The Pharma Innovation

ISSN (E): 2277-7695
ISSN (P): 2349-8242
NAAS Rating: $\mathbf{5 . 2 3}$
TPI 2022; 11(12): 516-522
© 2022 TPI
www.thepharmajournal.com
Received: 08-10-2022
Accepted: 12-11-2022
Varshitha K
Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agriculture University, Rajendranagar, Hyderabad, Telangana, India

Usharani G

Scientist, Department of Plant Breeding, Agricultural Research Station, Professor Jayashankar Telangana State Agriculture University, Karimnagar, Telangana, India

Sravani D
Scientist, Department of Plant Breeding, Agricultural Research Station, Professor Jayashankar Telangana State Agriculture University, Karimnagar, Telangana, India

Prasanna KL
Scientist, Department of Seed Technology, MFPI, Quality Control Laboratory, Jayashankar Telangana State Agriculture University, Rajendranagar, Hyderabad, Telangana, India

Corresponding Author:

Varshitha K
Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agriculture University, Rajendranagar, Hyderabad, Telangana, India

Studies on heterosis in newly developed inbred lines of maize for yield and quantitative traits (Zea mays L.)

Varshitha K, Usharani G, Sravani D and Prasanna KL

Abstract

The present investigation entitled "Studies on heterosis in newly developed inbred lines of maize for yield and quantitative traits (Zea mays L.)" was conducted at Agricultural Research Station, Karimnagar to study heterosis in grain yield and yield contributing characters. The experimental material comprised of crossing of 10 parental lines in half diallele mating design and 45 single cross hybrids were generated in Kharif, 2021. The hybrids along with parents and six standard checks were evaluated in Randomized Block Design with two replications in Rabi 2021-22 for twelve agro-morphological traits. Standard heterotic effects over NK 6240 were obtained in 4 crosses for grain yield and crosses, KML $107 \times$ KML 128 and KML $107 \times$ KML 126 had exhibited highest heterotic effects, whereas for Cob Girth, two crosses (KML $110 \times$ KML 126 and KML $107 \times$ KML 126) were found to be highly heterotic. Finally, based on per se performance and standard heterosis KML $107 \times$ KML 128 was a promising hybrid.

Keywords: Maize, heterosis, half diallele, yield, hybrid

Introduction

Maize (Zea mays L., $2 \mathrm{n}=20$) is a notable cereal crop of the world, belonging to the tribe Maydeae, of the grass family, Poaceae. It is believed to be a domesticated variant of teosinte (Zea mays ssp. parviglumis). Maize possesses the highest yield potential among the cereals, so prominently known as queen of cereals. Maize emerged as the third most important crop after rice and wheat in India. Due to its wider adaptability, it can be cultivated in wider range of environmental conditions and is grown in more than 166 countries across the globe. Maize is an epitome of distinctive traits like allogamy, protandry, immense genetic variability and geographic diversity, which provide great opportunities for crop improvement. The present investigation was thus, conceptualized primarily to estimate the heterosis in single cross maize hybrids and identification of best cross combinations for yield and its contributing traits.

Materials and Methods

The experiment was carried out at Agriculture Research Station, Karimnagar. Agricultural Research Station, Karimnagar is located in Northern Telangana agro climatic zone of Telangana state. Geographically, it lies at $18.44^{\circ} \mathrm{N}$ latitude, $79.13^{\circ} \mathrm{E}$ longitude with an altitude of 275 meters above Mean Sea Level (MSL). The average rainfall of the Research Station is 907 mm . The soils are sandy loam type with pH of 7.3. Source of irrigation water is from Sri Ram Sagar Project (SRSP) and well. The experimental material used were 10 inbred lines developed by full-sibbing followed by two generations of selfing at ARS, Karimnagar. Heterosis was calculated using the genotype mean value for each character. Various methods were used to evaluate the amount of heterosis in relation to mid parental (MP), better parental (BP), and standard check (SC) values given by Turner (1953) ${ }^{[24]}$. Thus heterosis was calculated as the percentage increase or decrease of mean F1 performance as indicated below.

1. Heterosis over mid parent

Heterosis was expressed as percent increase or decrease observed in the F_{1} over the mid-parent as per the following formula.

Heterosis (\%) (h_{1}) $=\frac{\overline{\mathrm{F}}_{1}-\overline{\mathrm{BP}}}{\overline{\mathrm{BP}}} \times 100$

Where,
$\overline{\mathrm{F}_{1}}=$ Mean of F_{1}
$\overline{\mathrm{MP}}=$ Mean of parents

2. Heterosis over better parent

Heterobeltiosis was expressed as percent increase or decrease observed in F_{1} over the better parent as per the formula of Liang et al. (1971) ${ }^{[9]}$.

Heterobeltiosis (\%) (h_{2}) $=\frac{\bar{F}_{1}-\overline{B P}}{\overline{B P}} x 100$
Where,
$\overline{\mathrm{BP}}=$ Mean of better parent (for the characters like days to 50% flowering, earliness is desirable so the early parents are taken as better parents).

3. Heterosis over standard checks

Standard heterosis was expressed as percent increase or decrease observed in F_{1} over standard checks.

