www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(12): 3978-3983 © 2022 TPI

www.thepharmajournal.com Received: 15-09-2022 Accepted: 19-10-2022

HN Prajapati

Assistant Professor, College of Horticulture, Anand Agricultural University, Anand, Gujarat, India

AH Barad

Assistant Professor, College of Horticulture, Anand Agricultural University, Anand, Gujarat, India

Corresponding Author: HN Prajapati Assistant Professor, College of Horticulture, Anand Agricultural University, Anand, Gujarat, India

Bio-efficacy of agrochemicals against bacterial canker (Xanthomonas citri pv. citri) in citrus

HN Prajapati and AH Barad

Abstract

Citrus is the most extensively produced tree fruit crop in the world. *Citrus* sp. are susceptible to a number of destructive diseases that are continuously emerging and which can severely limit production or totally decimate the industries of the country. Among these citrus canker is one of the most important biotic constraints in the country. The present study was undertaken to find the best and most economical agrochemical in managing this disease. The study of two year trial suggested that four aerial sprays of streptomycin sulphate 90% + tetracycline hydrochloride 10% and copper oxychloride 50 WP or Bordeaux mixture 1% (Tank mixed) started first at initiation of disease and subsequent three sprays at 20 days interval for effective and economical management of bacterial canker in citrus with quality fruit yield.

Keywords: Agrochemicals, bacterial canker, Xanthomonas citri pv. citri, citrus

Introduction

- Citrus is the second largest industry in India with respect to an area 10.64 lakh ha and third largest with respect to production 99.45 lakh MT. Among the different states, Kinnow mandarin is an important fruit crop of Punjab cultivated in an area of 49, 244 ha by producing 10, 15, 628 tons/annum fresh fruit.
- The average citrus production in India is quite low (7-8 tons/ha) as compared to other countries (20-25 tons/ha) due to the involvement of number of biotic and abiotic factors responsible for causing "citrus decline" syndrome. Among the various biotic factors, citrus canker disease has played a significant role in declining the citrus grove in India.
- It causes necrotic lesions on fruits, leaves and twigs. Lesions first appear dark green and later become thickened brown and corky. Severe attack causes heavy defoliation, twigs die-back and premature fruit drop.
- The causal agent of citrus canker was earlier identified as bacterium *Pseudomonas citri* by Hasse (1915)^[4] but later Dye *et al* (1980)^[5] proposed the name *Xanthomonas campestris* pv. *citri* which was again reclassified as *Xanthomonas axonopodis* pv. *citri* (Hasse) Vaut. by Vauterin *et al* (1995)^[6].

Material and Method Method of application

The existing citrus orchard was selected at Horticulture farm, AAU campus field for the experiment. The required plants having equal growth, age and canopy were selected by adopting completely randomized design with three replications. The recommended practices except disease control was followed during experiment. The first spray was made at initiation of disease as per recommended check. Subsequent three sprays were made after 20 days of first spray. The data on development of canker lesion on 50 randomly selected leaves and fruits were recorded after 20 days of second and fourth spray. The data of disease intensity on twigs was recorded by randomly selected 20 twigs per tree. The area of canker lesions were recorded from 45 cm size of each selected twigs. The Disease intensity was recorded by observing canker lesion on leaf, fruit and twigs by using 0-5 grade (Thind and Aulakh, 2007) ^[9]. Disease Rating on citrus canker was followed as 0- No disease, 1- 1-20% leaf/fruit/twig area covered with canker, 2-21-40% leaf/fruit/twig area covered with canker, 3- 41-60% leaf/fruit/twig area covered with canker, 4- 61-80% leaf/fruit/twig area covered with canker, 5-80-100% leaf/fruit/twig area covered with canker, 5-80-100% leaf/fruit/twig area covered with canker. Based on these data, yield of fruits per tree was calculated for each treatment.

The data were subjected to ANOVA. The percent disease intensity (PDI) was calculated by using the following formula:

Sum of numerical rating

Calculation of percent disease intensity (PDI) in leaves

Treat. No.	Treatment detail	Concentration
T1	Copper oxychloride 50 WP	0.2%
T ₂	Copper hydroxide 53.5 DF	0.2%
T3	Validamycin 3 L	100 ppm
T_4	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% SP (Streptocycline)	100 ppm
T 5	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% SP (Streptocycline) and Copper oxychloride 50 WP (Tank mixed)	100 ppm and 0.2%
T_6	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% SP (Streptocycline) and Copper hydroxide 53.5 DF (Tank mixed)	100 ppm and 0.2%
T ₇	Bordeaux mixture (Recommended Check)	1%
T8	Control (Untreated check)	

Treatment details:

Result and Discussion On leaves (Table.1)

The data on disease intensity on leaves revealed that all the treatments recorded significantly minimum area of lesion as compared to control. There were no significant differences in disease intensity in various treatments before application and the result was found non-significant.

