www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; SP-11(11): 683-686

www.thepharmajournal.com Received: 28-09-2022 Accepted: 30-10-2022

Rainish Anand

© 2022 TPI

Ph.D. Student, Department of Agronomy, S.D.J.P.G. College, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India

Dr. Phool Chandra Singh Professor and H.O.D., Department of Agronomy, S.D.J.P.G. College, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India

Influenced by herbicidal weed control methods in yield of blackgram mustard cropping system

Rajnish Anand and Dr. Phool Chandra Singh

Abstract

The experiment was conducted at Sri Durga Ji Post Graduate college, Chandeshwar, Azamgarh, (U.P.) during rainy and winter seasons of 2019-20 and 2020-21.To study the Influenced by Herbicidal weed control methods in yield of blackgram mustard cropping system The experiment was laid out in a RBD with 16 treatments i.e. Imazethapyr 50 g/ha PRE (T1), Imazethapyr 70 g/ha PRE (T2), Imazethapyr 80 g/ha PRE (T3), Imazethapyr 50 g/ha POE (T4), Imazethapyr 70 g/ha POE (T5), Imazethapyr 80 g/ha POE (T6), Imazethapyr. + Imazamox (RM) 50 g/ha PRE (T7), Imazethapyr.+ Imazamox (RM) 70 g/ha PRE (T8), Imazethapyr.+ Imazamox (RM) 80 g/ha PRE (T9), Imazethapyr.+ Imazamox (RM) 50 g/ha POE (T10), Imazethapyr.+ Imazamox (RM) 70 g/ha POE (T11), Imazethapyr.+ Imazamox (RM) 80 g/ha POE (T12), Pendimethalin 1000 g/ha PRE (T13), Imazethapyr + Pendimethalin (RM)1000 g/ha PRE (T14), Hoeing twice (T15) each performed at 20 and 40 DAS and weedy check (T16) replicated thrice. Blackgram *var*. T9 and mustard *var*. Shivani was sown at 30 cm using 30 and 8 kg seed/ha, with RDF 20:40:20 and 80:40:20 k g/ha, respectively. Application of Imazethapyr.+ Imazamox (RM) 80 g/ha POE (T12) also recorded higher yield attributes and grain and straw yield compared to rest of weed treatments.

Keywords: Herbicides, yield attributes and yield

Introduction

Pulses are a good source of supplementary protein to daily diets based on cereals and starchy food for a predominantly vegetarian population and for those who cannot afford expensive animal protein. Pulses are therefore often regarded as poor man's meat. Pulses occupy a special place in human nutrition with protein (24%), carbohydrates (59.6%), fat (1.5%), minerals (3.2%) and it also contains 154 mg calcium, 9.1 mg iron and 38 mg beta-carotene per 100 g of dal. Their cultivation enriches soil by adding nitrogen and improves the physical, chemical and biological soil properties. Their short growing period and photoperiod sensitivity make them suitable for crop intensification and diversification. The average productivity of Black gram in Uttar Pradesh is far below as compared to other developed states like Andhra Pradesh, Madhya Pradesh, Maharashtra etc. The major cause of low productivity of black gram is weed as this crop is grown during rainy season which is known for heavy weed flux. Yield loss due to uncontrolled weed growth in black gram ranges from 27 to 100% (Singh & Singh, 2010) [5]. Most sensitive period of weed competition is in between 3 to 6 weeks after sowing.

Materials and Methods

The experiment was conducted at Sri Durga Ji Post Graduate College, Chandeshwar, Azamgarh, (U.P.) during rainy and winter seasons of 2019-20 and 2020-21. The experiment was laid out in a RBD with 16 treatments i.e. Imazethapyr 50 g/ha PRE (T1), Imazethapyr 70 g/ha PRE (T2), Imazethapyr 80 g/ha PRE (T3), Imazethapyr 50 g/ha POE (T4), Imazethapyr 70 g/ha POE (T5), Imazethapyr 80 g/ha POE (T6), Imazethapyr. + Imazamox (RM) 50 g/ha PRE (T7), Imazethapyr. + Imazamox (RM) 70 g/ha PRE (T8), Imazethapyr. + Imazamox (RM) 80 g/ha POE (T10), Imazethapyr. + Imazamox (RM) 80 g/ha POE (T11), Imazethapyr. + Imazamox (RM) 80 g/ha POE (T12), Pendimethalin 1000 g/ha PRE (T13), Imazethapyr. + Pendimethalin (RM) 1000 g/ha PRE (T14), Hoeing twice (T15) each performed at 20 and 40 DAS and weedy check (T16) replicated thrice. Blackgram *var*. T9 and mustard *var*. Shivani was sown at 30 cm using 30 and 8 kg seed/ha, with RDF 20:40:20 and 80:40:20 k g/ha, respectively.

