www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(12): 1457-1460 © 2022 TPI

www.thepharmajournal.com Received: 20-10-2022 Accepted: 23-11-2022

SG Shinde

Ph.D. Research Scholar, Genetics and Plant Breeding, DBSKKV, Dapoli, Maharashtra, India

BD Waghmode

Professor and Rice Specialist, RARS, Karjat, DBSKKV, Dapoli, Mah arash tra, India

SV Sawardekar

Professor and In-charge, Plant Biotechnology Centre, DBSKKV, Dapoli, Maharashtra, India

AV Mane

Deputy Director of Research Seed, DBSKKV, Dapoli, Maharashtra, India

MC Kasture

Deputy Director Research, (Agriculture), DBSKKV, Dapoli, Mah arash tra, India

JS Dhekale

Ex- Professor, Department of Agricul ture Economics, College of Agricul ture, DBSKKV, Dapoli, Mah arash tra, India

MG Palshetkar

Assistant Professor, Department of Agriculture, Botany, College of Agriculture, DBSKKV, Dapoli, Mah arashtra, India

TJ Bedse

Assistant Professor, RARS, Karjat, DBSKKV, Dapoli, Maharashtra, India

RL Kunkerkar

Head, Department of Agriculture Botany, College of Agriculture, DBSKKV, Dapoli, Maharashtra, India

NG Sonone

Juni or Research Associate, ARS, Shirgaon, Maharashtra, India

Corresponding Author: SG Shinde

Ph.D. Research Scholar, Genetics and Plant Breeding, DBSKKV, Dapoli, Maharashtra, India

Molecular profiling of rice for biotic and abiotic stresses

SG Shinde, BD Waghmode, SV Sawardekar, AV Mane, MC Kasture, JS Dhekale, MG Palshetkar, TJ Bedse, RL Kunkerkar and NG Sonone

Abstract

In this study 95 germplasm of rice were evaluated to identify rice cultivars for blast resistance, salinity stress, brown plant hopper resistance, drought resistance and gall midge. DNA was isolated from leaf samples of 95 rice germplasmsby following the protocol of Edwards *et al.*, 1991. Simple sequence repeats (SSR) markers were used for determination of germplasm having characters for biotic and abiotic resistance. Among 17 primers some primers were found which are tightly linked with biotic and abiotic characters. The output of the this experiment is that primer RM 8225 linked with blast resistance, RM 140 and RM 1287 were linked with salinity stress, RM 6775 and RM 309 linked with brown plant hopper resistance, RM 212 and RM 201 linked with drought stress and RM 22709 linked with gall midge. The output of the study helpful for the breeders to select parents in the breeding programme.

Keywords: Simple sequence repeats, rice germplasm, biotic and abiotic resistance

Introduction

Rice (*Oryza sativa* L) (2n = 24) is the most important cereal crop which serves as a staple food for over 60 per cent of the world's population (Singh and Singh, 2008) ^[16]. Global rice demand is estimated to rise from 676 million tons in 2010 to 763 million tons by 2020 and further increase to 852 million tonnes by 2035 (FAOSTAT, 2021) ^[5]. India is the world's second largest rice producer and consumer next to China, about 90 per cent of all rice grown in the world is produced and consumed in Asian region. In the world, rice is cultivated on about 167.13 million hectares of area with total production of 782.01 million tones and productivity is 3.228 tonnes/ha (Anonymous, 2021) ^[11]. It is grown in *kharif* and *Rabi* season. The productivity of rice is 2.59 tonnes per hectare and 2.73 tonnes per hectare in *kharif* and *Rabi* season respectively.

Rice has the largest germplasm collections in the world. This accessible collection of diverse cultivated varieties, landraces and related wild species has made great contributions to rice breeding. Landraces harbour a great deal of useful traits with genetic potential for rice improvement and they played a very important role in the local food security and sustainable development of agriculture, in addition to their significance as genetic resource for rice genetic improvement (Tang *et al.*, 2021) ^[19].

Evaluation and characterization of existing landraces of rice is important due to increasing needs of varietal improvement. Land-races are also important genetic resources for resistance to pests and diseases; they provide "adaptability genes" for specific environmental conditions. Incorporation of adaptability genes from landraces could ensure optimum grain yield for the region (Vijayakumar *et al.*, 2020) ^[18].

Microsatellite or Simple sequence repeats (SSR) markers are short tandem repeated motifs that may vary in the number of repeats at a given locus. SSR markers have many advantages over other molecular markers, such as genetic co-dominance. Simple sequence repeats (SSR) markers are better molecular markers to identify genes linked with the biotic and abiotic characters.