Standard heterosis (\%) ($\left.\mathrm{h}_{3}\right)=\frac{\overline{\mathrm{F}}_{1}-\text { Mean of check }}{\text { Mean of check }} \times 100$

4. Test of significance of heterosis

To test the significance for different types of heterosis needs computation of standard error (S.Em). For relative heterosis and heterobeltiosis, SEm were calculated based on error mean squares (EMS) from the ANOVA tables consisting parents and crosses, whereas, EMS from the RBD ANOVA (σ^{2} e) table based on all treatments (parents, crosses and check) was used for standard heterosis.
The significance of heterosis viz., relative heterosis, heterobeltiosis and standard heterosis was then tested by comparing the calculated ' t '- value with the tabulated student's ' t '-value for appropriate error degrees of freedom at 5 percent and 1 percent level of significance (0.05 and 0.01 level of probability), respectively. ' t ' cal for

Heterosis and heterobeltiosis $=\frac{\mathrm{F}_{\mathrm{i}}-\text { Mean of mid parentsor better parent }}{\text { SEM }}$
Where
$\mathrm{S} . \mathrm{Em}=\sqrt{2 \mathrm{EMS} / \mathrm{r}}$

EMS = Error mean of squares
$r=$ Number of replications
t^{\prime} cal for Standard heterosis $=\frac{\overline{\mathrm{F}}_{1}-\text { Mean of check }}{\text { SEM } \overline{\mathrm{SC}}}$

Where,
S.Em $\overline{\mathrm{SC}}=\sqrt{2 \sigma \mathrm{e}^{2} / \mathrm{r}}$

5. Least significance difference (Critical difference) for heterosis

The significance of the difference between two estimates of heterosis were tested by computing the least significant difference (LSD) by multiplying the SEm with the appropriate
students ' t ' value of respective error degrees of freedom at desired level of probability.
$C D=S E m x{ }^{\prime} t$ ' table value at error degrees of freedom.

Results and Discussion

Results obtained for studies pertaining to heterosis with respect to midparent heterosis (MPH), better parent heterosis (BPH) and standard heterosis (SH). Heterobeltiosis and standard heterosis of crosses were estimated over superior parent and widely adapted standard check NK-6240, respectively in 45 hybrids for 12 morpho-physiological characters. The character wise performance of hybrids are presented in Table 1.

1. Days to 50 percent tasseling

Out of 45 crosses, 45 and 20 crosses had negative and significant heterobeltiosis and standard heterosis, respectively. Heterobeltiosis varied from 4.27 (KML $110 \times$ KML 132) to 37.86 percent (KML $132 \times$ KML 135), while standard heterosis was from -6.87 (KML $110 \times$ KML 132) to 8.40 percent (KML $132 \times$ KML 135).Similar results were reported by Pole et al. (2018) ${ }^{[12]}$, Abdulazeez et al. (2021) ${ }^{[1]}$ indicating the possibility of deriving early hybrids.

2. Days to $\mathbf{5 0}$ percent silking

Among 45 crosses, 45 and 19 crosses had negative and significant heterobeltiosis and standard heterosis, respectively. Heterobeltiosis ranged between 4.07 (KML 110 \times KML 132) to 36.11 percent (KML $132 \times$ KML 136) and the standard heterosis was in the range of -7.25 (KML $110 \times$ KML 132) to 7.25 percent (KML $132 \times$ KML 135).The results were in agreement with that of Abdulazeez et al. (2021) ${ }^{[1]}$.

3. Days to maturity

Among 45 crosses, 44 and 11 crosses had negative and significant heterobeltiosis and standard heterosis, respectively. Range of heterobeltiosis was from 1.85 (KML $110 \times$ KML 132) to $19.60($ KML $132 \times$ KML 136) percent while, standard heterosis ranged from -3.51 (KML $110 \times$ KML 132) to 4.39 percent (KML $107 \times$ KML 135, KML 132 \times KML 135 and KML $132 \times$ KML 136). Negative and significant heterobeltiosis and heterosis for earliness were reported by Rajitha et al. (2014) ${ }^{[14]}$, whereas standard heterosis of similar nature was reported by Adu et al. (2013) ${ }^{[2]}$.

4. Plant height (cm)

Among the crosses obtained, 45 out of 45 crosses had positive and significant heterobeltiosis effects for plant height. Whereas, 20 crosses had positive and significant standard heterotic effect. Heterobeltiosis varied from 21.59 (KML 132 \times KML 120) to 126.53 percent (KML $126 \times$ KML 140). Whereas, standard heterosis was -18.22 (KML $132 \times$ KML 140) to 21.73 percent (KML $107 \times$ KML 135).For this trait, positive and significant heterobeltiosis and heterosis for plant height were reported by Rajitha et al. (2014) ${ }^{[14]}$, whereas positive and significant standard heterosis was reported by Motamedi et al. (2014) ${ }^{[11]}$, Rajesh et al. (2014) ${ }^{[13]}$ Ruswandi et al. (2015) ${ }^{[17]}$, Shah et al. (2016) ${ }^{[18]}$ and Kumar et al. (2018) ${ }^{[8]}$.
5. Ear height (cm): Among the crosses obtained, 45 out of 45 crosses had positive and significant heterobeltiosis effects for plant height. Whereas, 19 crosses had positive and significant standard heterotic effect. Heterobeltiosis was in the range of 28.13 (KML $111 \times$ KML 132) to 170.59 percent (KML $126 \times$ KML 136) and standard heterosis was -19.30 (KML $132 \times$ KML 140) to 25.00 percent (KML $107 \times$ KML 126). Similar findings were reported by Shushay. (2014) ${ }^{[19]}$, Pole et al. (2018) ${ }^{[12]}$, Kumar et al. (2018) ${ }^{[10]}$ and Abdulazeez et al. (2021) ${ }^{[1]}$.

6. Ear length (cm)

Among the crosses obtained, 25 out of 45 crosses had positive and significant heterobeltiosis effects for plant height. Whereas, only 4 crosses had positive and significant standard heterotic effect. Heterobeltiosis was in the range of -15.37 (KML $111 \times$ KML 126) to 31.80 percent (KML $111 \times$ KML 128) and standard heterosis was -16.62 (KML $132 \times$ KML 140) to 13.77 percent (KML $126 \times$ KML 128).These findings exhibited parallelism with earlier results of Rajesh et al. (2014) ${ }^{[13]}$, Rajitha et al. (2014) ${ }^{[14]}$, Kumar et al. (2018) ${ }^{[10]}$ and Abdulazeez et al. (2021) ${ }^{[1]}$ for ear length.

