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Abstract 
Cotton is an important principal commercial fibre crop. It is one of the most leading and important cash 

crops in Indian economy. In the present study an attempt has been made using secondary data for forty 

six years (from 1970 to 2016) to understand the forecast in production of cotton crop in Dharwad, Ballari 

and Raichur districts of Karnataka. The results revealed that, ARIMA (2, 1, 2) model was appropriate for 

both Dharwad and Ballari districts while, ARIMA (1, 1, 1) model was found to be most suitable for 

forecasting production of cotton in Raichur district. 

 

Keywords: Cotton, production, forecasting, ARIMA, RMSE and MAPE 

 

Introduction 
Cotton is the most essential natural fiber crop in the world for textile produce, accounting for 
about 50 per cent of all fibers used in the textile industry. It is more important than the various 
synthetic fibers, and it is grown all over the world in about 80 countries. Cotton is unique 
among agricultural crops, because it is the main natural fiber crop, and also provides edible oil 
and seed by-products for livestock feed, it also provides income for hundreds of millions of 
people. Cotton is one of the agro-industrial crops which are produced in both developing and 
developed countries. Cotton fibers are used in clothing and household furnishings. It has 
played an important role since the industrial revolution of the 17th century. Currently, it is an 
important cash crop especially for a number of developing countries at local and national 
levels (Gudeta and Egziabher, 2019) [4]. India is primarily an agriculture based country and its 
economy largely depends on agriculture. India cultivates the highest acreage under cotton in 
the world. It provides the basic raw material (cotton fiber) to the cotton textile industry (Rajan 
and Palanivel, 2018) [18]. It is the leading textile fiber in the world accounting for 35 per cent of 
the world fiber use. Cotton was first cultivated about 7,000 years ago, by the inhabitants of the 
Indus Valley Civilization. This civilization covered a huge swath of the north-western part of 
the Indian sub-continent, comprising today’s parts of eastern Pakistan and north-western India 
(Mayilsami and Selvaraj, 2016) [9]. Cotton has been traditionally known as the backbone of 
nonfood crops of agricultural economy of India (Sharma, 2015) [20]. About 25 per cent of our 
country’s Gross Domestic Product (GDP) comes from agricultural sector. Nearly 75 per cent 
of the country’s population lives in villages and depends on agriculture (Parmar, et al., 2016) 

[11]. Cotton is an important principal commercial fiber crop. It is also known as ‘White gold’ or 
the “King of Fibers” due to its importance in agricultural as well as industrial economy 
throughout the world. Cotton is one of the leading and important cash crops in Indian economy 
(Mohammad, et al., 2018).India is the only country in the world growing all the four cultivated 
species of cotton, viz., G. hirustum, G. arboretum, G. herbaceaum and G. barbadense. The 
maximum area has been covered by the hybrids. India is unique among the major cotton 
growing countries because of the broad range of agro-climatic and soil conditions which 
permit cultivation of all varieties and staple lengths of cotton. (Samuel et al., 2013) [19]. Cotton 
is mainly grown in Punjab and Sindh provinces. This crop contributes significantly in Pakistan 
economy by providing raw material to textile industry as well as foreign exchange earnings 
through export of cotton lint (Ali, et al., 2017) [1]. Major Cotton producing countries are India, 
China, USA, Pakistan, Brazil, Australia, Uzbekistan, Turkey, Turkmenistan and Burkina 
(Rajan and Palanivel, 2017) [17]. In the recent period, cotton is gaining momentum in non- 
traditional areas such as Odisha, West Bengal and Tripura. India accounts for approximately 
25 per cent of worlds total cotton area and 18 per cent of global cotton production (Kulkarni et 
al., 2017) [7].
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India ranks first with respect to area and production and 

eighth rank with respect to productivity of cotton. Cotton in 

India occupies an area of 118.81 lakh hectares with a 

production of 345.82 lakh bales and productivity of 495 

Kg/ha. Cotton is cultivated in a majority of the states in the 

country. The ten major cotton producing states of India are 

Gujarat, Maharashtra, Telangana, Karnataka, Andhra Pradesh, 

Haryana, Madhya Pradesh, Rajasthan, Punjab and Tamil 

Nadu and accounts for more than 95 per cent of the area under 

cotton. In Karnataka area under cotton is around 7.5 lakh 

hectares which is 7 per cent of country’s area. The production 

of the crop is 28 lakh bales (around 4 per cent of country’s 

production) while the productivity is 653 kg/ha. The main 

cotton growing districts in Karnataka are Dharwad, Ballari 

and Raichur. The Government of India has launched 

“Technology Mission on Cotton” in February 2000 with an 

objective of improving the production and productivity of 

cotton through development of high yielding varieties; 

enhance the income of the cotton growers by reducing cost of 

cultivation, appropriate transfer of technology and better farm 

management practices, cultivation of Bt-cotton hybrids etc. 