The data of 20 days after second spray in first year revealed that minimum canker intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (9.70) which was at par with treatment T₇ i.e. Bordeaux mixture (1%) (11.10 PDI). The data on pooled over period recorded that minimum disease intensity was recorded in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (12.41%). The next best treatment in order of merit was treatment T7 i.e. Bordeaux mixture (1%). During 2018-19, the data of 20 days after second spray revealed that the minimum disease intensity was recorded in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (18.56). The data of pooled over period of disease intensity on leaf was found that the least disease intensity by

treatment T_5 . The next best treatment in order of merit was treatment T_7 i.e. Bordeaux mixture (1%) (24.32 PDI) which was at par with treatment T_6 .

The data on pooled over period, application and year suggested that the least disease intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (16.73%) which was at par with treatment T_7 i.e. Bordeaux mixture (1%) (18.75 PDI).

On fruits (Table-2)

The data on disease intensity on fruit revealed that all the treatments recorded significantly minimum canker as compared to control. There were no significant differences in disease intensity in various treatments before application and the result was found non-significant.

The data of 20 days after second spray revealed that minimum canker intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (10.44%) which was at par with treatment T_7 i.e. Bordeaux mixture (1%) (10.93 PDI). The data on pooled over period found that minimum disease intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (11.74%) which was at par with recommended check i.e. treatment T₇ (Bordeaux mixture). The result of second year on disease intenity on fruit revealed that the minimum disease intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (17.41%). The next best treatment in order to minimum disease intensity was treatment T_7 i.e. Bordeaux mixture (1%) (16.95 PDI) which was at par with treatment T_6 and T_4 . The data on pooled over period found that minimum disease intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (17.00%).

The data on pooled over period, application and year suggested that the least disease intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (16.73%) which was at par with treatment T_7 i.e. Bordeaux mixture (1%) (18.75 PDI).

On twigs (Table-3)

The data on disease intensity on twigs revealed that all the treatments recorded significantly minimum canker as compared to control. There were no significant differences in disease intensity in various treatments before application and the result was found non-significant.

The data of 20 days after second spray revealed that minimum canker intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (9.13%) The next best treatment in order of merit was treatment T_7 i.e. Bordeaux mixture (10.62) which was at par with treatment T_6 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper hydroxide 50 WP (11.34 PDI). The data on pooled over period found that minimum disease intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 50 WP (10.22%) which was at par with recommended check i.e. treatment T_7 Bordeaux mixture and treatment T_6 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (10.22%) which was at par with recommended check i.e. treatment T_7 Bordeaux mixture and treatment T_6 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper

hydroxide 50 WP.

The data of 20 days after second spray during 2018-19 revealed that minimum canker intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (8.15%) The next best treatment in order of merit was treatment T_7 i.e. Bordeaux mixture (10.62) which was at par with treatment T_6 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper hydroxide 50 WP (10.28 PDI) which was at par with treatment T₆. The data on pooled over period found that minimum disease intensity was found in treatment T₅ i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (9.90%) The next best treatment in order of merit was i.e. treatment T₇ Bordeaux mixture which was at par with treatment T_6 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper hydroxide 50 WP.

The data on pooled over period, application and year suggested that the least disease intensity was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (16.73%) which was at par with treatment T_7 i.e. Bordeaux mixture (1%) (10.06 PDI).

Fruit yield (Table-4)

The data of 2017-18 of fruit yield revealed that maximum citrus fruit yield was found in treatment T_5 i.e Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (47.53 Kg/tree) which was at par with treatment T_7 i.e. Bordeaux mixture (Recommended Check) with 42.81 kg/tree. The data of 2018-19 on citrus fruit yield revealed that maximum citrus fruit yield was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline

hydrochloride 10% and Copper oxychloride 50 WP (43.60 Kg/tree) which was at par with treatment T_7 i.e. Bordeaux mixture (Recommended Check) with 39.40 Kg/tree.The pooled data of 2017-18 and 2018-19 on citrus fruit yield revealed that maximum citrus fruit yield was found in treatment T_5 i.e. Streptomycin sulphate 90% + Tetracycline hydrochloride 10% and Copper oxychloride 50 WP (45.53 Kg/tree) which was at par with treatment T_7 i.e. Bordeaux mixture (Recommended Check) with 41.20 Kg/tree.