7. Ear diameter (cm)

Heterobeltiosis for ear diameter was found significant in 20 out of 45 crosses and standard heterosis was found to be in 30 out of 45 crosses. Heterobeltiosis was in the range of -5.57 (KML $126 \times$ KML 132) to 28.21 percent (KML $111 \times$ KML 132) and standard heterosis was -20.80 (KML $132 \times$ KML 136) to 3.01 percent (KML $110 \times$ KML 126).Similar results of average, better parent and economic heterosis were obtained by Chakraborty et al. (2012) ${ }^{[4]}$ and Kumar et al. (2016) ${ }^{[9]}$ for ear diameter.

8. Number of kernel rows per ear

13 and 6crosses were found significant for heterobeltiosis and standard heterosis respectively. Heterobeltiosis was in the range of -15.15 (KML $111 \times$ KML 126) to 42.22 percent (KML $128 \times$ KML 120) and standard heterosis was -11.11 (KML $111 \times$ KML 126) to 31.75 percent (KML $126 \times$ KML
128). Aminu et al. (2014) ${ }^{[3]}$ also reported similar findings.
9. Number of kernels per row: Heterobeltiosis for number of kernels per row was found significant in 15 out of 45 crosses and standard heterosis was found to be in 13 out of 45 crosses. Heterobeltiosis was in the range of -27.78 (KML 128 \times KML 135) to 29.17 percent (KML $135 \times$ KML 120) and standard heterosis was -21.21 (KML $128 \times$ KML 135) to 15.15 percent (KML $126 \times$ KML 132). Kumar et al. (2014) ${ }^{[13]}$, Ruswandi et al. (2015) ${ }^{[17]}$ and Chandana et al. (2018) mentioned similar findings for number of kernels per row.
10. Test weight (g): 37 and 25 crosses were found significant for heterobeltiosis and standard heterosis respectively. Heterobeltiosis was in the range of 0.3 (KML $132 \times \mathrm{KML}$ 140) to 59.54 percent (KML $136 \times$ KML 140) and standard heterosis was -40.14 (KML $132 \times$ KML 140) to 6.5 cent (KML $110 \times$ KML 126).Similar findings were reported by Rajesh et al. (2014) ${ }^{[13]}$ for test weight.

11. Grain Yield

Among the crosses obtained, 30 out of 45 crosses had positive and significant heterobeltiosis effects for plant height. Whereas, 23 crosses had positive and significant standard heterotic effect. Heterobeltiosis was in the range of -7.8 (KML $126 \times$ KML 132) to 141.89 percent (KML $111 \times$ KML 135) and standard heterosis was -58.30 (KML $132 \times$ KML 140) to 23.24 percent (KML $107 \times$ KML 128). Rajesh et al. (2014) ${ }^{[13]}$, Kumar et al. (2016) ${ }^{[9]}$, mentioned similar results for grain yield.
12. Shelling percentage: Heterobeltiosis for shelling percentage was found significant in 23 out of 45 crosses and standard heterosis was found to be in 28 out of 45 crosses. Heterobeltiosis was in the range of -11.61 (KML $111 \times$ KML 110) to 3.87 percent (KML $132 \times$ KML 140) and standard heterosis was -4.41 (KML $111 \times$ KML 110) to 14.66 percent (KML $107 \times$ KML 128).The above findings on shelling percentage were supported by earlier reports of Rajesh et al. (2014) ${ }^{[13]}$, Kumar et al. (2016) ${ }^{[9]}$.

Table 1: Estimates of heterosis over mid parent, better parent and standard check i.e., NK-6240 for yield and yield attributing traits in the maize hybrids.

Crosses	DT			DS			DM			PH		
	Mid	Better	Check									
KML $111 \times$ KML 110	21.62**	15.38**	3.05	20.51**	14.63**	2.17	10.79**	6.94**	1.32	59.86**	42.15**	7.94*
KML $111 \times$ KML 107	27.18**	24.76**	0.00	26.27**	23.42**	-0.72	14.79**	13.93**	0.44	72.89**	45.23**	10.28**
KML $111 \times$ KML 126	31.13**	29.91**	6.11**	28.89**	27.19**	5.07**	16.05**	15.20**	3.07*	72.36**	38.15**	4.91
KML $111 \times$ KML 128	32.38**	32.38**	6.11**	30.63**	30.63**	5.07**	16.92**	16.92**	3.07*	48.81**	35.08**	2.57
KML $111 \times$ KML 132	21.57**	18.10**	-5.34**	21.30**	18.02**	-5.07**	12.56**	11.44**	-1.75	48.07**	29.85**	-1.40
KML $111 \times$ KML 135	33.65**	32.38**	6.11**	30.91**	29.73**	4.35**	16.71**	16.42**	2.63	62.37**	47.38**	1.92**
KML $111 \times$ KML 136	28.85**	27.62**	2.29	27.85**	26.13**	1.45	15.00**	14.43**	0.88	76.36**	49.23**	13.32**
KML $111 \times$ KML 120	30.19**	28.97**	5.34**	28.57**	27.43**	4.35**	14.99**	13.59*	2.63	38.75**	36.62**	3.74
KML $111 \times$ KML 140	36.08**	25.71**	0.76	33.98**	24.32**	0.00	19.17**	14.43**	0.88	88.33**	39.08**	5.61
KML $110 \times$ KML 107	21.10**	12.82*	76	20.52**	12.20**	0.00	10.14**	5.56**	0.00	93.67*	81.42**	7.24*
KML $110 \times$ KML 126	19.64**	14.53**	2.29	18.14**	13.82**	1.45	9.52**	6.48**	0.88	91.98**	70.36**	0.70
KML $110 \times$ KML 128	21.62**	15.38**	. 05	20.51**	14.63**	2.17	10.79**	6.94**	1.32	69.50**	65.66**	2.57
KML $110 \times$ KML 132	12.96**	4.27*	-6.87**	12.28**	4.07*	-7.25**	6.54**	1.85	-3.51*	67.87**	65.22**	-2.34
KML $110 \times$ KML 135	20.91**	13.68**	1.53	19.83**	13.01**	0.72	12.02**	7.87**	2.19	84.17**	0.00**	11.45**
KML $110 \times$ KML 136	22.73**	15.38**	3.05	22.08**	14.63**	2.17	11.33**	6.94**	1.32	94.56**	83.79**	8.64*
KML $110 \times$ KML 120	18.75**	13.68**	1.53	17.80**	13.01**	0.72	8.53**	6.02**	0.44	59.51**	43.81**	5.84
KML $110 \times$ KML 140	29.13**	13.68**	1.53	27.52**	13.01**	0.72	15.71**	7.41**	1.75	101.47**	62.45**	-3.97
KML $107 \times$ KML 126	29.81**	26.17**	3.05	28.18**	23.68**	2.17	15.42**	13.73**	1.75	127.34**	114.48**	10.75**
KML $107 \times$ KML 128	28.16**	25.71**	0.76	27.19**	24.32**	0.00	16.29**	15.42**	1.75	76.54**	61.89**	0.23

