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Abstract 
A brief review of the automatic guidance system is described in this paper. The navigation system 

includes different navigation sensors, vision sensors and computational methods for the development of 

automated guided vehicles. These navigation systems have been used for vehicle steering control 

systems. The developed machine is guided by different sensor-based and vision-based technology having 

RTK-DGPS navigation system that whole system will be useful for performing several agricultural 

operations such as tilling, spraying of pesticides, granular fertilizer application, weeding, harvesting, etc. 

Vision-based and sensor-based technologies are becoming very popular for guidance systems of the 

agricultural automated guided vehicle. Several types of research have been invented and many prototypes 

developed based on these guidance systems but have not proceeded into commercialization yet. IoT in 

agriculture, robotics, artificial intelligence and other sensor and vision-based technologies will augment 

the realization of agricultural vehicle automation in the future. 

 

Keywords: Automatic guidance system, vision-based, sensor-based, navigation 

 

Introduction 
The concept of a fully autonomous machine for agricultural operations is far away from new, 
i.e. driverless tractor using leader cable guidance systems was originated in the 1950s 
(Morgan, 1958). For several years, robotic systems have been used for industrial production 
and in warehouses, wherever controlled surroundings are often secured. In agriculture and 
forestry, research into driverless machines has been a vision initiated in the early 1960s with 
basic research on projects on automatic steered systems and autonomous tractors (Wilson, 
2000). A combined application of novel sensor systems, communication technologies, 
geographical information systems (GIS) and global positioning systems (GPS) have enabled 
researchers to develop new autonomous machines for different crops in the agriculture and 
horticulture sector as well as for landscape management. 
In the 1980s, the potential for combining computers with image sensors provided opportunities 
for machine vision-based guidance systems. In the mid of 1980s, researchers at Michigan State 
University and Texas A & M University had explored the machine vision guidance system. In 
1997, agricultural automation has become a significant issue together with the support of 
precision agriculture. The potential benefits of automated agricultural machines have increased 
productivity, application accuracy and enhanced operator safety. Additionally, the rapid 
advancement in electronics, computers, and computing technologies has inspired renewed 
interest in the development of machine guidance systems.  
Automated guidance control aims to steer the machine following the desired path 
automatically. It requires a guidance system to be able to detect machine posture, create a 
proper steering signal and steer the machine according to the signal. The posture is named as 
the position and orientation of the machine (Kanayama and Hartman, 1989). Different 
guidance sensing systems, including mechanical, optical, radio, ultrasonic and leader cable 
systems have been developed for agricultural machines during the past several decades 
(Richey, 1959; Kirk et al., 1976) [22, 14]. Within the past two decades, vision sensors and GPS 
sensors are value-added to the list of available guidance sensors. Although, each system uses 
different technologies to guide machines. 

 

Review on Automatic Guidance Systems  

Guidance is the “driver” of a machine. It takes input from the navigation system and uses 

targeting information to send signals to the steering systems that will allow the machine to 

reach its destination. 
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Generally, three types of guidance systems have been used 

namely Sensor-based guidance system, Vision-based 

guidance system and RKT-DGPS based autonomous field 

navigation system. 

 

Sensor-Based Guidance Systems 

In the sensor-based guidance system, different types of 

sensors have been used for sensing the plant or row. Sensors 

are used as input devices in which sensors sense the plant or 

row and send commands to the microcontroller for signal 

processing and create output for agricultural operation. 

Shivaprasad et al. (2014) [25] developed a robot for seed 

sowing and fertilizer application to reduce manpower, time-

consuming, and increase productivity. The robot system was 

used to develop the process of cultivating agricultural land 

without using manpower. The robot was designed for 

performing several tasks like plowing the land, seed sowing, 

watering to the plant, fertilizing and navigation using a 

microcontroller. The obstacle was detected by using an 

ultrasonic sensor. The robot was navigated in forward and 

reverse direction as well as turning right and left directions. 