Ravikumar et al (2002) [7] reported that pruning of infected parts along with one spray of Copper oxychloride followed by four sprays of Streptocyclinee (100 ppm) + Copper oxychloride (0.3%) was found promising in reducing the bacterial canker of acid lime. Gopal et al (2004) suggested that pruning of dried and cankerous twigs with immediate spray of Copper oxychloride (0.3%) followed by two sprays of Streptocyclinee (100 ppm) + Copper oxychloride (0.3%) at monthly interval starting from June effectively reduced the acid lime canker on twig, foliage and fruit with high yield of cankerless, good marketable fruits, which benefited the farmer with cost benefit ratio of 1:1.59 Sprays of Bactrinashak and Streptocyclinee have also been proved most effective in reducing the intensity of citrus canker in Kinnow mandarin (Thind and Aulakh 2007)^[9]. Kale et al. (1994)^[1] suggested that for effective management of canker, spraying of streptocycline + Copper oxychloride (0.1%) should preferably be done at 7 days or 15 days interval. Patel and Desai (1970)^[2] reported that pruning of affected twigs every year during Nov-Dec and 3 to 4 sprays of Bordeaux mixture (1%) in a year could reduce the disease. Two prunings alongwith 4 sprays of 5000 ppm copper oxychloride or 1% Bordeaux mixture is reported to be effective against the disease (Kishun and Chand, 1987)^[3]

Treatment		2017-2	2018			2018-2	Pooled over period,		
Treatment	Before Spray	20 DASS	20 DAFS	Pooled	Before Spray	20 DASS	20 DAFS	Pooled	application and Years
T_1	32.63a (29.07)	28.52b (22.80)	25.40bc (18.40)	26.96b (20.55)	36.28a (35.01)	34.93b (32.78)	29.29bcd (23.93)	32.11b (28.25)	29.53bc (24.29)
T ₂	33.19a (29.97)	28.96b (23.44)	26.47b (19.87)	27.72b (21.64)	36.87a (36.00)	33.31bcd (30.16)	30.14bc (25.21)	31.72b (27.64)	29.72bc (24.58)
T3	32.43a (28.76)	29.44b (24.16)	27.60b (21.46)	28.52b (22.80)	36.12a (34.75)	34.00bc (31.27)	30.54b (25.82)	32.27b (28.51)	30.39b (25.59)
T_4	32.84a (29.41)	28.51b (22.78)	23.64cd (16.08)	26.08bc (19.33)	36.51a (35.40)	32.62cde (29.06)	26.14e (19.41)	29.38c (24.07)	27.73bcd (21.65)
T 5	33.54a (30.53)	23.12c (15.42)	18.15e (9.70)	20.63e (12.41)	37.19a (36.54)	29.78f (24.67)	25.52e (18.56)	27.65d (21.54)	24.14e (16.73)
T ₆	33.38a (30.27)	25.25c (18.20)	22.57d (14.73)	23.91cd (16.43)	37.03a (36.24)	31.37def (27.10)	28.72cd (23.09)	30.05c (25.08)	26.97cd (20.57)
T ₇	32.95a (29.58)	24.06c (16.62)	19.46e (11.10)	21.76de (13.74)	36.62a (35.58)	31.09ef (26.67)	28.09d (22.17)	29.55c (24.32)	25.66de (18.75)
T_8	33.50a (30.46)	35.83a (34.27)	39.28a (40.08)	37.55a (37.14)	37.41a (36.91)	39.29a (40.10)	42.05a (44.86)	40.89a (42.85)	39.22a (39.98)
S. Em.± T	0.79	0.78	0.83	0.80	0.74	0.61	0.51	0.40	0.87
Period P				0.28				0.20	0.17
Spray S									0.17
T x P				1.37				0.56	0.49
T x S									0.49
P x S									0.26
C.D. at 5% T	NS	2.33	2.49	2.32	NS	1.85	1.53	1.15	2.91
Period P								0.57	0.49
Spray S									0.49
T x P				4.56				1.63	0.00

Table 1: Evaluation of different agrochemicals against citrus canker on leaves

The Pharma Innovation Journal

https://www.thepharmajournal.com

T x S									0.00		
P x S									NS		
TxPxS									NS		
C. V.%	4.11	4.81	5.69	5.23	3.52	3.22	2.94	3.10	4.13		
	:DASS: Days After Second Spray; DAFS: Days After Fourth Spray NS: Non significant										
Notes		:Figures in parentheses are retransformed values; those outside arc sine transformed values									
	Treatment means with the letter(s) in common are not significant by DNMRT at 5% level of significance										