KML $107 \times$ KML 132	34.00**	32.67**	2.29	32.70**	32.08**	1.45	16.46**	16.16**	0.88	81.97**	73.06**	-0.93
KML 107 x KML 135	38.24**	36.89**	7.63**	36.74**	34.86**	6.52**	19.60**	19.00**	4.39**	114.40**	96.60**	21.73**
KML 107 x KML 136	34.31**	33.01**	4.58**	33.64**	32.41**	3.62*	17.88**	17.59**	2.63	109.42**	107.56**	9.11**

Crosses	DT			DS			DM			PH		
	Mid	Better	Check									
KML 107 x KML 120	31.73**	28.04**	4.58**	30.59**	26.55**	3.62*	16.34**	14.08**	3.07*	81.34**	54.29**	13.55**
KML 107 x KML 140	35.79**	27.72**	-1.53	35.32**	28.30**	-1.45	18.02**	14.14**	-0.88	139.36**	103.62**	5.14
KML $126 \times$ KML 128	24	23.36	0.76	23.56	21.	0.72	13.09**	12.25	0.44	104.34**	77.74**	10.
KML 126 x KML 132	30.10**	25.23**	2.29	29.68**	24.56**	2.90	15.71**	13.73**	1.75	87.76**	68.98**	-3.27
KML 126 x KML 135	31.43**	28.97	5.34**	29.15**	26.32**	4.35**	15.84**	14.71**	2.63	107.38**	80.38**	11.68**
KML $126 \times$ KML 136	27.62*	25.23	2.29	27.03	23.68	2.17	16.63**	15.20	3.07*	135.63	120.44**	15.89**
KML 126 x KML 120	25.23	25.23	2.29	24.23	23.68	2.17	12.68**	12.1	1.32	89.43*	53.65**	13.08**
KML 126 x KML 140	26.53**	15.89**	-5.34**	24.40**	14.04**	-5.80**	15.68**	10.29**	-1.32	152.99**	126.53**	3.74
KML 128 x KML 132	29.41**	25.71**	0.76	29.63**	26.13**	1.45	15.58**	14.43**	0.88	57.25**	51.32**	-6.31
KML $128 \times$ KML 135	31.73*	30.48	4.58*	30.00	28.83	3.62*	16.21**	15.92	2.19	66.79**	66.79**	3.27
KML $128 \times$ KML 136	29.81**	28.57**	3.05	28.77**	27.03*	2.17	16.50**	15.92**	2.19	79.18**	65.66**	2.57
KML $128 \times$ KML 120	28.30**	27.10**	3.82*	27.68**	26.55**	3.62*	14.99**	13.59**	2.63	38.28**	27.30**	-6.31
KML $128 \times$ KML 111	37.11**	26.67**	1.53	36.89**	27.03	2.17	19.69**	14.93**	1.32	84.29**	46.04**	-9.58**
KML $132 \times$ KML 135	40.59*	37.86*	8.40**	38.32*	35.78**	7.25**	19.90**	19.00**	4.39**	63.92	57.74**	-2.34
KML $132 \times$ KML 136	39.60**	36.89**	7.63**	38.03**	36.11**	6.52**	20.20**	19.60**	4.39**	74.47**	67.35**	-4.21
KML $132 \times$ KML 120	33.01**	28.04**	4.58**	31.19**	26.55**	3.62*	15.63**	13.11**	2.19	36.79**	21.59**	-10.51**
KML $132 \times$ KML 1110	44.68**	37.37**	3.82*	40.00**	33.33**	1.45	20.42**	16.75**	0.88	75.00**	42.86**	-18.22**
KML $135 \times$ KML 136	35.92**	35.92**	6.87**	34.56**	33.94**	5.80**	18.30**	18.00**	3.51*	95.10**	80.38**	11.68**
KML $135 \times$ KML 120	34.29**	31.78**	7.63**	32.43**	30.09**	6.52**	16.75**	15.05**	3.95**	56.90**	44.44**	6.31
KML $135 \times$ KML 140	37.50**	28.16**	0.76	36.27**	27.52**	0.72	18.96**	14.50**	0.44	93.33**	53.21**	-5.14
KML $136 \times$ KML 120	33.33**	30.84**	6.87**	32.13**	29.20**	5.80**	16.54**	14.56**	3.51*	55.56**	33.33**	-1.87
KML 136 x KML 140	37.50**	28.16**	0.76	36.95**	28.70**	0.72	19.27**	15.08**	0.44	140.53**	103.11**	6.78*
KML $120 \times$ KML 140	36.73**	25.23**	2.29	34.62**	23.89**	1.45	17.65**	11.65**	0.88	74.89**	30.48**	-3.97