Satisfactory performance was found during testing with 

lateral movement accuracy of 10 cm. 

Celen et al. (2015) [5] designed an autonomous agricultural 

robot to navigate in between rows with the help of an 

ultrasonic sensor. The robot was designed independently to 

drive through the row crops in a field. The offset of the robot 

was detected in real-time and corrected that offset error for 

guiding the robot inside the crop row and also turned at the 

end of the rows to the adjacent row automatically. The white 

diluted paint was used to drop onto the soil during the 

movement of the robot. The paint helped to visualize the path 

of robot movement. The offset was derived from the distance 

between the paint and the real center of the rows. 

Experimental results showed that algorithms of row guidance 

and headland turn were according to the parameters measured 

and analyzed such as the offset for row guidance and the 

difference between the motion trajectory and the expected 

trajectory. The accuracy of row guidance was ±70 mm at the 

speed of 1 m/s.  

Jorge (2017) [12] developed an object avoidance robot 

(alseTv1) which used three HC-SR04 ultrasonic sensors to 

detect potential obstacles and correct its trajectory in the 

Arduino Nano microcontroller. AlseTv1 was the first 

succession of a sophisticated project which would make the 

integrated and advanced robot using Raspberry Pi, Raspberry 

Pi camera module, AMG8833 Grid-Eye infrared array sensor 

to process signals from different sensors. 

Shinde and Awati (2017) [24] developed an automatic seed 

sowing machine using battery-powered wheels and an inbuilt 

DC motor. There was a provision of an alarm system for 

detecting the level of storage seed. The seed sowing machine 

was detected obstacles very easily using an ultrasonic sensor. 

Buzzer was indicated when any obstacle comes in the in-front 

of the machine or diverts path. A seed was fall from the seed 

drum in each complete rotation of the rotating wheel. The 

seed dropping process was taken place smoothly as well as 

without wastage of seeds. The alarm was indicated once the 

whole system ended. This system was worked efficiently with 

alarming and indicating facilities. 

Sowjanya et al. (2017) [27] developed a multipurpose 

autonomous agricultural robotic machine that was controlled 

through bluetooth for plowing, seed showing, and irrigation 

systems. It was especially important for the farmworkers in 

the potentially harmful area for safety and health. The robot 

was used to minimize manpower, making proper irrigation 

and efficient utilization of resources. The robot was mainly 

useful for weed control and management, fertilizer application 

based on soil conditions and requirements and soil sensors for 

drip irrigation in rainy areas. 

Saravanan et al. (2018) [23] developed an automatic seed 

sowing robot operated by clean energy for chickpeas seed 

which minimized the working cost and the time for digging. 

A proximity sensor was used in this robot to convert rotations 

to distance with a 12V battery, which then gave the necessary 

power to a DC motor. This power was then transmitted to the 

shaft to drive the wheels and further reduction of labor 

dependency. IR sensors were used to maneuver the robot in 

the field. Seed sowing and digging robot moved on different 

ground contours and performs digging and sowing the seed. 

The low cost of the machine as well as its ability to carry out 

sowing and fertilizing simultaneously was certainly a boon to 

the farmers which was saving much of their time. Results 

showed almost 60% saving in operational cost and 15% 

saving in seed requirements. 

 

Vision-Based Row Following Systems 

Gerrish et al. (1997) [7] tried to implement a vision guidance 

system on a Case 7190 MFD tractor at Michigan State 

University. The camera was mounted 2.8 m above from the 

ground level on the left side of the machine with a tilting 15° 

below the horizon and a facing beyond the machine. When 

the zoom angle was correctly set, the optical cone angles were 

found accordingly 20.2° in the lateral direction and 16.8° in 

the forward direction. The automatic guidance system was 

tested in a straight row at tractor speeds of 4.8 and 12.9 km/h. 