Area estimation and forecasting of production are essential 

procedures supporting in policy decisions with respect to 

production, land use allocation, food security, environmental 

issues price structures as well as consumption of cotton in the 

country. Increased global demand for cotton should induce 

higher production in the next decade. With these 

backgrounds, it is necessary to know the extent of cotton 

production in future with available resources. Various 

approaches have been used for forecasting such agricultural 

systems. Borkar Prema et al. (2016) [11] in their empirical 

study showed that ARIMA (2, 1, 1) is the appropriate model 

for forecasting the production of cotton in India. The study of 

Debnath et al. (2015) [2] revealed that area, production and 

yield of cotton in India would increase from 2016-17 to 2020-

21. Similar studies have been conducted by Payyamozhil and 

Kachi (2017) and Rajan et al. (2018) [18] for forecasting cotton 

production in India, the analysis revealed that ARIMA (0, 1, 

0) is the best model for forecasting cotton production. The 

present study has been undertaken with an objective to 

forecast the production of cotton in India in future using Box- 

Jenkins ARIMA model. Among the stochastic time series 

models ARIMA types are very powerful and popular as they 

can successfully describe the observed data and can make 

forecast with minimum forecast error. These types of models 

are very difficult to identify and estimate. Muhammad et al. 

(2018) [10] conducted an empirical study of modeling and 

forecasting time series data of rice production in Pakistan. 

Similar studies have been done by Rachana et al. (2010) [13] 

for forecasting pigeon pea production in India by using 

ARIMA Modeling and Rahman (2010) [14] for forecasting of 

boro rice production in Bangladesh. Iqbal et al. (2005) [6] also 

use the ARIMA Model for forecasting wheat area and 

production in Pakistan. 

 

Methodology 

In the present study, major cotton growing districts of 

Karantaka viz., Dharwad, Ballari and Raichur were selected. 

In order to fit theforecasting models for production of cotton 

crop, secondary data pertaining to the area, production and 

productivity of cotton crop for the period of 46 years (from 

1970-71 to 2015-16) was obtained from the Directorate of 

Economics and Statistics, Bengaluru. 

 

Forecasting using Auto Regressive Integrated Moving 

Average (ARIMA) Model 

The Box-Jenkins procedure is concerned with fitting a mixed 

Auto Regressive Integrated Moving Average (ARIMA) model 

to a given set of data. A value below 1.5 and a value above 

2.5 indicate the presence of autocorrelation in data. Auto 

Regressive (AR) models were first introduced by Yule in 

1926. These were consequently supplemented by Slutsky who 

in 1937 presented Moving Average (MA) schemes. Wald 

(1938), combined both AR and MA schemes and showed that 

ARMA processes can be used to model all stationary time 

series as long as the appropriate order of p, the number of AR 

terms, and q, the number of MA terms stands.  

 

a. Stationarity and non-stationarity 

A Time series is said to be stationary if its underlying 

generating process is based on a constant mean and constant 

variance with its autocorrelation function (ACF) essentially 

constant through time. Otherwise it is called non-stationary. A 

statistical test for stationarity has been proposed by Dickey 

and Fuller (1979).∆𝑌𝑡−1 = 𝑌𝑡−1 + 𝑡 

Where =  − 1, Then, null hypothesis of 𝐻0:  = 0against 

the alternative hypothesis 𝐻1:  < 0. Acceptance of null 

hypothesis indicates that the series is stationary. Usually, 

differencing is applied until the ACF shows an interpretable 

pattern with only a few significant autocorrelations. 