*Significantat5\%value
**Significantat 1% value

Crosses	EH			TW			SP			CL		
	Mid	Better	Check									
KML $111 \times$ KML 110	86.42**	54.38**	8.33	31.35**	24.22**	-14.98**	-10.36**	-11.61**	-4.41*	2.19	-2.39	-15.06**
KML $111 \times$ KML 107	86.52**	64.38**	15.35*	46.49**	45.44**	-9.98	-3.57*	-4.03*	4.80**	21.95**	20.97**	-2.60
KML $111 \times$ KML 126	71.76**	40.63**	-1.32	34.61**	27.67**	-13.15*	4.36**	0.30	8.48**	-2.94	-15.37**	-9.87
KML $111 \times$ KML 128	84.91**	53.13**	7.46	41.16**	33.87**	-18.33**	-2.13	-3.43*	7.30**	35.13**	31.80**	4.42
KML $111 \times$ KML 132	67.35	28.13**	-10.09	39.24	37.72**	-15.98**	-3.60*	$-7.17 * *$	0.39	13.68*	5.00	-1.82
KML $111 \times$ KML 135	100.77**	63.13**	14.47*	58.68**	58.14**	-2.86	-7.35**	-7.66**	-0.13	31.65**	26.67**	8.57
KML $111 \times$ KML 136	89.80**	51.25**	6.14	69.50**	58.98**	-3.01	-1.22	-1.52	6.51**	23.05**	15.14*	4.68
KML $111 \times$ KML 120	56.43**	36.88**	-3.95	52.71**	39.64**	2.79	-8.76**	-9.73**	-2.37	30.53**	21.97**	-3.38
KML $111 \times$ KML 140	111.06*	55.00**	8.77	46.56*	38.42**	-15.55**	-7.08**	**	-1.58	11.25	6.27	-7.53
KML $110 \times$ KML 107	132.60**	116.39**	15.79**	23.74**	17.82*	-19.36**	-4.79**	-6.56**	2.04	24.65**	20.00**	4.42
KML $110 \times$ KML 126	148.31**	144.76**	12.72*	56.07**	55.59**	6.5	-6.16**	-8.57**	-3.88*	1.21	-8.05	-2.08
KML $110 \times$ KML 128	148.57**	148.57**	14.47*	21.90**	9.66	-24.94**	1.55	-1.18	9.80**	28.64**	20.00**	4.42
KML $110 \times$ KML 132	144.21**	120.95**	1.75	8.01	1.09	-30.80**	4.87**	2.37	7.63**	0.43	-3.06	-9.35
KML $110 \times$ KML 135	145.85**	140.00**	10.53	54.38**	46.47**	0.25	-5.42**	-6.43**	0.53	22.41**	21.49**	5.71
KML $110 \times$ KML 136	163.00**	150.48**	15.35*	44.14**	28.33**	-12.16*	-0.31	-1.41	5.98**	21.46**	18.86**	8.05
KML $110 \times$ KML 120	116.89**	103.33**	7.02	31.90**	27.28**	-6.31	-2.59	-2.92	2.76	27.33**	14.03*	-0.78
KML $110 \times$ KML 140	148.89**	113.33**	-1.75	17.15*	4.99	-28.14**	-1.51	-2.19	2.83	12.54*	12.54	-2.08
KML 107 x KML 126	154.46**	133.61**	25.00**	40.90**	34.55**	-8.47	1.95	-2.47	6.51**	18.06**	3.66	10.39
KML 107 x KML 128	120.26**	104.92**	9.65	46.51**	37.99**	-14.58**	4.09**	3.20*	14.66**	22.00**	18.06*	-4.94
KML 107 x KML 132	147.34**	109.84**	12.28*	16.92*	14.82	-28.92**	-1.32	$-5.42 * *$	3.29	21.79**	13.33*	5.97
KML 107 x KML 135	154.05**	131.15**	23.68**	69.09**	68.44**	4.26	-8.22**	-8.97**	-0.59	20.00**	16.36*	-0.26

*Significantat5\%value
**Significantat 1% value

Crosses	EH			TW			SP			CL		
	Mid	Better	Check									
KML 107 x KML 136	$132.26^{* *}$	$106.56^{* *}$	10.53	$68.57^{* *}$	$57.04^{* *}$	-2.79	-0.79	-1.57	$7.50^{* *}$	$28.48^{* *}$	$21.14^{* *}$	10.13
KML 107 x KML 120	$112.40^{* *}$	$110.66^{* *}$	12.72^{*}	$41.35^{* *}$	$30.10^{* *}$	-4.23	-3.03^{*}	$-4.52^{* *}$	4.27^{*}	$37.04^{* *}$	$27.10^{* *}$	2.34
KML 107 x KML 140	$149.75^{* *}$	$101.64^{* *}$	7.89	$40.81^{* *}$	$32.09^{* *}$	$-18.24^{* *}$	0.86	-1.69	$7.36^{* *}$	$17.21^{* *}$	12.84^{*}	-1.82
KML 126 x KML 128	$150.24^{* *}$	$146.67^{* *}$	13.60^{*}	$38.14^{* *}$	$24.61^{* *}$	$-15.23^{* *}$	-0.16	$-5.27^{* *}$	$5.26^{* *}$	$25.14^{* *}$	6.83	13.77^{*}
KML 126 x KML 132	$147.06^{* *}$	$126.7^{* *}$	1.32	$20.39^{* *}$	13.00	$-23.12^{* *}$	0.99	0.79	0.92	3.38	-2.93	3.38
KML 126 x KML 135	$156.44^{* *}$	$153.92^{* *}$	13.60^{*}	$52.20^{* *}$	$44.81^{* *}$	-1.48	1.56	-2.08	$5.19^{* *}$	$17.30^{* *}$	5.85	12.73^{*}
KML 126 x KML 136	$180.20^{* *}$	$170.59^{* *}$	$21.05^{* *}$	$39.23^{* *}$	$24.29^{* *}$	$-15.45^{* *}$	0.00	-3.61^{*}	3.62^{*}	7.89	0.00	6.49
KML 126 x KML 120	$136.04^{* *}$	$118.33^{* *}$	14.91^{*}	$30.22^{* *}$	$25.28^{* *}$	-7.78	-1.44	-4.29^{*}	1.31	$22.37^{* *}$	0.73	7.27