Results were drawn in both speeds. The maximum tracking 

errors were found as 6.1 and 12.2 cm respectively at the speed 

of 4.8 and 12.9 km/h. 

Sogaard and Olsen (2003) [26] described a method based on 

computer vision for the detection and localization of crop 

rows, especially of small-grain crops. The method was 

proposed to use an automatic guidance system in agricultural 

machinery i.e., an automatic guidance system deployed in an 

inter-row cultivator. The computer vision system consisted of 

a color vision camera and a computer. The camera focused on 

the field surface from an inclined angle to obtain images that 

covered up to about five rows simultaneously. New images 

were continuously transferred to the computer, which 

processed them and calculated the necessary lateral 

movements of the implement. The processing method was not 

included a segmentation step, which was found in most of the 

other methods for plant detection. The segmentation step was 

replaced by the computation of the center of gravity for row 

segments in the image. This approach proved to reduce the 

computational burden of the image processing software. The 

estimation of the orientation and the lateral position of the 

center lines of the rows was accomplished by weighted linear 

regression. The accuracy of estimation was determined by 

comparing the calculated row centerline with the position of a 

reference string, which was placed parallel to the row along 

the centerline of an adjacent inter-row space. Experiments 

indicated that the row position could be estimated with an 

accuracy of about ± 6 mm to approximately ± 12 mm 

depending on the crop. 

Reid et al. (2004) [21] developed a row segmentation algorithm 

based on k-means clustering to segment crop rows. A vision-

based automatic guidance system for row-crop applications 
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was used for finding guidance information from crop row 

structure and achieving accurate control of the machine. They 

described a robust procedure to obtain a guidance directrix. 

The procedure included row segmentation by K-means 

clustering algorithm, row detection by a moment algorithm, 

and guidance line selection by a cost function. Two image 

data sets, one taken from a soybean field and the other taken 

from a cornfield, were used to evaluate the accuracy of the 

proposed image processing procedure. The average RMS 

offset error from 30 soybean images was 1.0 cm with an 

average cost of 4.99 ₹. In contrast, the average RMS offset 

error from 15 corn images was 2.4 cm with an average cost of 

7.27 ₹. The proposed image processing procedure was 

implemented on the vision-based guidance of the tractor. An 

automatic guided tractor was able to perform cultivation 

operations in both straight and curved rows. 

Will et al. (2005) [31] applied the Hough transform and 

connectivity analysis in the image processing technique and 

found an appropriate pathway in the field. Pre- and post-

processing of the image of the tractor’s forward view were 

crucial for an effective application of the Hough transform. 

Pre-processing included the determination of a suitable region 

of interest (RoI), appropriate dynamic thresholding, and 

midpoint encoding. Post-processing incorporated the 

connectivity analysis algorithm to obtain the best-estimated 

lines, which represented the detected crop rows. The lines 

generated by the crop row detection method were consistent 

with a qualitative evaluation of actual crop row locations and 

allowed correct signals for wheel steering. This method was 

tested with other crops aligned in rows to determine its full 

versatility and robustness. The Hough transform was used to 

detect row crops and the connectivity analysis was 

implemented to recognize the most appropriate path from all 

possible choices. This system was implemented in an 

agricultural tractor which was tested in both laboratory and 

field experiments. The methodology devised was used to 

overcome image noise problems and successfully determine 

the proper trajectory for the tractor. 

Subramanian et al. (2006) [28] developed an autonomous 

guidance system for use in a citrus grove. A common tractor 

as a machine was used for this study. Machine vision and 

laser radar (lidar) were individually used for guidance and a 

rotary encoder was used to provide feedback on the steering 

angle. A PID controller was developed to diminish the path 

error. The machine’s guidance accuracy was tested by 

inflexible test paths constructed of common hay bales. Path 

tracking performance was observed. The guidance system 

guided the tractor automatically through straight and curved 

paths. An average error of 2.8 cm using machine vision 

guidance and an average error of 2.5 cm using radar guidance 

were observed when the machine was tested in a curved path 

at a speed of 3.1 km/h. The guidance system has guided the 

machine successfully in a citrus grove alleyway. 