 

b. Seasonality 

The seasonal pattern may additionally display constant 

change over the time as well. Just as regular differencing was 

applied to the overall trending series, seasonal differencing 

(SD) is applied to seasonal non-stationarity as well as 

autoregressive and moving average tools are available with 

the overall series, so too, they are available for seasonal 

phenomena using seasonal autoregressive parameters (SAR) 

and seasonal moving average parameters (SMA).  

 

c. Autocorrelation Function (ACF)  

The most important tools for the study of dependence is the 

sample autocorrelation function. The correlation coefficient 

between any two random variables X, Y, which measures the 

strength of linear dependence between X, Y, always takes 

values between -1 and 1. If stationarity is assumed and 

autocorrelation function k


 for a set of lags K = 1, 2..., is 

estimated by simply computing the sample correlation 

coefficient between the pairs, k units apart in time. The 

correlation coefficient between t
Y

 and t k
Y

  is called the lag-k 

autocorrelation or serial correlation coefficient of Yt and it is 

denoted by symbol k


, under the assumption of weak 

stationarity, define as:  

 

𝜌𝑘 =
∑ (𝑌𝑡 − �̅�)(𝑌𝑡−𝑘 − �̅�)𝑟

𝑡−𝑘+1

∑ (𝑌𝑡 − �̅�)𝑟
𝑡−1

=
𝛾𝑘

𝛾0
; 𝑓𝑜𝑟 𝑘 = 1,2, … 𝑤ℎ𝑒𝑟𝑒, 𝛾𝑘 = 𝑐𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) 

 

It ranges from -1 to +1. Box and Jenkins has suggested that 

maximum number of useful 𝜌𝑘 are roughly 𝑁/4where N is the 

number of period upon which information on 𝑌𝑡is available. 
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d. Partial Autocorrelation Function (PACF) 

The correlation coefficient between two random variables 𝑌𝑡 

and 𝑌𝑡−𝑘 after removing the impact of the intervening 

𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑘 +1 is called (PACF) at lag k and denoted 

by kk
 

 

𝜙00 = 1, 𝜙11 = 𝑃1 

 

𝜙𝑘𝑘 =
𝑃𝑘 − ∑ 𝜙𝑘−1𝑃𝑘−𝑗

𝑘−1
𝑗−1

1 − ∑ 𝜙𝑘−1𝑃𝑗
𝑘−1
𝑗−1

, 𝑘 = 2,3, … … 𝑤ℎ𝑒𝑟𝑒 𝜙𝑘,𝑗 = 𝜙𝑘−1,𝑗 − 𝜙𝑘,𝑘𝜙𝑘−1,𝑘−1 

 

e. Autocorrelation function (ACF) and partial 

autocorrelation function (PACF) 

Theoretical ACFs and PACFs (Autocorrelations versus lags) 

are available for the various models chosen and for various 

values of orders of autoregressive and moving average 

components i.e. p and q. Thus comparing the correlograms 

(plot of sample ACFs versus lags) obtained from the given 

time series data with these theoretical ACF/PACFs, we find a 

reasonably good match and tentatively select one or more 

ARIMA models. The general characteristics of theoretical 

ACFs and PACFs are as follows: 

 
Table 1: Pattern of ACF and PACF for AR, MA and ARMA 

processes 
 

Process ACF PACF 

AR 

(Auto Regressive) 
Decays Towards zero 

Cut Off to zero 

(lag length of last 

spike is the order of 

the process) 

MA (Moving 

Average) 

Cut off to zero 

(lag length of last 

spike is the order of 

the process) 

Decays towards zero 

ARMA 

(Auto Regressive and 

Moving Average) 

Tails off towards 

zero 
Tails off towards zero 

 

f. White Noise (WN): A very important case of stationary 

process is called white noise. For a white noise series, all the 

ACFs are zero or close to zero. If {rt} is normally distributed 

with zero mean and variance σ2 and no autocorrelation, then it 

is said to be Gaussian white noise.  

 

Autoregressive process (AR) 

A stochastic model that can be extremely useful in the 

representation of certain practically occurring series is the 

autoregressive model. In this model, the current value of the 

process is expressed as a finite, linear aggregate of previous 

values of the process and 𝑎 error𝑡. 

A model written in the form𝑟𝑡 = 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 + ⋯ +
𝜙𝑝𝑟𝑡−𝑝 + 𝜖𝑡is called autoregressive model of order p and 

abbreviated as AR (p), where is autoregressive coefficient 

and t is white noise. 

