro nutrients uptake by wheat. Annals of Biology. 2011;27(2):135-142.
- Bahadur L, Tiwari DD, Mishra J, Gupta BR. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under ricewheat cropping system in sodic soil. J of Indian Society of Soil Science. 2012;60(4):326-329.
- Barar BS, Dhillon NS, Chand M. Effect of FYM application on grain yield, uptake and availability of nutrients in rice-wheat rotation. Indian J of Agric. Sci. 1995;65(1):350-353.
- 7. Bhatnagar GS, Sharma GL, Chaplot PC. Long-term effect of continuous maize-wheat cropping system and manuring on soil fertility and stability in yield. Indian J of Agric. Sci. 1994;64(12):821-823.
- 8. Bindia, Kalia BD, Mankotia BS. Effect of integrated nutrient management on growth and productivity of wheat crop. Agricultural Science Digest. 2005;25(4):235-239.
- 9. Devi KB, Singh MS, Athokpam HS. Effect of integrated

nutrient management on growth and yield of wheat (*Triticum aestivum* L.). Journal of Crop and Weed. 2011;7(2):23-27.

- Keram KS, Sharma BL, Sawarkar SD. Impact of Zn application in wheat on yield, quality, nutrient uptake and soil fertility in a medium deep black soil (vertisol). International Journal of Science, Environment and Technology. 2012;1(5):563-571.
- 11. Meena VS, Maurya BR, Verma R, Meena R, Meena RS, Jatav GK, *et al.* Influence of growth and yield attributes of wheat by organic and inorganic sources of nutrients with residual effect under different fertility levels. The Bioscan. 2013;8(3):811-815.
- 12. Patil VS, Bhilare RL. Effect of vermicompost prepared from different organic sources on growth and yield of wheat. J of Maharashtra Agri. Univ. 2000;25(3):305-306.
- 13. Singh AK, Bisen JS, Bora DK, Kumar R, Bera B. Comparative study of organic, inorganic and integrated plant nutrient supply on the yield of Darjeeling tea and soil health. Two and a Bud. 2011;58:58-61.