Corresponding Author: Rajnish Anand

Ph.D. Student, Department of Agronomy, S.D.J.P.G. College, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India

Results and Discussion Yield attributes

Yield attributes of black gram as influenced by weed control methods are presented in Table 1. Number of pods per plant and 1000 - seed weight, of blackgram was significantly influenced during 2019, 2020 and under pooled data are presented in Table 1. Among various levels and time of application of imazethapyr @ 80 g/ha pre emergence (T3) recorded higher compared to weedy check (T16) i.e. 10,10 and 10 during 2019, 2020 and under pooled data but it was similar to imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8), imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9), imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T10), pendimethalin 1000 g/ha pre emergence (T13), imazethapyr + pendimethalin (RM)1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2019, 2020 and under pooled data also similar with imazethapyr @ 70 g/ha pre emergence (T2) during 2020 respectively.

Among various herbicides, application of imazethapyr + imazamox (RM) @ 80 g/ha post emergence (T12) recorded higher compared to weedy check (T16) during 2019, 2020 and under pooled data. However it was similar with imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T11) during 2019, 2020 and under pooled data also similar with imazethapyr @ 80 g/ha post emergence (T3), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8), imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9) and pendimethalin 1000 g/ha pre emergence (T13) during 2020 and under pooled data also similar with imazethapyr @ 70 g/ha pre emergence (T2), imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @70 g/ha post emergence (T10), imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T11), imazethapyr + pendimethalin (RM) 1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2020.

Pendimethalin 1000 g/ha pre emergence (T13) was next effective herbicide recorded higher compared to weedy check during 2019, 2020 and under pooled data and it was similar to imazethapyr @ 70 g/ha pre emergence (T2), imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T10), imazethapyr + pendimethalin (RM)1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2019, 2020 and under pooled data also similar with imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8) and imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9) during 2019 and 2020 and similar with imazethapyr @ 50 g/ha pre emergence (T1), imazethapyr @ 50 g/ha post emergence (T4) and imazethapyr @ 70 g/ha post emergence (T5) during 2020 and under pooled data.

Number of seeds per pod of blackgram did not differ significantly by weed control methods during 2019, 2020 and under pooled data. However, imazethapyr + imazamox(RM) @ 80 g/ha post emergence (T12) recorded maximum number of seeds per pods followed by imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T11) during 2019, 2020 and under pooled data respectively.

Vield

Yield of blackgram as influenced by different weed control methods are presented in Table 2. Seed yield of black gram was significantly influenced by different weed control methods during 2019, 2020 and under pooled data. Among

various levels and time of application of imazethapyr @ 80 g/ha as pre emergence recorded higher grain and straw yield compared to weedy check (T16) during 2019, 2020 and under pooled data. However it was similar to imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8), imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9) and pendimethalin 1000 g/ha pre emergence (T13) during 2019, 2020 and under pooled data also similar with imazethapyr + imazamox (RM) @70 g/ha post emergence (T10), imazethapyr + pendimethalin (RM) 1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2019 and 2020 and similar with imazethapyr @ 50 g/ha pre emergence (T1), imazethapyr @ 70 g/ha pre emergence (T2), imazethapyr @ 50 g/ha post emergence (T4) and imazethapyr @ 70 g/ha post emergence (T5) during 2020. Application of imazethapyr + imazamox (RM) @ 80 g/ha post emergence (T12) recorded higher seed and straw yield compared to weedy check during 2019, 2020 and under pooled data, but it was on par with imazethapyr @ 80 g/ha pre emergence (T3), imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9), imazethapyr + imazamox (RM) @ 70 g/ha post emergence (T11) and pendimethalin 1000 g/ha pre emergence (T13) during 2014, 2015 and under pooled data also similar with imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8) during 2019 and 2020 also similar with imazethapyr @ 50 g/ha pre emergence (T1), imazethapyr @ 70 g/ha pre emergence (T2), imazethapyr @ 70 g/ha post emergence (T5), imazethapyr + imazamox (RM) @70 g/ha post emergence (T10), imazethapyr + pendimethalin(RM) 1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2020.