In general, a variable 𝑟𝑡 is said to be autoregressive of order p 

[AR (p)], if it is a function of its p past values and can be 

represented as: 

 

𝑟𝑡 = ∑ 𝜙𝑖𝑟𝑡−𝑖 + 𝜖𝑡

𝑃

𝑖−1

 

 

Moving Average process (MA) 
A second type of Box-Jenkins model is called a "moving 

average" model. Although these models look very similar to 

the AR model, the concept behind them is quite different. 

Moving average parameters relate what happens in period t 

only to the random errors that occurred in past time periods. A 

series {rt} is called moving average of order q and 

abbreviated as MA (q), expressed in following form of 

equation: 

 

𝑟𝑡 = 𝜖𝑡 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 − ⋯ − 𝜃𝑞𝜖𝑡−𝑞 

 

Where,   is moving average coefficient and t is white noise 

The above equation can be written as, 

 

𝑟𝑡 = 𝜖𝑡 − ∑ 𝜃𝑖𝜖𝑡−𝑖

𝑞

𝑖−1

 

 

Autoregressive Moving Average process (ARMA): 

An autoregressive moving average is expressed in the form: 

 
𝑟𝑡 = 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2+. . +𝜙𝑝𝑟𝑡−𝑝 + 𝜖𝑡 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2−. . −𝜃𝑞𝜖𝑡−𝑞 

 

A stationary solution to above mentioned equation exists if 

and only if all the roots of the AR characteristic equation 

( ) 0x  are outside the unit circle. For invariability, the roots 

of ( ) 0x  lie outside the unit circle, Where t  is a sequence 

of uncorrelated variables, also referred to as a white noise 

process, and ( 1 1,..., , ,...,p q   
) are unknown constants or 

parameters. The above equation can be written as: 

 
(1 − 𝜙1𝐵1 − 𝜙2𝐵2−. . −𝜙𝑝𝐵𝑝)𝑟𝑡 = (1 − 𝜃1𝐵1 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝜖𝑡 

 

Where 𝐵 is the backshift operator, that is 𝐵 (𝑋𝑡)  =  𝑋𝑡−1 and 

 

𝜙(𝐵) = (1 − 𝜙1𝐵1 − 𝜙2𝐵2−. . −𝜙𝑝𝐵𝑝) 

 

𝜃(𝐵) = (1 − 𝜃1𝐵1 − 𝜃2𝐵2−. . −𝜃𝑝𝐵𝑝) 

 

Autoregressive Integrated Moving Average process 

(ARIMA) 

ARIMA is one of the most traditional methods of non-

stationary time series analysis. In contrast to the regression 

models, the ARIMA model allows rt to be explained by its 

past, or lagged values and stochastic error terms. These 

models are often referred to as "mixed models". Although this 

makes forecasting method, more complicated, but the 

structure may indeed simulate the series better and produce a 

more accurate forecast. Pure models imply that the structure 

consists only of AR or MA parameters - not both. The models 

developed by this approach are usually called ARIMA models 

because they use a combination of autoregressive (AR), 

integration (I) - referring to the reverse process of 

differencing to produce the forecast, and moving average 

(MA) operations. An ARIMA model is usually stated as 

ARIMA (p, d, q). An autoregressive integrated moving 

average is expressed in the form: 

If 𝑤𝑡 = ∇𝑑𝑟𝑡 = (1 − 𝐵)𝑑𝑟𝑡then 

http://www.thepharmajournal.com/
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𝑤𝑡 = 𝜙1𝑤𝑡−1 + 𝜙2𝑤𝑡−2 + ⋯ + 𝜙𝑝𝑤𝑝−1 + 𝜖𝑡 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 − ⋯ − 𝜃𝑝𝜖𝑡−𝑝 

 

If {Wt} follows the ARMA (p, q) model, and {rt} is an 

ARIMA (p, d, q) process. For practical purposes, we can take 

is usually d = 1 or 2 at most. Above equation is also written 

as: 

 

𝜙(𝐵)𝑤𝑡 = 𝜃0 + 𝜃(𝐵)𝜖𝑡 

 