Bakker et al. (2008) [2] developed a new approach for row 

recognition based on grey-scale Hough transform on 

intelligently merged images resulting in a considerable 

improvement of the speed of image processing. A color 

camera was used to obtain images from an experimental sugar 

beet field in a greenhouse. The color images were transformed 

into greyscale images resulting in good contrast between plant 

material and soil background. Three different transformation 

methods were compared. The greyscale images were divided 

into three sections that are merged into one image, creating 

less data while still having information of three rows. It was 

shown that the algorithm was able to find the row at various 

growth stages. The mean error between the estimated and real 

crop row per measurement series varied from 5 to 198 mm. 

An average error from the crop row detection was about 

22 mm. High errors were found mainly due to factors that did 

not occur in a good manner or observed in the limited number 

and size of crop plants, overexposure of the camera, and the 

presence of algae. Inaccuracies created by footprints was 

indicated that the linear structures in the soil surface in a real 

field might be created problems that should be considered in 

further investigations. In two measurement series that was not 

suffered from these error sources, the algorithm was able to 

find the row with mean errors of 5 and 11 mm with standard 

deviations of 6 and 11 mm. The image processing time varied 

from 0.5 to 1.3 s per image. 

Xue and Xu (2010) [33] designed an autonomous agricultural 

robot platform based on a vision-based row guidance method 

to drive through the row crops in a field. The offset and 

heading angle of the robot platform were detected in real-time 

to guide the platform based on recognition of a crop row 

using machine vision. The preliminary experiments of the row 

guidance system were implemented in a vegetable field. 

Algorithms of row identification and row guidance were 

effective according to the parameters measured and analyzed, 

such as heading angle, offset for row guidance, the difference 

between the motion trajectory of the robot and the expected 

trajectory. The accuracy of row guidance was up to ± 35 mm, 

which meant that the robot worked with high accuracy.  

Pajares et al. (2011) [19] developed a computer vision system 

to successfully discriminate between weed patches and crop 

rows under uncontrolled lighting in real-time. The system 

consisted of two independent subsystems, a fast image 

processing delivering results in real-time (Fast Image 

Processing, FIP), and slower and more accurate processing 

(Robust Crop Row Detection, RCRD) that was used to correct 

the first subsystem’s mistakes. Tested on different maize 

fields and during different years, the system successfully 

detected an average of 95% of weeds and 80% of crops under 

different illumination, soil humidity, and weed/crop growth 

conditions. Moreover, the system showed to produce 

acceptable results even under very difficult conditions, such 

as in presence of dramatic sowing errors or abrupt camera 

movements.  

Cruz et al. (2012) [6] developed a crop row detection method 

in the maize fields having high weed pressure. The vision-

based system was designed and installed on a mobile 

agricultural machine. The image processing consisted of three 

main processes which were, Image segmentation was based 

on the application of a vegetation index, the double 

thresholding based on Otsu's method to achieve the separation 

of weed and crop and last, applied the least-squares linear 

regression in crop row detection for line adjustment. Crop and 

weed separation was effective and the crop row detection was 

favourably compared against the classical approach based on 

the Hough transform.  

Pajares et al. (2013) [20] evaluated a vision-based automatic 

expert system for the accuracy of crop row detection in maize 

fields. The vision system was designed for a mobile 

agricultural robot with considering vibrations, gyros and 

uncontrolled movements. Crop row was identified by 

applying geometrical parameters under image perspective 

projection in a vision-based technique. The first one was 

intended for separating green plants (crops and weeds) from 

the rest of the others (i.e. soil, stones, and others). The second 
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one was based on the system geometry where the expected 

crop lines were mapped onto the image and then a correction 

was applied through the well-tested and robust methodology. 