Table 2: Evaluation of different agrochemicals against citrus canker on fruits

Treatment		2017-	-2018			2018-2	2019	Pooled over period, application	
Treatment	Before	20	20	Pooled	Before	20	20	Declad	and Years
	Spray	DASS	DAFS	Poolea	Spray	DASS	DAFS	Pooled	
T_1	29.79a	27.49bc	26.09bc	26.79b	32.17a	29.55bc	26.12bc	27.83bcd	27.31b
1	(24.68)	(21.31)	(19.34)	(20.32)	(28.35)	(24.32)	(19.38)	(21.79)	(21.05)
T ₂	29.87a	28.31b	26.10bc	27.21b	31.82a	30.33b	26.10bc	28.21bc	27.71b
12	(24.80)	(22.49)	(19.35)	(20.91)	(27.80)	(25.50)	(19.35)	(22.34)	(21.62)
T_3	29.59a	28.75b	27.87b	28.31b	31.54a	28.76bc	27.86b	28.31b	28.31b
13	(24.38)	(23.14)	(21.85)	(22.49)	(27.36)	(23.15)	(21.84)	(22.49)	(22.49)
T_4	28.38a	28.84b	25.09c	26.97b	30.39a	28.80bc	25.10cd	26.94cde	26.95b
14	(22.59)	(23.27)	(17.98)	(20.57)	(25.59)	(23.21)	(17.99)	(20.53)	(20.54)
T 5	29.46a	21.23e	18.85e	20.04d	31.43a	26.39d	22.31e	24.35f	22.19d
15	(24.19)	(13.11)	(10.44)	(11.74)	(27.19)	(19.76)	(14.41)	(17.00)	(14.26)
T_6	30.09a	24.82cd	22.20d	23.51c	32.03a	28.65bc	24.66cd	26.66de	25.08c
16	(25.14)	(17.62)	(14.28)	(15.91)	(28.13)	(22.99)	(17.41)	(20.13)	(18.02)
T 7	28.73a	22.35de	19.31e	20.83d	30.72a	27.59cd	24.31d	25.95e	23.39cd
17	(23.11)	(14.46)	(10.93)	(12.64)	(26.10)	(21.45)	(16.95)	(19.15)	(15.76)
T_8	29.35a	32.15a	36.19a	34.17a	31.31a	33.41a	35.05a	34.23a	34.19a
18	(24.02)	(28.32)	(34.86)	(31.55)	(27.01)	(30.32)	(32.98)	(31.64)	(31.58)
S. Em. ± T	0.61	0.85	0.70	0.78	0.56	0.66	0.53	0.41	1.03
Period P				0.28				0.20	0.17
Spray S									0.42
ТхР				1.21				0.59	0.48
T x S									0.48
P x S									0.24
C.D. at 5% T	NS	2.54	2.10	2.24	NS	1.94	1.58	1.20	3.46
Р								0.60	0.48
S									0.48
ТхР				4.050				1.70	0.00
T x S									0.00
P x S									0.69
TxPxS									NS
C. V.%	3.62	5.49	4.82	5.19	3.12	3.83	3.56	3.67	4.46
Notes		:F	igures in p	arentheses	are retransform	ned values;	those outsi	ide arc sine t	: Non significant ransformed values t 5% level of significance

Table 3: Evaluation of differ	rent agrochemicals	against citrus ca	nker on twigs

Treatment		2017-20	18			2018-20	Pooled over period,		
Treatment	Before Spray	20 DASS	20 DAFS	Pooled	Before Spray	20 DASS	20 DAFS	Pooled	application and years
T_1	23.89a (16.40)	22.28bc (14.37)	22.36bc (14.47)	22.32bc (14.42)	25.40a (18.40)	23.86c (16.36)	21.55c (13.49)	22.70c (18.49)	22.51c (14.66)
T ₂	24.12a (16.70)	23.82b (16.31)	23.00b (15.27)	23.41b (15.79)	25.62a (18.70)	24.61bc (17.34)	22.99b (15.25)	23.80b (16.28)	23.60b (16.03)
T3	23.01a (15.28)	24.23b (16.84)	23.25b (15.58)	23.74b (16.21)	24.57a (17.29)	25.83b (18.98)	23.24b (15.57)	24.53b (17.24)	24.13b (16.71)
T_4	23.65a (16.09)	21.69c (13.66)	20.74cd (12.54)	21.22cd (13.10)	25.43a (18.44)	21.70d (13.67)	20.45cd (12.21)	21.07d (12.92)	21.14d (13.01)
T5	23.15a (15.46)	19.69d (11.35)	17.59e (9.13)	18.64e (10.22)	24.69a (17.45)	19.69e (11.35)	16.99f (8.54)	18.34f (9.90)	18.49f (10.06)
T ₆	24.00a (16.54)	21.12cd (12.98)	19.68d (11.34)	20.40de (12.15)	25.51a (18.55)	21.11de (12.97)	19.42de (11.05)	20.26de (11.99)	20.33e (12.07)
T ₇	23.46a (15.85)	20.61cd (12.39)	19.02de (10.62)	19.82de (11.50)	25.00a (17.86)	20.61de (12.39)	18.70e (10.28)	19.65e (11.31)	19.73e (11.40)
T8	24.01a (16.56)	30.15a	32.01a	31.08a	25.53a	28.35a	30.28a	29.32a	30.19a