Where, ( )B  is a stationary autoregressive operator, ( )B  is a 

stationary moving average operator, and𝜖𝑡 is white noise and 

0  is a constant. In the case of the pattern of seasonal time 

series ARIMA model is written as follows: 

 

𝜙(𝐵)Φ(𝐵)∇𝑑∇𝑠
𝐷𝑟𝑡 = 𝜃(𝐵)Θ(𝐵)𝜖𝑡 

 

Where 

𝑤𝑡 = ∇𝑑∇𝑠
𝐷𝑟𝑡 , ∇𝑑= (1 − 𝐵)𝑑 is number of regular 

differences and ∇𝑠
𝐷= (1 − 𝐵𝑠)𝐷is number of seasonal 

differences. 

Seasonal ARIMA model is denoted by (p, d, q) (P, D, Q), 

where p denotes the number of autoregressive terms, q, 

number of moving average terms and d, number of times a 

series must be differenced to induce stationarity. P, number of 

seasonal autoregressive components, Q, number of seasonal 

moving average terms and D denotes the number of seasonal 

differences required to induce stationary.  

The main stages in setting up a Box-Jenkins forecasting 

model are described below: 

 

1. Identification  
The foremost step in the process of modelling is to check for 

the stationarity of the series, as the estimation procedures are 

available only for stationary series. If the original series is 

non-stationary, then first of all it should be made stationary. 

Stationarity is achieved by differencing the data for required 

number of times they could be obtained by looking for 

significant autocorrelation and partial autocorrelation 

coefficients. Say, if second order auto correlation coefficient 

is significant, then an AR (2), or MA (2) or ARMA (2) model 

could be tried to start with. This is not a hard and fast rule, as 

sample autocorrelation coefficients are poor estimates of 

population autocorrelation coefficients. Still they can be used 

as initial values while the final models are achieved after 

going through the stages repeatedly. Stationarity can be 

analyzed graphically using a ACF plot. A slow decay over the 

period indicates non-stationarity. A sudden change in lags of 

ACF plot shows the data has become stationary. Further, if 

the sequence graph of data is stationary over mean or variance 

we say as stationarity is achieved. Order of AR i.e. p and MA 

i.e., q is obtained by the examination of PACF and ACF plots 

respectively. Number of lagged values outside the limit is the 

order of the model. 

 

2. Estimation of parameters 

The model is said be good fit for the data if the Ljung Q 

statistics is non-significant. At the estimation stage, the 

coefficients of the identified models are estimated. Generally, 

method of least squares is used to estimate the parameters 

which utilizes the concept of minimizing the sum of squares 

due to residuals. At the estimation phase, Stationarity and 

invariability are checked for the coefficient obtained at the 

same time checking is also done in order to know, whether the 

model fit the data satisfactorily or not? If the model is 

significant and estimates of the parameters are non-significant 

suitable transformation can be done depending on the data. 

Outliers can be detected and removed in order to get an 

appropriate model.  

 

Outlier in time series 

Time series observations may sometimes be affected by 

unusual events, disturbances, or errors that create spurious 

effects in the series and result in extraordinary patterns in the 

observations that are not in according with most observations 

in the time series. Such unusual observations may be referred 

to as outliers. They may be the result of unusual external 

events such as strikes, sudden political or economic changes, 

sudden changes in a physical system, and so on, or simply due 

to recording or gross errors in measurement. The presence of 

such outliers in a time series can have substantial effects on 

the behavior of sample autocorrelations, partial 

autocorrelations, estimates of ARMA model parameters, 

forecasting, and can even affect the specification of the 

model. 

 

Types of Outliers 

 Additive Outlier (AO): An outlier that affects a single 

observation. For example, a data coding error might be 

identified as an additive outlier. 

 Level shift (LS): An outlier that shifts all observations 

by a constant, starting at a particular series point. A level 

shift could result from a change in policy. 

 Innovational Outlier (IO): An outlier that acts as an 

addition to the noise term at a particular series point. For 

stationary series, an innovational outlier affects several 

observations. For non-stationary series, it may affect 

every observation starting at a particular series point. 

 Local Trend (LT): An outlier that starts a local pattern 

at a particular series point. 

 Transient: An outlier whose impact decays 

exponentially to 0. 