They designed an automatic method for crop/row detection in 

the maize field by applying automatic thresholding as the first 

step for plants identification. In a second stage, they applied 

the Theilsen estimator for accurate crop row detection. 

Wang et al. (2013) [30] proposed a path recognition method for 

an agricultural robot vision-based navigation system under a 

weed environment. The soil background was eliminated by 

image segmentation based on color components. The weed 

noise was filtered by deleting small-area objects in the binary 

image. The crop centerlines and navigation path were 

extracted through Hough transformation. Experimental results 

showed that weed noise was eliminated from the field image. 

The path recognition method in the research was practical and 

accurate for vision-based robot navigation. The method 

proposed in the research was aimed at a straight-line 

navigation path, which was of little curvature. Further, 

research would be focused on navigation paths with big 

curvature. 

Adeel and Khurram (2014) [1] developed a small size low-cost 

interactive robot for precision farming. The robot had a 

computer vision technique to automate the process of 

navigation. To maintain the course of action, the robot 

followed the rows of the crop in the field through an image 

processing algorithm. In this algorithm, the binary image was 

first split into several horizontal strips and then with the help 

of the vertical projection method, row position was estimated 

and finally detected the rows by using Hough transformation. 

Jianbo et al. (2014) [10] developed a new method for path 

detection suitable for rice, rapeseed and wheat high crop 

stubble tilling conditions. First, the distribution characteristics 

of rice, rapeseed, and wheat high crop stubble images in 

paddy fields were analyzed based on the RGB color model. 

The color images were converted into grey images using 

custom factor combination R+G-2B. Then, the grey images 

were segmented from the soil background using luminance 

mean texture descriptor and the binary image through custom 

shear binary image algorithm was cut to remove big noise 

blobs in high crop stubble’s tilled area. Finally, a navigation 

path from navigation points was derived by using the least 

square method. The experimental results indicated that the 

navigation path detection algorithm was fast and effective to 

obtain navigation paths in rice, rapeseed and wheat high crop 

stubble tilling conditions with up to 96.7% of segmentation 

accuracy within 0.6 s processing time. 

Jiang et al. (2014) [11] evaluated a robust crop row detection 

algorithm for the vision-based agricultural machinery 

guidance system. The algorithm consisted of five steps: Gray-

level transformation, binarization, candidate center points 

estimation, real center points confirmation and crop rows 

detection. That experimental system was compared to 

Standard Hough Transform (SHT) and demonstrated the 

proposed method outperforms SHT either in detection rate, 

detection accuracy and computation time. The developed 

algorithm had required about 61 ms to recognize crop row for 

a 640 × 480 pixels image, while the detection rate and 

accuracy were reached 93% and 0.0063° accordingly. 

Chang and Lin (2018) [4] developed a smart agricultural 

machine vision-based system for weeding and variable-rate 

irrigation agricultural operations. To develop a small-scale 

smart agricultural machine, the proposed computer vision and 

multi-tasking combined processes that were automatically 

done weeding and perform variable rate irrigation within a 

cultivated field. Image processing techniques such as HSV 

(hue (H), saturation (S), value (V)) color conversion, 

estimation of thresholds during the binary segmentation 

process, and morphology operator procedures were used for 

confirming the position of the weed and plant. Those results 

were used to perform weeding and watering operations. The 

data regarding the wet distribution area of surface soil 

(WDAS) and the moisture content of the soil was provided to 

a fuzzy logic controller, which drives pumps to perform 

variable rate irrigation and to attain water savings. The 

proposed system was implemented in small machines. The 

experimental results showed that the proposed image 

processing system could classify plants and weeds in real-

time with an average of greater than 90% classification rate 

that allowed the machine for weeding by an average weeding 

rate of 90% and watering by maintaining the moisture content 

of the deep soil at 80 ± 10%. 