Pendimethalin 1000 g/ha pre emergence (T13) was similar to imazethapyr @ 80 g/ha post emergence (T6), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8), imazethapyr + imazamox (RM) @ 80 g/ha pre emergence (T9) during 2019, 2020 and under pooled data recorded higher seed and straw yield compared to weedy check during 2019, 2020 and under pooled data. Also similar with imazethapyr + pendimethalin (RM) 1000 g/ha pre emergence (T14) and hoeing twice (T15) during 2019 and 2020 and similar to imazethapyr @ 80 g/ha pre emergence (T3), imazethapyr + imazamox (RM) @ 70 g/ha pre emergence (T8) during 2019 while imazethapyr @ 50 g/ha pre emergence (T1), imazethapyr @ 70 g/ha pre emergence (T2), imazethapyr @ 70 g/ha post emergence (T5) during 2020. These results are confirmed with the finding of Nirala et al. (2012) [4], Chhodavadia et al., (2012) [2], Mundra and Maliwal (2012) [3] and Chavan *et al.*, (2016) [1].

Yield attributes and Yield of mustard as influenced by residual effect of weed control methods performed in black gram are presented in Table 3 and 4. Yield attributes, grain yield and straw yield of mustard did not differ significantly by residual effect of weed control methods performed in black gram. However imazethapyr + imazamox @ 80 g/ha post emergence (T12) recorded maximum Yield attributes, grain yield and straw yield during 2019-2020, 2020-2021 and under pooled data, respectively. Imazethapyr + Imazamox (RM) @ 80 g/ha post emergence (T12) followed by Imazethapyr + Imazamox (RM) @ 70 g/ha post emergence (T11) recorded maximum straw yield under pooled data as compare to all other treatments (Table 3 and 4).

Table 1: Yield attributes of blackgram as influenced by weed control method in black gram crop.

	2019				2020		Pool		
Treatment	No. of	No. of	1000 Seed	No. of	No. of	1000 Seed	No. of	No. of	1000 Seed
	pod/Plant	seed/Pod	wt.(g)	pod/Plant	seed/Pod	wt.(g)	pod/Plant	seed/Pod	wt.(g)
T1 (Imaze. 50 g/ha PRE)	12	7	31.51	15	7	33.01	13	7	32.26
T2 (Imaze. 70 g/ha PRE)	11	7	34.18	16	8	34.36	13	7	34.27
T3 (Imaze. 80 g/ha PRE)	14	6	35.92	17	6	36.64	16	6	36.28
T4 (Imaze. 50 g/ha POE)	12	6	31.13	15	6	31.86	13	6	31.50
T5 (Imaze. 70 g/ha POE)	13	6	31.69	15	7	33.39	14	6	32.54
T6 (Imaze. 80 g/ha POE)	15	7	35.70	16	7	35.78	16	7	35.74
T7 (Imaze. + Imazamox 50 g/ha PRE)	12	7	30.52	16	7	31.70	14	7	31.11
T8 (Imaze. + Imazamox 70 g/ha PRE)	14	6	35.70	18	7	36.04	16	7	35.87
T9 (Imaze. + Imazamox 80 g/ha PRE)	14	7	35.22	18	7	36.51	16	7	35.86
T10 (Imaze. + Imazamox 50 g/ha POE	16	7	34.94	17	7	35.19	16	7	35.06
T11 (Imaze. + Imazamox 70 g/ha POE)	19	7	36.10	18	7	38.23	18	7	37.16
T12 (Imaze. + Imazamox 80 g/ha POE)	20	8	37.89	19	8	38.44	19	8	38.16
T13 (Pendim.1000 g/ha PRE)	16	7	36.04	18	7	36.62	17	7	36.33
T14 (Imaze. + Pendi.1000 g/ha)	15	7	32.53	17	7	34.56	16	7	33.54
T15(Hoeing twice)	15	7	32.82	16	8	35.19	16	8	34.00
T16 (weedy check)	10	6	30.11	10	6	31.54	10	6	30.82
S.Em±	0.38	0.24	0.89	0.46	0.28	1.00	0.33	0.21	0.64
CD=(0.05)	1.15	0.71	2.67	1.36	0.85	2.99	0.98	0.62	1.91
CV%	4.74	6.16	4.57	4.85	7.08	4.97	3.76	5.28	3.23

Table 2: Yield (K g/ha) as influenced by weed management in black gram crop.