 Seasonal additive: An outlier that affects a particular 

observation and all subsequent observations separated 

from it by one or more seasonal periods. All such 

observations are affected equally. A seasonal additive 

outlier might occur in beginning of a certain year, if sales 

are higher every January. 

 Additive patch: A group of two or more consecutive 

additive outliers. Selecting this outlier type results in the 

detection of individual additive outliers in addition to 

patches of them. 

 

Detection of outliers 

These outliers are detected one by one using SPSS 20 

software. The outliers are removed until the parameter 

estimates are significant. In most of the cases 10 per cent of 

the more influential observations are deleted to obtain a 

significant parameter estimate. The importance of the 

coefficients is measured by their statistical significance. Each 

estimated coefficient has a sampling distribution with a 

certain standard error that is to be estimated. Most ARIMA 

estimation routine automatically tests the hypothesis that the 

true coefficient is zero. If the coefficients are highly 

correlated the estimates are of poor quality. To check the 

closeness of the fit, Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE) and some more were 

calculated. 
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3. Diagnostic checking  

Having chosen a particular ARIMA model and having 

estimated its parameters, the next step is to check whether the 

chosen model fits the data reasonably well, as it is possible 

that another ARIMA model might do the job well. Here 

selection of model will be done by criteria like R-square and 

MAPE (Mean Absolute Percent Error). 

 

Mean Absolute Percentage Error (MAPE) 

The mean absolute percentage error (MAPE), also known as 

mean absolute percentage deviation (MAPD), is a measure of 

accuracy of a method for constructing fitted time series values 

in statistics, specifically in trend estimation. It usually 

expresses accuracy as a percentage, and is defined by the 

formula: 

 

𝑀 =
100

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑖=1

 

 

Where, 𝐴𝑡 is the actual value and Ftis the forecast value. The 

difference between At and is divided by the actual value At 

again. The absolute value in this calculation is summed for 

every fitted or forecasted point in time and divided again by 

the number of fitted points n. multiplying by 100 makes it a 

percentage error. 

 

Forecasting accuracy checking 

Among the best fitted ARIMA and exponential smoothing 

technique a best model is used for forecasting based on the 

accuracy of the testing. The accuracy is checked using two 

measures namely RMSE and MAPE. A major part of the data 

used for model fitting is called as training set and a smaller 

portion (usually 10%) of data used for checking forecasting 

accuracy is called as testing set. 

 

Results and Discussion 

Time series models for forecasting the production cotton 

crop in Dharwad district 

ARIMA model 

An ARIMA model was computed using the SPSS 20.0 

statistical package. The first step in time series analysis is to 

plot the given data. Fig. 1shows the plot of production of 

cotton crop from 1970-71 to 2015-16. An examination of Fig. 

1 revealed a positive trend over time which indicates the non 

stationary nature of series. This was confirmed, through the

Autocorrelation Function (ACF) Partial Autocorrelation 

Function (PACF). 

ACF of the time series presented in Fig. 2 shows a slow linear 

decay of the autocorrelation coefficients. Fig. 3 represents the 

PACF plot which shows significant at lags 1. It indicates the 

non-stationarity of time series. To make the series stationary, 

it was first differenced after which the data attained 

stationarity as shown in Fig. 4. 

 

Identification of the model 

ARIMA (2,1,2) model was fitted based on the Autocorrelation 

function and Partial autocorrelation function of the 

differenced series as shown in Fig 3 and Fig. 4.It was 

observed that all the lagged values were within the limit in 

both ACF and PACF plots. Further, outliers were detected 

and removed to get a significant model. Based on R2, RMSE 

and MAPE values, we found that ARIMA (2, 1, 2) was the 

best fit after eliminating two significant outliers. The two 

significant outliers which were detected are shown in Table 1. 

The estimates of the parameters are given in Table 2. The 

adequacy of the model was also appraised based on the values 

of L’ jung-Box Q statistics as shown in in Table 3, which was 

found to be non-significant. The R2, RMSE and MAPE values 

for ARIMA (2, 1, 2) model are given in Table 3. The residual 

analysis was carried out to check the adequacy of the selected 

model. The residuals of ACF and PACF were obtained from 

the tentatively identified model. All the lags were found to be 

non-significant which as per Fig. 4. So, it was inferred that the 

model ARIMA (2, 1, 2) was adequate for forecasting future 

production of cotton in Dharwad district. 

