www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(2): 372-374 © 2022 TPI

www.thepharmajournal.com Received: 17-11-2021 Accepted: 27-12-2021

SK Sharma

Project In Charge, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

Roshan Choudhary

CoPI, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

SK Yadav

Senior Research Fellow, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

RK Jain

Senior Research Fellow, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

Gajanand Jat

CoPI, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

Corresponding Author: SK Sharma

Project In Charge, ICAR-Network Project on Organic Farming, Directorate of Research, MPUAT, Udaipur, Rajasthan, India

Yield and economics of organic, integrated and inorganic crop practices in maize + blackgram

SK Sharma, Roshan Choudhary, SK Yadav, RK Jain and Gajanand Jat

Abstract

The field experiment was conducted during *kharif* seasons of 2015 to 2019 at the Organic Farming Unit, MPUAT, Udaipur, Rajasthan, to evaluate the effect of organic, integrated and inorganic crop management practices on yield and economics of maize + blackgram intercrop (2:1). The experiment comprises six nutrient management practices *viz.*, 100% Organic management, 75% Organic + innovative practices, 50% Organic + 50% inorganic, 75% Organic + 25% inorganic, 100% Inorganic nutrient sources and State recommendation. The significantly maximum maize equivalent yield of maize + blackgram was obtained with the application of 100% inorganic management which was higher by 3.28%, 3.51%, 5.36%, 9.15% and 13.67% over 50% Organic + 50% inorganic, 75% Organic + 25% inorganic, State recommendation, 75% Organic + innovative practices and 100% Organic management, respectively. Further, 75% Organic + innovative practices recorded higher maize equivalent yield of maize + blackgram over 100% organic management by 4.96%. Similarly, 100% inorganic management recorded the maximum net return (Rs.40521/ha) and BC ratio (1.43) followed by State recommendation (Rs. 32338/ha and 0.94).

Keywords: Organic farming, integrated, inorganic, crop management and maize + blackgram

Introduction

The extensive and indiscriminate use of chemical fertilizers and other agro-chemicals in intensive farming have deteriorated soil health, soil macro and microflora, quality of water, food and fodder (Sharma *et al.* 2017)^[11] and have adversely affected the human and animal health due to their entry in food chain (Biswas and Sharma 2008)^[2]. Due to ever increasing health issues posed by agrochemicals in intensive agriculture, the organic products have gained popularity among the consumers.

Rajasthan is a leading maize growing state in India and stands 1st in terms of maize cultivated area. Maize, in general, being a heavy feeder, requires more nutrients as compared to other crops. To meet nutritional requirements of maize, farmers apply imbalance and high amount of inorganic fertilizers which causes negative effect on the fertility of soil and environment.

Intercropping cereals with legumes have huge capacity to replenish soil mineral nitrogen through its ability to biologically fix atmospheric nitrogen (Maitra *et al.*, 2019)^[8]. In an appropriate intercropping system, advantages, such as less weed infestation, may also accrue (Shah *et al.*, 2011)^[10].

In view of above facts, a study was conducted to evaluate the effect of organic, integrated and inorganic crop management practices on yield and economics of maize + blackgram intercrop.

Materials and Methods

The experiment was conducted during *Kharif* 2015 to 2019 at Organic Farming Unit, Rajasthan College of Agriculture, MPUAT, Udaipur (Rajasthan), India. Research study comprised six crop management practices under organic, integrated and inorganic crop management practices (Table 1) as per National Programme on Organic Production standards (APEDA, 2019-20)^[1]. The treatments were laid out in a randomized block design without any replication and hence years were treated as replication for statistical calculation. The quantity of different organic manures was calculated based on the recommended dose of nitrogen for maize @ 90 kg ha⁻¹ given 1/3rd nutrients through NADEP compost, 1/3rd by vermicompost and 1/3rd by neem cake (1/3rd) were applied before 10-15 days of sowing and thoroughly mixed in the soil. Blackgram was grown as intercrop in 2:2 row combination at 30 cm row spacing.

Maize equivalent yield: Maize equivalent yield (MEY) was calculated as per current market prices of both maize and other different types of maize (Panda 2014)^[9].

Statistical analysis: The experimental data obtained from various treatments were statistically analyzed by using Analysis of variance method (ANOVA) procedure (Gomez and Gomez 1984)^[5] for the RBD using R Studio software with least significant difference at the 5% level of significance (P < 0.05).

Results and Discussion

Organic, integrated and inorganic crop management practices had a significant effect on yield, gross and net return of maize + blackgram intercropping (Table 2). Among the different crop management practices, the maximum maize equivalent yield (3101 kg/ha) of maize + blackgram intercrop were recorded with 100% inorganic crop management practice. The comparison of different organic, integrated and inorganic crop management practices reveal that organic management practices recorded a lower maize equivalent yield of 284 to 424 kg/ha in comparison to inorganic crop management practices. However, the effect of 50% organic + 50% inorganic, 75% organic + 25% inorganic, state recommendation and 75% organic + innovative crop management practices were found at par with each other.

Among the different crop management practices, the maximum gross return (Rs. 70362/ha), net return (Rs. 40521/ha) and BC ratio (1.43) of maize + blackgram were recorded with 100% inorganic crop management practice. The organic management practices recorded a lower net return of Rs. 26928 to Rs. 34796/ha in comparison to inorganic crop management practices (Table 2).