Methods and Materials DNA isolation

The buffers and reagents for DNA extraction were prepared as per Sambrook Maniatis (1989) ^[15]. Extraction buffer (200 mM Tris-HCl, 25 mM EDTA, 250mM NaCl, 0.5M Glucose, 0.5% SDS, 3% PVP, 0.4% Sodium Bisulphite, 5% Sarcosyl), was used during DNA isolation.

The Pharma Innovation Journal

The DNA from 95 rice germplasm (Table No. 1) were isolated by following the protocol of Edwards *et al.*, 1991 ^[4]. Leaf sample 100mg was crushed in mortar and pestle and 1 mL extraction buffer was added and incubated at 65 °C for 45 min. Centrifuged at 10000 rpm for 10 min, supernatant was transfer in another tube and chloroform: isopropanol (24:1) added. Mixed for 5 sec and centrifuged at 10000 rpm for 10 min. Supernatant was taken and Isopropanol was added (1/6th proportion) and store at -20 °C for overnight. Next day centrifugation was done at 10000 rpm for 10 min. and pellet was washed with 70% ethanol. Centrifuged at 10000 rpm for 3 min, and air dried the ethanol, pellet was dissolved in 50 µl of TE buffer.

PCR amplification

Thermalcycler: Eppendorf, Mastercycler gradient supplied by Eppendorf gradient, 2231, Hamburg Germany was used for cyclic amplification of DNA. Taq. Assay buffer, MgCl₂, dNTPs, Primers, Taq. DNA polymerase (M/s Bangalore Genei Pvt. Ltd., Bangalore) were used for reaction mixture. Thermal profile was initial denaturation (94 °C for 4 min.), denaturation (94 °C for 30 sec.), annealing (55-60 °C for 30 sec.) extension (72 °C for 01 min.) final extension (72 °C for 07 min.).

Result and Discussion

The standard procedure of DNA isolation along with slight modification of buffer components and their quality were employed (data not shown). The good quality and desired quantity of DNA was obtained. Simple Sequence Repeats (SSR), and they are typically composed of 1–6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs Gous *et al.* (2013) ^[7], Bhargavi *et al.* (2022) ^[2] and Kushwaha *et al.* (2022) ^[20].

Blast resistance

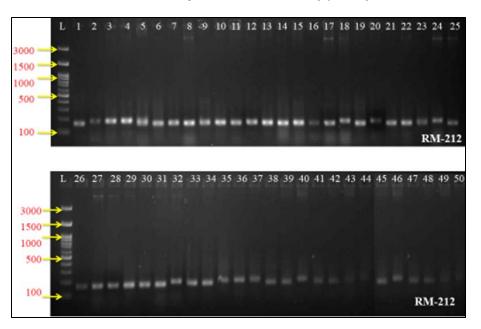
Primer RM8225 used to identify blast resistance germplasm namely Try-1, Kochari, LalPatani, Karhad, Ratnagiri 7,

PhuleSamruddhi, Ambemohar, RathuHeenati, SinnaSivappu, IRRI 190, IRRI 193, ARC10550, Samba Mahsuri, IRRI 123. (Gentallan *et al.*, 2021) ^[6] and Chakrobarthi *et al.*, 2006) ^[3] also used microsatellite markers to screen the various genotypes for blast resistance.

Salt resistance

Primer RM140 used to identify salt resistance germplasm namely MO-17, MO-19, KJT-2R, RTN 11-2-1-3, Pak Basmati, Super Basmati, Chinoor, Pusa Sugandha-1, Pusa Sugandha-3, Pusa Sugandha-4, Bhogwati, RP Bio 197, RP-BIO-226, Ajaya, Karjat 1, VDN-9-10-1, HRTMS-61. Molecular mapping of genes linked to salt tolerance traits was also carried out by (Krishnendu *et al.*, 2021)^[9] and (Liu *et al.*, 2022)^[12].

Brown plant hopper


Primer RM6775 and RM309 used to identify brown plant hopper resistance germplasm namely Pusa Sugandha-4, Pusa Sugandha-5, Bhadas bhog, CR2713-180, Kalanamak, NDR6315, Phule Samruddhi, Khara Rata, Try-1, Kochari, BG 367-2, FL 478, MUT NS 1, Rathu Heenati, Sinna Sivappu. Similar results also found by (Li-Hang *et al.*, 2020) and (McCouch *et al.*, 2018) ^[14] where they used different microsatellite markers to screen the rice populations for BPH resistance.