 

Forecasting accuracy and forecasting 

The forecasting adequacy was checked using the RMSE and 

MAPE values. The predicted values using ARIMA with the 

model fit statistics like RMSE and MAPE values are given in 

Table 3. It was found that ARIMA (2, 1, 2) model was the 

best fit with lower RMSE (25.143) and lower MAPE 

(19.845). Forecasting was done for the next four years using 

the ARIMA (2, 1, 2) model. Forecasted values are given 

Table 4. ARIMA (2, 1, 2) was selected as a model for 

forecasting in ARIMA technique after analyzing the ACF and 

PACF plots as given in Fig. 3 and Fig. 4 respectively. Thus, 

ARIMA (2, 1, 2) model was observed to be the best fit with 

R2 value of 81.70 per cent. Iqbal et al. (2005) [6] have also 

obtained ARIMA (2, 1, 2) model for production of wheat in 

Pakistan. 

 
Table 1: Detected outliers of the ARIMA models for production of Cotton in selected districts of Karnataka 

 

Districts ARIMA Models Year Type of outlier Estimate SE t statistic p-value 

Dharwad 2,1,2 
2007 Additive -82.016** 21.211 -3.867 0.000 

2008 Additive -70.670** 21.238 -3.328 0.002 

Ballari 2,1,2 
1997 Local Trend 12.055** 1.252 -9.626 0.000 

2011 Local Trend 37.967** 1.252 30.328 0.000 

Raichur 1,1,1 2014 Additive -131.759** 23.416 -5.627 0.000 

** Significant at 1% level 

 
Table 2: Estimate of the ARIMA Model parameter for production of Cotton in selected districts of Karnataka 

 

Districts Transformation Parameters Lag Estimate SE t statistic p-value 

Dharwad No Transformation 

Constant  421.307** 118.996 3.541 0.001 

AR Lag 1 -1.213** 0.161 -7.557 0.000 

 Lag 2 -0.613** 0.154 -3.989 0.000 

Difference  1    

MA Lag 1 0.020NS 2.564 0.008 0.994 

 Lag 2 0.972NS 2.541 0.383 0.704 
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Ballari No Transformation 

Constant  -743.30** 105.204 -7.065 0.000 

AR Lag 1 -1.538** 0.119 -12.87 0.000 

 Lag2 -0.719** 0.142 -5.06 0.000 

Difference  1    

MA Lag 1 -0.199NS 32.612 -0.006 0.995 

 Lag2 0.801NS 26.184 0.031 0.976 

Raichur No Transformation 

Constant  -810.507** 188.289 -4.305 0.000 

AR Lag 1 0.418* 0.179 2.337 0.025 

Difference  1    

MA Lag 1 0.989* 0.543 1.820 0.076 

** Significant at 1% level, NS-Non-significant 

 
Table 3: Model fit statistics and Ljung-Box Q statistics for production of Cotton in selected districts of Karnataka 

 

Districts 
Model Fit statistics Ljung-Box Q 

Number of Outliers detected 
R2 RMSE MAPE Statistic DF p-value 

Dharwad 0.817 25.143 19.845 8.550NS 14 0.859 2 

Ballari 0.977 9.117 13.660 19.859NS 14 0.135 2 

Raichur 0.872 24.961 20.309 18.396NS 16 0.301 1 

NS-Non-significant 

 
Table 4: Forecasted values for production of cotton crop in selected districts of Karnataka 

 

Districts Year Forecasted Value for production (‘000 t) 
95% Confidence interval 

Lower Upper 

Dharwad 

2017 159.09 109.31 208.87 

2018 148.43 97.49 199.36 

2019 218.07 164.96 271.19 

2020 129.06 69.42 188.71 

Ballari 

2017 318.73 283.81 353.64 

2018 355.68 316.68 394.68 

2019 391.04 335.31 446.77 

2020 424.51 350.81 498.20 

Raichur 

2017 256.45 185.91 327.00 

2018 253.17 177.70 328.63 

2019 256.40 178.29 334.51 

2020 260.63 180.21 341.06 

 

 
 

Fig 1: Time plot for production of cotton in Dharwad district 
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Fig 2: ACF AND PACF of cotton in Dharwad district 

 

  
 