 

RTK-DGPS Based Autonomous Field Navigation Systems  
O'Connor et al. (1996) developed carrier-phase differential 

GPS for the steering of a John Deere 7800 series tractor at 

Stanford University, California. A four antennae system was 

provided for enhancing the heading high accuracy of 0.1° and 

offset accurately 2.5 cm at a speed of 3.25 km/h in straight 

rows. 

Nagasaka et al. (2004) [16] developed an autonomous guidance 

system in rice transplanter using a global positioning system 

(GPS) and gyroscopes. The real-time kinematic global 

positioning system (RTK GPS) was employed in the 

automated six-row rice transplanter for precise positioning. 

Fiber optic gyroscope (FOG) sensors were used for measuring 

direction. The actuators were used to control steering, engine 

throttle, brake, clutch, etc. The RTK GPS achieved 2 cm 

precision at a 10 Hz data output rate. The FOG sensors were 

employed to maintain machine inclination. RTK GPS position 

data were influenced by machine inclination and corrected by 

the FOG sensor data. FOG sensor drift was corrected by 

referring to the position data. The influence of drift and 

deviation from the desired path was eliminated by regulating 

the yaw angle and machine speed. Heading angle drift was 

calculated. A simple proportional steering controller was used 

in the autonomous guidance system. The deviation from the 

desired path was around 5.5 cm at a speed of 0.7 m/s after 

correcting for the yaw angle offset. The maximum deviation 

from the desired path was less than 12 cm which did not 

include the first 2 m after starting operation. The operation 

was accurate enough for the rice transplanting. However, they 

could not obtain enough accuracy for spraying or mechanical 

weeding operations after rice transplanting because the 

machine must travel between the crop rows. For this, it is 

necessary to improve the turn control algorithm and steering 

controller to obtain more precise operations. 

Bakker et al. (2011) [3] developed an autonomous robot 

platform having RTK-DGPS based autonomous field 

navigation system for a sugar beet crop. It was consisted of 

including automated row-end turns to provide a method for 

crop row mapping combining machine vision and to evaluate 

the benefits of the behavior-based reactive layer in a hybrid 

deliberate systems architecture. Two experiments were 

performed simultaneously i.e., the following pre-defined 

paths reformed from crop row positions based on RTK-DGPS 

and crop row mapping by combining vision-based row 

detection with RTK-DGPS information. The standard 
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deviation, mean, minimum and maximum lateral error of the 

robot were 1.6, 0.1, −4.5 and 3.4 cm, respectively at a speed 

of 0.3 m/s. The standard deviation, mean, minimum and 

maximum of the heading error were 0.008, 0.000, −0.022 and 

0.023 rad, respectively while following a straight path on the 

field with RTK-DGPS. 

Unal and Topakci (2015) [29] designed and developed a 

remote-control and GPS-guided robot for precision farming. It 

was designed to control the robot via the internet and image 

processing techniques. The joystick was used to control the 

movements of the robot in any direction or speed. Real-time 

video transmission to the remote computer was accomplished 

with a camera placed on the machine. The navigation 

software was developed for autonomous steering. Results 

showed that the linear target point precision was valued from 

10 to 12 cm and the distributed target point precision was 

valued from 15 to 17 cm. 

Pablo et al. (2020) [18] mentioned different kinds of robots and 

their application below Table: 

 
Table 1: Type of robots and their applications 

 

Sr. No Name of robot Application 

1 Bonirob/2009 

Steering scheme: Independent steering and traction wheels in 1-DOF legs (wheel-legs) 

Applications: General agricultural tasks 

A concept was similar to the intelligent phone scheme that gives third parties the possibility to integrate their modules 

for specific applications 

2 Ecorobotics/2014 

Steering scheme: Independent steering and traction wheels 

Application: Robot run by vision sensors/camera to detect the position of weeds in between the rows and kills by two 

robotics arms. 