KML $126 \times$ KML 140	188.14**	150.00**	11.84*	46.00**	31.19**	-10.75*	-2.26	-4.12*	-0.59	12.21*	1.95	8.57
KML $128 \times$ KML 132	127.37**	105.71**	-5.26	22.37*	17.27	-30.02**	7.00**	1.72	13.02**	24.62**	12.50*	5.19
KML $128 \times$ KML 135	135.12*	129.52**	5.70	55.50**	46.98**	-9.71	0.72	-0.95	10.06**	23.55**	16.06*	-0.52
KML $128 \times$ KML 136	132.00**	120.95**	1.75	44.32**	42.65*	-21.97**	2.26	0.59	11.77**	25.63**	14.86*	4.42
KML $128 \times$ KML 120	92.00**	80.00	-5.26	17.41*	2.33	-24.67**	4.97**	2.49	13.87**	33.69**	27.93**	-3.64
KML 128 x KML 140	132.22**	99.05**	-8.33	23.97**	23.43*	-32.48**	2.42	-1.01	9.99**	29.28**	20.60**	4.94
KML $132 \times$ KML 135	151.89**	133.00**	2.19	37.43**	35.48**	-16.78**	-3.58*	-6.85**	0.07	20.00**	15.00*	7.53
KML $132 \times$ KML 136	138.89*	126.32*	-5.70	38.20**	30.97**	-21.84	4.81	1.22	8.81	7.89	6.39	-0.52
KML $132 \times$ KML 120	92.20**	64.17**	-13.60*	36.28**	23.38**	-9.18	5.65	2.80	8.81*	25.44*	8.89	1.82
KML $132 \times$ KML 140	130.00**	116.47**	-19.30**	5.09	0.30	-40.14**	5.68**	3.87*	7.69**	-7.63	-10.83	-16.62**
KML $135 \times$ KML 136	173.85**	167.00**	17.11**	70.08**	59.01**	-2.32	-4.68**	-4.71**	2.43	11.76*	8.57	-1.30
KML 135 x KML 120	108.18**	90.83**	0.44	48.46*	36.17*	0.24	-2.47	-3.18	4.01*	26.72**	14.24*	-2.08
KML $135 \times$ KML 140	156.00**	124.00**	-1.75	61.18**	51.74**	-6.79	-2.15	-3.86*	3.29	13.38*	12.54	-2.08
KML $136 \times$ KML 120	98.14**	77.50**	-6.58	57.66**	36.05**	0.15	-4.90**	-5.63**	1.45	20.00**	5.43	-4.16
KML 136 x KML 140	188.24**	157.89**	7.46	60.72**	59.54**	-13.48*	-0.12	-1.90	5.46**	14.45**	12.00	1.82
KML $120 \times$ KML 140	105.13**	66.67**	-12.28*	55.88**	35.36**	-0.36	0.16	-0.87	4.93**	36.00**	21.79**	5.97

*Significantat5\%value
*Significantat 1% value

Crosses	CG			KR			NKR			GY		
	Mid	Better	Check									
L $111 \times$ KML 110	18.19**	7.05	-5.64	6.67	0.00	-3.03	-5.51	-13.04	-4.76	33.52*	4.53	-37.04**
KML $111 \times$ KML 107	19.39**	14.28	-10.61	10.7	10.	-6.	0.8	-5.97	0.0	92.57**	47.22	-5.18
KML $111 \times$ KML 126	10.09**	-5.35	-5.91	3.13	-8.33	0.00	-9.68	-15.15*	-11.11	54.19**	13.00	-17.32
KML $111 \times$ KML 128	24.68**	21.81**	-12.87**	-9.38	-19.44**	-12.12*	32.04**	17.24*	7.94	57.05**	21.53	-24.39**
KML $111 \times \mathrm{KML} 132$	29.7	28.2	-8.3	17	17.8	0.00	2	24.1	14.29	78.14**	60.48**	-31.80**
KML $111 \times$ KML 135	28.09	23.66	-4.9	15.38	7.1	-9.	29.82	27.5	17.46*	145.31**	14	-15.21
KML $111 \times$ KML 136	18.71**	12.67**	-10.29**	-6.67	-12.50*	-15.15*	8.06	1.52	6.35	97.75**	78.15**	-24.29**
KML $111 \times$ KML 120	22	19	-10.07**	15	7.	-9.	27.	12	3.17	69	50.98*	*
KML $111 \times$ KML 140	14.20*	10.73*	-15.68**	3.57	3.57	-12.12*	10.53	8.62	0.00	64.59	55.86*	-40.59**
KML $110 \times$ KML 107	11.13	4.88	-7.56*	10.00	3.13	0.00	-4.41	-5.80	3.17	18.20	14.37	-26.34**
KML $110 \times$ KML 126	9.85	3.62	3.01	5.88	0.00	9.09	-0.74	-2.90	6.35	28.37*	17.02	-14.37
KML $110 \times$ KML 128	4.0	-7.7	-18.68	-14.71	-19.44*	-12	7.02	-11	-3.17	39.99**	37.76*	-14.3
KML $110 \times$ KML 132	8.45*	-2.79	-14.32	6.67	0	-3.03	9.	-2.90	6.35	38.32*	17.96	-28.95**
KML $110 \times$ KML 135	19.70**	12.03**	-1.25	14.29*	0.00	-3.03	2.40	-7.25	1.59	71.99**	36.04*	-18.06*
KML $110 \times$ KML 136	8.84*	3.57	-8.71	-9.3	-9.38	-12.12*	12.59*	10.14	20.63**	77.20**	51.12**	-8.98
KML $110 \times$ KML 120	15.23*	7.00	-5.69	7.14	-6.25	-9.09	18.58	-2.90	6.35	66.45**	43.16**	-13.77
KML 110 x KML 140	11	3.	-8.80	13	6.25	3.03	12.00	1.45	11.11	59.93**	30.57*	-21.36*
KML 107 x KML 126	13.49	1.39	0.79	12.50*	0.00	9.09	12.78*	11.94	19.05*	59.56**	50.00**	9.76
KML 107 x KML 128	16.95	9.48*	-14.37**	-6.25	-16.67**	-9.09	8.93	-8.96	-3.17	94.66**	91.35**	23.24*
KML 107 x KML 132	21.46**	14.98**	-10.06	25.00**	25.00*	6.06	15.00*	2.99	9.52	41.27**	17.24	-24.49**
KML 107 x KML 135	21.35	20.29	-5.91	15.3	7.14	-9.09	8.94	0.	6.35	83.78**	41.90**	-8.61
KML 107 x KML 136	9.98*	9.01*	-13.20**	0.00	-6.25	-9.09	0.75	0.00	6.35	40.71**	16.78	-24.79**
KML $107 \times$ KML 120	19.40**	17.36**	-8.20*	15.38*	7.14	-9.09	18.92**	-1.49	4.76	70.20**	42.42**	-8.28
KML 107 x KML 140	22.17**	20.55**	-5.71	25.00**	25.00**	6.06	10.57	1.49	7.94	84.36**	46.73**	-5.49
KML $126 \times$ KML 128	15.08**	-2.97	-3.54	-2.78	-2.78	6.06	49.55**	25.76**	31.75**	54.73**	43.14**	4.74