Treatment	20	019	20	020	Pool		
1 reatment	Seed Yield	Straw Yield	Seed Yield	Straw Yield	Seed Yield	Straw Yield	
T1 (Imaze. 50 g/ha PRE)	825	1856	869	1876	847	1866	
T2 (Imaze. 70 g/ha PRE)	898	1921	919	2109	908	2015	
T3 (Imaze. 80 g/ha PRE)	1057	2560	1076	2685	1066	2622	
T4 (Imaze. 50 g/ha POE)	825	1741	858	1847	841	1794	
T5 (Imaze. 70 g/ha POE)	892	1771	912	2082	902	1926	
T6 (Imaze. 80 g/ha POE)	1016	2196	1029	2239	1022	2217	
T7 (Imaze. + Imazamox 50 g/ha PRE)	825	1711	851	1838	838	1775	
T8 (Imaze. + Imazamox 70 g/ha PRE)	1016	2314	1029	2403	1022	2359	
T9 (Imaze. + Imazamox 80 g/ha PRE)	1051	2363	1071	2405	1061	2384	
T10 (Imaze. + Imazamox 50 g/ha POE	988	2161	1016	2209	1002	2185	
T11 (Imaze. + Imazamox 70 g/ha POE)	1068	2573	1092	2702	1080	2637	
T12 (Imaze. + Imazamox 80 g/ha POE)	1101	2858	1118	2919	1110	2889	
T13 (Pendim.1000 g/ha PRE)	1057	2482	1078	2562	1068	2522	
T14 (Imaze.+Pendi.1000 g/ha)	907	2007	926	2174	917	2091	
T15 (Hoeing twice)	921	2115	935	2205	928	2160	
T16 (weedy check)	550	1698	580	1838	565	1768	
S.Em±	46.70	139.30	74.07	128.83	53.85	104.49	
CD=(0.05)	139.34	415.61	221.00	384.37	160.66	311.75	
CV%	8.63	11.25	13.37	9.89	9.83	8.22	

Table 3: Yield Attributes as influenced by weed control method in mustard crop.

	2019		2020			Pool			
Treatments	No. of siliqua/Plant	No. of seed/ siliqua	1000 Seed wt.(g)	No. of siliqua /Plant	No. of seed/ siliqua	1000 Seed wt.(g)	No. of siliqua /Plant	No. of seed/ siliqua	1000 Seed wt.(g)
T1 (Imaze. 50 g/haPE)	253	8	3.54	265	8	3.84	259	8	3.69
T2 (Imaze. 70 g/haPE)	251	8	3.58	281	8	3.70	266	8	3.64
T3 (Imaze. 80 g/haPE)	256	7	3.70	273	7	3.59	265	7	3.65
T4 (Imaze. 50 g/ha POE)	245	7	3.56	271	7	3.58	258	7	3.57
T5 (Imaze. 70 g/ha POE)	246	7	3.58	260	7	3.68	253	7	3.63
T6 (Imaze. 80 g/ha POE)	276	7	3.63	296	8	3.74	286	8	3.69
T7 (Imaze.+ Imazamox 50 g/haPE)	262	7	3.54	292	7	3.52	277	7	3.53
T8 (Imaze.+ Imazamox 70 g/haPE)	273	7	3.64	295	7	3.80	284	7	3.72
T9 (Imaze.+ Imazamox 80 g/haPE)	254	7	3.70	273	7	3.80	264	7	3.75
T10 (Imaze.+ Imazamox 50 g/ha POE)	269	8	3.58	290	8	3.74	279	8	3.66
T11 (Imaze.+ Imazamox 70 g/ha POE)	278	7	3.78	299	8	3.85	289	7	3.82
T12 (Imaze.+ Imazamox 80 g/ha POE)	281	8	3.85	320	8	3.87	301	8	3.86
T13 (Pendim.1000 g/haPE)	279	7	3.70	301	8	3.83	290	7	3.77
T14 (Imaze.+ Pendim. 1000 g/ha)	244	8	3.58	295	8	3.70	270	8	3.64
T15(Hoeing twice)	256	8	3.58	272	8	3.74	264	8	3.66