Drought resistance

Primer RM212 and RM201 used to identify drought resistance germplasm namely BG 367-2, Milyang 63, FL 478, MUT NS 1, IRRI 192, Dhanesal, Ambemohar, Bhogwati, Sugandha (Figure 1). Similarly (Gregorio *et al.*, 2022)^[8] and (Mateu-Andres *et al.*, 2022)^[13] also used different microsatellite markers to screen the rice populations for drought tolerance.

Gall midge resistance

Primer RM22709 used to identify drought resistance germplasm namely MO-6, MO-8, Munga, Patni-6, Pandy, NAUR-1, DRR-50-12, DRR-363-5, DRR-50-10, IR-63879-195-2-2-3-2, RTN-214-1-1-2, Chinoor, RP Bio 197, RP-BIO-226, Ajaya, Karjat 2, IR-64.

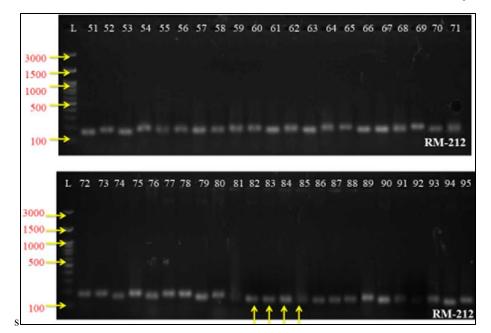


Plate 1: DNA bands amplified from 96 rice genotypes using microsatellite RM-212 marker linked to Drought and electrophoresed in a 1.8% agarose gel. L= 100bp ladder. (Arrow indicates presence of the resistance linked allele)

SN	Genotype	Source	SN	Genotype	Source	
Ι	Red kernel local lines		П	Restor	Restorer lines	
1	MO-6	ARS, Moncomba	25	KJT-1R	ARS, Karjat	
2	MO-8		26	KJT-2R		
3	MO-13		27	KJT-3R		
4	MO-17		28	KJT-4R		
5	MO-19		29	PR-114	IIRR, Hyderabad	
6	Khara Rata	KRS,Panvel	30	RTN 11-2-1-3	ARS, Shirgaon	
7	M ay ekar Bhat	ARS, Karjat	31	PR-118	UDD Uv deveload	
8	Munga		32	DRR-215	IIRR, Hyderabad	
9	M ahsad		33	RTN-69-1-1	ARS, Shirgaon	
10	Waksal-207	1	34	NAUR-1	NAU, Navsari	
11	Barmil		35	BL-184AR	ARS, Karjat	
12	Jyoti		36	Gurjari	NAU, Navsari	
13	Patani-6		37	DRR-50-12	IIRR, Hyderabad	
14	Bhadas-79		38	DRR-363-5		
15	Pandy		39	DRR-50-13		
16	Dular	ARS, Shirgaon	40	DRR-50-10		
17	Try-1		41	DRR-86-8		
18	Kochari		42	IR-63879-195-2-2-3-2	IRRI, Manila,	
19	Lal Patani		43	RTN-27-1-1-2	ARS, Shirgaon	
20	Dodak		44	RTN-214-1-1-2		
21	Karhad		45	VDN-9-10-1	ARS, Vadgaon	
22	Ratnagiri 7	1	46	VDN-10-18		
23	Bela		47	RTN-35-1-1	ARS, Shirgaon	
	Valai		48	Sahyadri 5 R		
24			49	HRTMS-61		
			50	CR-3993-2-24-45-2	IIRR, Hyderabad	
Ш	Aromatic lines		IV	Lines responsive to bi	biotic and abiotic stresses	
51	P Basmati	IADI N Dalhi	70	RS-1113		
52	S Basmati	IARI, N. Delhi	71	RP Bio 197	IIRR, Hyderabad	
53	Kothambir Sal	ARS, Karjat	72	RP-BIO-226	mar, my ucrabau	
54	Chinoor	PDKV, Akola	73	A jay a		
55	P Sugandha-1		74	KJT 1	ARS, Karjat	
56	P Sugandha-3	IARI, N. Delhi	75	KJT 2		
57	P Sugandha-4		76	IR-64	IRRI, Manila	
58	P Sugandha-5		77	MUDGO		
59	Bhadasbhog		78	MILYANG 46		
60	CR2713-180	IIRR, Hyderabad	79	PTB 33	RARS, Pattambi	
61	Kalanamak		80	MTU1010	RARS, Maruteru	