3 AgBot II/2014 

Steering scheme: Two front skid steering wheels and two rear caster wheels 

Applications: Fertilizer application in large horticultural crops, weed management, detection and classification. Destroy 

weeds using mechanical or chemical devices 

4 Ladybird/2015 
Steering scheme: Independent steering wheels Applications: Crop assessment using hyperspectral cameras, panoramic 

and stereovision cameras, LIDAR, and GPS, thermal and infrared detecting systems 

5 
Greenbot/Precision 

Makers 2015 

Steering scheme: Independent steering and traction wheels. Applications: Regular agricultural and horticultural 

operations 

6 Casar/2016 
Steering scheme: Independent steering and traction wheels Applications: Autonomous robot used in enclosed fruit 

plantations and vineyards. Pest and soil management, fertilization, harvesting, and transport activities. 

7 Rippa/2016 
Steering scheme: Independent steering and traction wheels 

Applications: Robot used in the vegetable growing industry, Spot spraying of micro-dose weedicides to destroy weeds. 

8 
Vibro Crop 

Robotti/2017 

Steering scheme: Skid steering wheels 

Applications: Precision farming in seed sowing and row crop cleaning mechanically 

9 Ceeol/2019 
Steering scheme: Skid steering trucks 

Applications: Furrow preparation, fertilizer application, weeding, harvesting and soil analysis 

10 Naio/2019 Steering scheme: Independent steering and traction wheels Applications: Leaf thinning and trimming in vineyards 

 

Benefits of Automation in Agriculture 

Goense (2003) discussed the comparison between an 

autonomous machine and conventional machinery. The 

autonomous machine was equipped with several implements 

having working widths from 50 to 120 cm. He presented that 

if an autonomous machine was utilized at 23 hours a day, it 

would be economically feasible with a slight increase in the 

price of the navigation system or with a slight reduction in 

labor cost. He also discussed several other changes that will 

affect the final result, such as the fraction of labor time 

needed out of the total machine time and the machine tracking 

system, which provided better utilization of machine working 

width and there was no need for operator’s rest allowance.  

Have (2004) [9] analyzed the effects of automation on 

machinery sizes and costs for soil tillage operation and crop 

establishment. He found that the ratios between an 

autonomous tractor and a traditional tractor, in terms of cost, 

labor requirement and daily working hours required were 

accordingly 1.2, 0.2, and 2 times. The analysis showed that 

the manual control shift to automatic control would decrease 

the tractor size, implement sizes and investments up to half, 

decrease the tractor investment to about 60% and decrease the 

annual tractor plus machinery costs to approximately 65%. 

 

Conclusion  

Vision-based and sensor-based technology has been 

implemented several decades ago. RTK-DGPS and Radar 

(lidar) have also been used widely for the automatic guidance 

system since many years ago. Mostly automated guided 

vehicles and agricultural robots have been developed in 

overseas countries that are very costly as per their 

methodology used and materials procurements and market 

segmentations. In overseas countries, large farmers have large 

farm capacities for agricultural production and that is one of 

the reasons for the utilization of robotics and AGVs in several 

agricultural operations. While in the case of developing 

countries especially in India, The researchers are doing their 

remarkable efforts for the development of robotics and AGVs 

in Indian farming suitable conditions. ICAR has initiated a 

World bank funded institutional development program under 

the NAHEP scheme. In this program, several institutions have 

been recognized for this program implementation to fulfill the 

vision of ICAR. By this NAHEP-IDP program, the research 

on robotics, AGVs and UAVs have been started with keeping 

the suitability of Indian farming conditions. Robots and 

AGVs have not been commercialized in India yet due to lack 

of awareness, nonsuitability of Indian farming conditions, 

insufficient and inefficient components availability at low 

cost and small and marginal farmers being dominant in India. 

But based on rapidly ongoing research undertaken by ICAR 

institutions and other private organizations, it is likely to be 

taken place soon. For boosting this research capability, this 

paper is very useful for carrying forward the research. 
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