Pooled data of 5 year study suggested that nutrient supply through inorganic sources resulted a higher maize equivalent yield but its effect was found at par with crop integrated nutrient management practices. This may be attributed to superior effect of continuous application of organic manures on improving soil physical (Hati *et al.* 2007) ^[6], chemical conditions (Fan *et al.* 2005) ^[4]. resulting in better nutrient cycle in the soil profile which in turn increased system productivity (Kaur *et al.* 2008) ^[7].

Table 1: Details of treatments

Organic crop management	CM 1: 100% Organic	Nutrient management: 1/3 of RDN by NADEP compost + 1/3 by vermicompost + 1/3 by Non-					
	management	edible Cake + BF; All other management practices as per NPOP guidelines					
	CM 2: 75% Organic + innovative practices	(1/3 of RDN by NADEP compost + 1/3 by vermicompost + 1/3 by non-edible cake + BF) +					
		Innovative practices (BD 500 @ 75g/ha before sowing & 30 DAS + BD 501 @ 2.5g/ha @ 2-4					
		leaf stage + Mataka Khad 10% at 3 WAS + Panchagavya @ 3% 6 WAS.					
Integrated crop management	CM 3: 50%	(1/3 of RDN by NADEP compost + 1/3 by vermicompost + 1/3 by Non edible cake + BF;					
	Organic + 50% inorganic	integrated management) + 50% inorganic (Fertilizers & chemical management)					
	CM 4:75% Organic + 25%	(1/3 by NADEP compost + 1/3 by vermicompost + 1/3 by non-edible cake + Azotobacter;					
	inorganic	integrated crop management) + 25% inorganic (Fertilizers & chemical management)					
Inorganic	CM 5: 100% Inorganic Nutrients sources						
crop	CM 6. State recommon detion (10t EVM/he once in 2 years) fortilizers & masticides as given in the even meduation guide of state)						
management	t						

 Table 2: Effect of organic, integrated and inorganic crop management practices on maize equivalent yield and economics of maize + blackgram intercropping (Mean of five years)

	Treatments	MEY (Kg/ha)	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	B:C ratio
Organic management	100% Organic	2677	64766	58707	6059	0.12
practices	75% Organic + Innovative Practices	2817	66014	52421	13593	0.28
Integrated management	75% Organic + 25% Inorganic	2992	68842	51482	17360	0.37
practices	50% Organic + 50% Inorganic	2999	70125	44273	25852	0.62
Inorganic management	100% Inorganic Management	3101	70362	29841	40521	1.43
practices	State Recommendation	2943	67841	35503	32338	0.94
S.Em ±			1940.537		1940.537	0.091
CD at 5%			5724.580		5724.580	0.270

Vermicompost unit

Enriched compost

http://www.thepharmajournal.com

NADEP compost production

Mataka Khad

Farm waste incubation tank

Conclusion

Among six crop management practices used for cultivation of maize + blackgram (2:2), for five years, the maximum maize equivalent yield, net return and B: C ratio was found with the use of 100 per cent inorganic management practices which was significant over the organic management practices and was observed at par with integrated crop management practices.

Acknowledgements

We acknowledge the financial support of ICAR- All India Network Project on Organic Farming, Indian Institute of Farming System Research, Modipuram, Meerut, India for this study.

References

- 1. APEDA. 2017-18. www.apeda.gov.in
- Biswas PP, Sharma PD. A new approach for estimating fertilizer response ratio. Indian Journal of Fertiliser. 20084(7):59-62.
- 3. Choudhary VK, Suresh-Kumar P, Bhagawati R. Production potential, soil moisture and temperature as influenced by maize- legume intercropping. Int. J. Sci. Nature. 2012;3:41-46.
- 4. Fan T, Stewart BA, Yong W, Junjie L, Gungye Z. Longterm fertilization efects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agr Ecosyst Environ. 2005;106:313-329.
- 5. Gomez KA, Gomez AA. Statistical Procedures for

Agricultural Research, 2nd ed. New York, NY: John Wiley & Sons, 1984.

- 6. Hati MK, Swarup A, Dwivedi AK, Mira AK, Bandyopadhyay KK. Changes in soil physical properties and organic carbon status at the topsoil horizon of a Vertisol of central India after 28 years of continuous cropping, fertilization and Manuring. Agr Ecosyst Environ. 2007;119:127-134.
- Kaur T, Brar BS, Dhillon NS. Soil organic matter dynamics as afected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr Cycl Agroecosyst. 2008;81:59-69.
- Maitra S, Palai JB, Manasa P, Kumar DP. Potential of intercropping system in sustaining crop productivity. IJAEB. 2019;12(1):39-45.
- 9. Panda SC. Agronomy. Agrobios India, Jodhpur, 2014, p 158.
- Shah SN, Shroff JC, Patel RH, Usadadiya VP. Influence of intercropping and weed management practices on weed and yields of maize. Int. J Sci. Nature. 2011;2:47-50.
- Sharma SK, Choudhary R, Trivedi A, Choudhary RS, Yadav SK. Response of organic nutrient management practices on soil properties and productivity of chickpea (*Cicer arietinum* L.). International Journal of Bioresource and Stress Management. 2017;8(2):196–200.