Table 1: List of rice germplasm

The Pharma Innovation Journal

62	NDR6315		81	BG 367-2	
63	P Samruddhi	MPKV, Rahuri	82	MILYANG 63	
64	Indray ani	ARS, Vadgaon	83	FL 478	IRRI, Manila
65	Dhanesal	IIRR, Hyderabad	84	MUT NS 1	
66	Ambemohar	ARS, Vadgaon	85	RATHU HEENATI	
67	K Shatabdi	ARS, Karjat	86	SINNA SIVAPPU	
68	Bhogwati	ARS, Radhanagari	87	IRRI 190	
			88	IRRI 193	
69	Sugandha	VNM KV, Parbhani	89	ARC 10550	
			90	S MAHSURI	IIRR, Hyderabad
			91	IRRI 123	IRRI, Manila
			92	IRRI 104	
			93	IRRI 192	
			94	Sonsali	IIRR, Hyderabad
			95	TN-1	

Conclusion

The screening of rice genotype through microsatellites is very important for identifying parental genotype that will be exploited for MAS breeding of elite lines that are more stable to stresses and this will lead to increase yields in order to feed the growing population.

References

- 1. Anonymous. Economic Survey of Maharashtra. Directorate of Economics and Statistics, Planning Department, Government of Maharashtra, Mumbai; c2021.
- Bhargavi M, Maneesha K, Withanawasam DM, Aratikatla KR, Himabindu S, Prashanth M, *et al.* A novel barcode system for rapid identification of rice (*Oryza* sativa L.) varieties using agro-morphological descriptors and molecular markers. Mol Biol Rep. Mar. 2022;48(3):2209-2221.
- Chakravarthi BK, Naravaneni R. SSR marker based DNA fingerprinting and diversity study in rice (*Oryza sativa* L.). African Journal of Biotechnology. 2006;5(9):684-688.
- Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic acids research. 1991;19(6):1349.
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. [Rome]: FAO; cc2021.
- Gentellan PP, Bartolome CB, Endonela LE. Molecular profiling of rice for disease pest resistance screening. Genetic resources and crop production. 2021;68(2):415-456.
- Gous M, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Nurul Islam K, *et al.* A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J Mol. Sci. 2013;14:22499-22528.
- Gregorio TJ, Coll R, Calsyn E, de Loose M, van Eijk MJT, *et al.* Genetic Divergence for Yield and Quality Traits in Rice (*Oryza sativa* L.). J Rice Res. 2022;4(6): 569-580.
- 9. Krishnedu C, Mohanty SK, Vijayan J. Genetic dissection of component traits for salinity tolerance at reproductive stage in rice, Plant Mol. Boi. 2021;39:386-402.
- Kushwah N, Ravi K, Tushar M. Study on genetic divergence in low land rice genotypes of Bihar. Int. J Curr. Microbiol. And Applied Sci. 2022;9(2):88-94.

- 11. Li N, Li Duan. Control of grain size in rice. Plant Reprod. 2021;31:237-251.
- Liu Z, Cheng F, Ying Y, Rao X. Identification of rice seed varieties using neural network. Journal of Zhejiang University Science. 2022;6(11):1095-1100.
- Mateu-Andres SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, *et al.* Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). DNA Res. 2022;9(6):199-207.
- McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M. Development and mapping of 2240 new SSR markers for rice. DNA Research. 2018;9:199-207.
- 15. Sambrook EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; c1989.
- 16. Singh Y, Singh US. Genetic diversity analysis rice germplasm using agro-morphological traits. Journal of Plant Genetic Resources. 2008;21(1):32-37.
- 17. Tancg SX, Jiang YZ, Wei XH, Li ZC, Yu HY. Genetic diversity of isozymes of cultivated rice in China. Acta Agronomica Sinica. 2021;28:203-207.
- Vijayakumar, Chakrabarty SK, Singh Y, Vashisht V, Dadlani M. Characterization of farmers ' varieties of rice based on morphological, physicochemical properties. *Oryza*. 2020;49(3):222-226.
- 19. Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, *et al.* BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nature medicine. 2021 Dec;27(12):2136-43.
- Kushwaha A, Goswami L, Lee J, Sonne C, Brown RJ, Kim KH. Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Critical Reviews in Environmental Science and Technology. 2022 Jul 3;52(13):2383-420.