T16(weedy check)	253	7	3.53	270	7	3.51	262	7	3.52
S.Em±	11.30	0.33	0.14	21.03	0.54	0.18	11.77	0.29	0.13
CD=(0.05)	NS	NS	NS	NS	NS	NS	NS	NS	NS
CV%	7.49	7.77	6.56	12.80	12.28	8.35	7.47	6.67	6.15

Table 4: Yield (K g/ha) as influenced by weed management in mustard crop.

Treatments	S	eed Yield		Straw Yield			
Treatments	2019-2020	2020-2021	Pool	2019-2020	2020-2021	Pool	
T1 (Imaze. 50 g/haPE)	1217	1267	1242	2370	2594	2482	
T2 (Imaze. 70 g/haPE)	1136	1216	1176	2199	2384	2292	
T3 (Imaze. 80 g/haPE)	1100	1154	1127	2205	2344	2275	
T4 (Imaze. 50 g/ha POE)	1097	1134	1115	2194	2339	2266	
T5 (Imaze. 70 g/ha POE)	1134	1135	1134	2201	2316	2259	
T6 (Imaze. 80 g/ha POE)	1164	1135	1150	2219	2334	2276	
T7 (Imaze.+ Imazamox 50 g/haPE)	1100	1130	1115	2191	2296	2244	
T8 (Imaze.+ Imazamox 70 g/haPE)	1169	1192	1180	2284	2368	2326	
T9 (Imaze.+ Imazamox 80 g/haPE)	1184	1207	1195	2225	2399	2312	
T10 (Imaze.+ Imazamox 50 g/ha POE)	1158	1159	1158	2209	2318	2264	
T11 (Imaze.+ Imazamox 70 g/ha POE)	1225	1270	1247	2492	2554	2523	
T12 (Imaze.+ Imazamox 80 g/ha POE)	1272	1357	1315	2678	2786	2732	
T13 (Pendim.1000 g/haPE)	1189	1253	1221	2233	2491	2362	
T14 (Imaze.+ Pendim. 1000 g/ha)	1097	1184	1140	2206	2365	2286	
T15 (Hoeing twice)	1156	1138	1147	2243	2340	2291	
T16 (weedy check)	1089	1127	1108	2192	2317	2255	
S.Em±	74.44	77.83	49.94	172.58	160.00	150.91	
CD=(0.05)	NS	NS	NS	NS	NS	NS	
CV%	11.16	11.32	7.37	13.16	11.50	11.17	

Conclusion

- Imazethapyr + imazamox (RM) @ 80 g/ha post emergence recorded maximum yield attributes, grain yield of blackgram crop.
- Herbicides applied in blackgram had no residual phytotoxicity in succeeding mustard crop nor in soil.

Recommendation

In the scarcity of laboures, the farmer may apply imazethapyr + imazamox (RM) @ 80 g/ha post emergence producing higher grain yield without phytotoxic effect on blackgram as well as succeeding mustard crop.

Reference

- Chavan AS, Vaishali SH, Raj VC. Influence of plant population and weed management practices on yield and economics of rabi pigeon pea (*Cajanus cajan* (L.) Millsp.). International Journal of Agriculture Science. 2016;8(16):1283-1286.
- Chhodavadia SK, Sagarka BK, Gohil BS, Dobariya VK. Herbicidal weed control in green gram. Agriculture: towards a new paradigm of sustainability; c2012. p. 207-211.
- 3. Mundra SL, Maiwalal PL. Influence of quizalofopethyl on narrow leaved weeds in blackgram and its residual effect on succeeding crops. Indian Journal of Weed Sciences. 2012;44(4):231-234.
- Nirala H, Dewagana DK. Effect of weed management on weeds, growth and yield of kharif black gram (*Vigna mungo* L.). Journal of Interacademicia. 2012;16(4):835-844.
- 5. Singh M, Singh RP. Influence of crop establishment methods and weed management practices on yield and economics of direct seeded rice (*Oryza sativa*). Indian Journal of Agronomy. 2010;55(3):224-229.