*Significantat5\%value **Significantat 1% value

Crosses	CG			KR			NKR			GY		
	Mid	Better	Check									
KML 126 x KML 132	10.91**	-5.57	-6.13	18.75**	5.56	15.15*	15.97*	4.55	9.52	16.65	-7.80	-32.54**
KML $126 \times$ KML 135	9.34*	-3.07	-3.64	6.67	-11.11	-3.03	9.84	1.52	6.35	91.93	41.93*	3.85
KML $126 \times$ KML 136	5.92	-4.62	-5.18	5.88	0.00	9.09	4.55	4.55	9.52	65.33**	30.67*	-4.38
KML $126 \times$ KML 120	9.06**	-4.03	-4.60	13.33*	-5.56	3.03	23.64**	3.03	7.94	44.63**	15.18	-15.72
KML 126 x KML 140	10.39	-2.53	-3.10	12.50*	0.00	9.09	8.20	0.00	4.76	51.72**	15.38	-15.58
KML $128 \times$ KML 132	15.78*	14.43*	-20.05**	-3.13	-13.89*	-6.06	48.98**	37.74**	15.87*	64.54**	38.47**	-13.85
KML $128 \times$ KML 135	11.46**	5.22	-19.14**	-13.33*	-27.78**	-21.21**	42.57**	28.57**	14.29	80.95**	41.45**	-12.00
KML $128 \times$ KML 136	10.88*	2.95	-18.03**	-14.71**	-19.44**	-12.12*	33.33**	12.12	17.46*	45.08**	22.09	-24.04**
KML $128 \times$ KML 120	10.68*	5.32	-20.43**	-3.33	-19.44**	-12.12*	43.82**	42.22**	1.59	49.48**	26.85	-21.08*
KML $128 \times$ KML 140	10.97*	5.2	-19.89**	-15.63**	-25.00**	-18.18**	40.59**	26.79**	12.7	18.96	-4.07	-40.32**
KML $132 \times$ KML 135	19.86*	14.42**	-12.07**	15.38*	7.14	-9.09	32.11**	28.57**	14.29	125.10**	105.38**	-12.72
KML $132 \times$ KML 136	5.96	-0.53	-20.80**	-3.33	-9.38	-12.12*	14.29*	3.03	7.94	47.27*	47.27*	-37.41**
KML $132 \times$ KML 120	13.99**	9.71*	-17.12**	15.38*	7.14	-9.09	46.39**	33.96**	12.7	126.50**	124.21**	-2.75
KML $132 \times$ KML 140	14.64*	9.92*	-16.30**	21.43**	21.43**	3.03	19.27**	16.07	3.17	3.45	-1.88	-58.30**
KML $135 \times$ KML 136	10.67**	8.75*	-13.42**	14.29*	0.00	-3.03	14.75*	6.06	11.11	129.94**	109.80**	-10.84
KML $135 \times$ KML 120	20.18**	19.16**	-8.43*	29.17**	29.17**	-6.06	36.00**	21.43*	7.94	142.19**	118.96**	-5.03
KML $135 \times$ KML 140	15.03**	14.51**	$-12.00^{* *}$	11.54	3.57	-12.12*	21.43**	21.43*	7.94	94.73**	86.90**	-28.76**
KML $136 \times$ KML 120	8.32*	5.55	-15.96**	7.14	-6.25	-9.09	18.18*	-1.52	3.17	55.11**	53.54*	-33.40**

KML 136 x KML 140	8.21^{*}	5.85	$-15.73^{* *}$	3.33	-3.13	-6.06	1.64	-6.06	-1.59	$96.44^{* *}$	$86.32^{* *}$
-20.82^{*}											
KML 120 x KML 140	9.38^{*}	8.95	$-17.04^{* *}$	7.69	0.00	-15.15^{*}	$28.00^{* *}$	14.29	1.59	$88.75^{* *}$	$77.31^{* *}$
-23.09^{*}											

*Significantat5\%value **Significantat 1% value

Conclusion

Standard heterotic effects over NK 6240 were obtained in 4 crosses for grain yield and crosses, KML $107 \times$ KML 128 and KML $107 \times$ KML 126 had exhibited highest heterotic effects. Whereas for CG, two crosses (KML $110 \times$ KML 126 and KML $107 \times$ KML 126) were found to be highly heterotic. Finally, based on per se performance, combining abilities and standard heterosis KML $107 \times$ KML 128 was a promising hybrid.