The Pharma Innovation Journal

https://www.thepharmajournal.com

		(25.23)	(28.10)	(26.65)	(18.57)	(22.55)	(25.24)	(23.98)	(25.29)
S. Em.± T	0.69	0.61	0.56	0.59	0.52	0.46	0.43	0.32	0.26
Period P				0.21				0.16	0.13
Spray S									0.13
ТхР				0.62				0.45	0.37
T x S									0.37
P x S									0.18
C.D. at 5% T	NS	1.84	1.69	2.06	NS	1.40	1.30	0.92	0.74
Р								0.46	NS
S									0.37
ТхР				NS				1.30	0.00
T x S									NS
P x S									NS
TxPxS									NS
C. V.%	5.06	4.64	4.40	4.52	3.63	3.49	3.46	3.48	4.03
Notes	: DASS: Days After Second Spray; DAFS: Days After Fourth Spray NS: Non significant Figures in parentheses are retransformed values; those outside arc sine transformed values Treatment means with the letter(s) in common are not significant by DNMRT at 5% level of significance								

Table 4: Evaluation of different agrochemicals on yield of citrus

		Citrus yield					
Treatment	Treatment detail	Kg/tree					
Т.		2017-2018	2018-2019	Pooled			
T_1	Copper oxychloride 50 WP	37.10bcd	34.20cd	35.65de			
T2	Copper hydroxide 53.5 DF	35.26cd	32.93cd	34.10ef			
T3	Validamycin 3% L	32.90d	33.53cd	33.22ef			
T4	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% (Streptocycline)	39.22bc	35.90bc	37.57cd			
T5	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% (Streptocycline) and Copper oxychloride 50 WP (Tank mixed)	47.53a	43.60a	45.57a			
T ₆	Streptomycin sulphate 90% + Tetracycline hydrochloride 10% (Streptocycline) and Copper hydroxide 53.5 DF (Tank mixed)	41.80ab	36.67bc	39.23bc			
T7	Bordeaux mixture (Recommended Check)	42.81ab	39.40b	41.20b			
T8	Control	32.17d	30.80d	31.49f			
	S. Em.± T	1.74	1.20	1.08			
	Period P			0.53			
	T x P			1.50			
	C.D. at 5% T	5.21	3.62	3.11			
P							
	ТхР			NS			
	C. V.%	7.89	5.82	6.95			

Treatment T₅

Untreated Control

Reference

- 1. Kale KB, Kolte SO, Peshney NL. Economics of chemical control of citrus canker caused by Xanthomonas campestris pv citri under field conditions. Indian Phytopath. 1994;47:253-255.
- Patel RS, Desai MV. Control of citrus canker. Indian J. Hort. 1970;27:93-98
- Kishun R, Chand JN. Studies on germplasm resistance and chemical control of citrus canker. Indian J Hort. 1987;44:126-132.
- 4. Hasse CH. *Pseudomonas citri* the cause of citrus canker. J Agric Res. 1915;4:97-100.
- 5. Dye DW, Bradbury JF, Goto M, Hayword AC, Lelliot RA, Scorth MN. International standards for naming pathovars for phytopathogenic bacteria and a list of pathovar names and pathotype strains. *Rev Plant Pathol* 1980;53:2724-30.
- Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of *Xanthomonas*. Int J Systeamatic Bacteriol. 1995;45:472-89.
- Ravikumar MR, Jahagirdar S, Khan ANA. Management of bacterial leaf spot of grape through chemicals and antibiotics in Northern Karnataka. Paper presented. In: *Ann Meet Symp Plant Disease Scenario in Southern India*, Bangalore (India). 2002 December 19-21;50.
- Gopal K, Reddy MRS, Babu PG. Management of bacterial canker in acid lime (*Citrus aurantifolia* Swingle) in Andhra Pradesh. Indian J Pl Prot 2004;32:111-13.
- Thind SK, Aulakh PS. Efficacy of agrochemicals for the control of citrus canker in kinnow mandarin. J Res Punjab Agric Univ. 2007;44:312-313.