Acknowledgment

I humbly thank the authorities of Professor Jayashankar Telangana State Agricultural University and Government of Telangana for the financial help in the form of stipend during my study period.

References

1. Abdulazeez SD, Kakarash SA, Ismael NB. Estimation of Heterosis and Combining Ability for Yield, Yield Component Using Line x Tester Methods in Maize (Zea mays L.). In IOP Conference Series: Earth and Environmental Science. 2021;761(1):012083.
2. Adu GB, Akromah R, Abdulai MS, Obeng-Antwi K, Kena AW, Tengan KML, et al. Assessment of genotype by environment interactions and grain yield performance of extra-early maize (Zea mays L.) hybrids. Journal of Biology, Agriculture and Health care. 2013;3(12):7-15.
3. Aminu D, Mohammed SG, Kabir BG. Estimates of Combining Ability and Heterosis for yield and yield traits in Maize Population (Zea mays L.) under Drought Conditions in the Northern Guinea and Sudan Savanna Zone of Borno State, Nigeria. International Journal of Agriculture Innovations and Research. 2014;2(5):23191473.
4. Chakraborty M, Ghosh J and Sah RP. Combining ability studies for yield and other traits in maize (Zea mays L.). Plant Archives. 2012;12(1):235-238.
5. Chandana BC, Deshpande SK and Bhat JS. Heterosis studies for yield and yield related traits in maize (Zea mays L.). Green Farming. 2018;9:396-403.
6. Dhairyashil M, Langade Shahi JP, Kumar P, Sharma A. Estimation of Heterosis for Yield and Yield attributing traits in Diallel Crosses of Maize. Trends in bioscience. 2013;6(6):719-722.
7. Gami RA, Patel JM, Chaudhar SM, Chaudhary GK. Genotype-environment relations and stability analysis in different land races of maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences. 2017;6(8):418-424.
8. Kanchavoyu Hui Wang, Xiaogang Liu, Cheng Xu, Zhiwei Li, Xiaojie Xu, et al. Large-Scale Analysis of Combining Ability and Heterosis for Development of Hybrid Maize Breeding Strategies Using Diverse Germplasm Resources. Frontiers in Plant Science. 2020;10(33):66-89.
9. Kumar M, Verma SS, Uniyal M, Barh A and Singh NK. Exploitation of combining ability and heterosis for development of maize hybrids for Tarai region of

Uttarakhand. Journal of Applied and Natural Science. 2016;8(3):1570-1575.
10. Kumar CA, Lohithaswa HC, Uma MS, Mahadevu P. Analysis of combining ability and heterosis for yield and yield contributing traits in newly developed inbred lines of maize (Zea mays L.). International Journal of Agriculture Sciences. 2018;10(6):5460-5464.
11. Kumar GP, Reddy VN, Kumar SS and Rao PV. Combining ability studies in newly developed inbred lines in maize (Zea mays L.). International Journal of Plant, Animal and Environmental Sciences. 2014;4(4):229-234.
12. Liang GH, Reddy CR and Dayton AD. Heterosis, inbreeding depression, and heritability estimates in a systematic series of grain sorghum genotypes. Crop Science. 1972;12(4):409-411.
13. Mahmood S, Malik SI and Hussain M. Heterosis and combining ability estimates for ear traits and grain yield in maize hybrids. Asian Journal of Agriculture and Biology. 2016; 4(4): 91-98.
14. Matin MQI, Rasul MG, Islam AKMA, Mian MK, Ivy NA and Ahmed JU. Combining ability and heterosis in maize (Zea mays L.). American Journal of Bio-Science. 2016;4(6):84-90.
15. Motamedi M, Choukan R, Hervan EM, Bihamta MR, Kajouri FD. Investigation of genetic control for yield and related traits in maize (Zea mays L.) lines derived from temperate and subtropical germplasm. International Journal of Biosciences. 2014;5(12):123-129.
16. Pole SP, Chafekar RS, Deshmukh AS, Dake AD, Bhikane MU. Heterosis for yield and Yield components in maize (Zea mays L.). International Journal of Current Microbiology and Applied Science. 2018;14(6):945-950.
17. Rajesh V, Kumar SS, Reddy NV, Shivshankar A. Heterosis studies for grain yield and its component traits in single cross hybrids of maize (Zea mays L.). International Journal of Plant, Animal and Environmental Sciences. 2014;4(1):320-325.
18. Rajitha A, Ratna Babu D, LalAhamed M, Srinivasa Rao V. Heterosis and Combining ability for grain yield and yield component traits in maize (Zea mays L.). Electronic Journal of Plant Breeding. 2014;5(3):378-384.
19. Reddy VR, Jabeen F, Sudarshan MR. Heterosis studies in diallel crosses of maize for yield and yield attributing traits in maize (Zea mays L.) over locations. International Journal of Agriculture, Environment and Biotechnology. 2015;8(2): 271.
20. Reddy VR, Rao AS, Sudarshan MR. Heterosis and combining ability for grain yield and its components in maize (Zea mays L.). Journal of Research. 2011;39(3):615.
21. Ruswandi D, Supriatna J, Makkulawu AT, Waluyo B, Marta H, Suryadi E, et al. Determination of combining ability and heterosis of grain yield components for maize mutants based on line \times tester analysis. Asian Journal of Crop Science. 2015;7(1):19-33.
22. Shah L, Rahman H, Ali A, Shah KA, Si H, Xing WS, et al. Early generation testing for specific combining ability and heterotic effects in maize variety sarhad white.

ARPN Journal of Agricultural Biological and Science. 2016;11(1):42-48.
23. Shushay WA. Standard heterosis of maize (Zea mays L.) inbred lines for grain yield and yield related traits in central Rift Valley of Ethiopia. Journal of Biology, Agriculture and Healthcare. 2014;4(23):31-37.
24. Turner FJ. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. American Journal of Science. 1953 Apr 1;251(4):276-98.