Fig 3: Autocorrelations and Partial autocorrelations at different lags of 1st differenced time series for production of cotton in Dharwad district 

 

 
 

Fig 4: Residual autocorrelation and partial autocorrelations for production of cotton in Dharwad district 
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Fig 5: Time plot for production of cotton in Ballari district 

 

  
 

Fig 6: ACF AND PACF of cotton in Ballari district 

 

  
 

Fig 7: Autocorrelations and Partial autocorrelations at different lags of 1st differenced time series for production of cotton in Ballari district 
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Fig 8: Residual autocorrelation and partial autocorrelations for production of cotton in Ballari district 

 

  
 

Fig 9: Time plot for production of cotton in Raichur district 

 

  
 

Fig 10: ACF AND PACF of Cotton in Raichur district 
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Fig 11: Autocorrelations and Partial autocorrelations at different lags of 1st differenced time series for production of cotton in Raichur district 

 

 
 

Fig 12: Residual autocorrelation and partial autocorrelations for production of cotton in Raichur district 

 

Time series models for forecasting the production of 

cotton crop in Ballari district 

ARIMA model 
SPSS 20.0 statistical package was used to fit ARIMA model. 

The first step in the analysis was to plot the given data. 

Fig.5shows the plot of production of cotton crop from 1970-

71 to 2015-16 for Ballari district. An examination of Fig. 5 

revealed a positive trend over time which indicates the non-

stationary nature of the series. This was confirmed, through 

the Auto Correlation Function (ACF) Partial Autocorrelation 

Function (PACF). 

ACF of the time series in Fig.6 shows a slow linear decay of 

the autocorrelation coefficients. Fig.7 represents the PACF 

plot which showed significance at lags 1. This indicates the 

non-stationarity of the series. To make the series stationary, it 

was first differenced after which the data attained stationarity 

as shown in Fig. 8. 

 

Identification of the model 

ARIMA (2, 1, 2) model was fitted best based on the 

Autocorrelation function and Partial autocorrelation function 

of the differenced series as shown in Fig. 7 and Fig. 8 as all 

the lagged values remained within the limit for both ACF and 

PACF plots. The outliers were detected and removed to get a 

significant model. Based on R2, RMSE and MAPE values, it 

was observed that ARIMA (2, 1, 2) was found to be the best 

fit after eliminating three significant outliers. Three 

significant outliers were detected and removed as depicted in 

Table 1. The estimates of the parameters are given in Table 2. 

The adequacy of the model was also appraised based on the 

values of Ljung-Box Q statistics as shown in Table 3 which 

are found to be non-significant. The R2, RMSE and MAPE 

values for ARIMA (2, 1, 2) model are given in Table 

3.Residual analysis was carried out to check the adequacy of 

the model. The residuals of ACF and PACF were obtained 

from the tentatively identified model. All the lags were found 

to be non-significant as shown in Fig. 8. Hence, it was 

inferred that ARIMA (2, 1, 2) model was adequate for 

forecasting production in Ballari district. 
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Forecasting accuracy and forecasting 

The forecasting adequacy was checked using the RMSE and 

MAPE values. The predicted values using ARIMA with the 

model fit statistics like RMSE and MAPE values are given in 

Table 3. ARIMA (2, 1, 2) model was the best fit with least 

values of RMSE (9.117) and MAPE (13.660) as given in 

Table 3.Forecasting was done for the next four years using the 

ARIMA (2, 1, 2) model. The forecasted values are shown in 

Table 4. ARIMA (2,1,2)was selected as a model for 

forecasting in ARIMA technique after analyzing the ACF and 

PACF plots given in Fig. 7 and Fig. 8 respectively. Thus, 

ARIMA (2, 1, 2) model was observed be the best fit with a R2 

value of 97.70 per cent. Hamjah (2014) [5] have also obtained 

ARIMA (2, 1, 2) model for rice production in Bangladesh. 

 

Time series models for forecasting the production of 

cotton crop in Raichur district 

ARIMA model 
Fig. 9shows the plot of production of cotton crop from 1970-

71 to 2015-16. An examination of Fig. 9 revealed a positive 

trend over time which indicates the non-stationary nature of 

series. This was confirmed through the Auto Correlation 

Function (ACF) and Partial Autocorrelation Function 

(PACF). 

ACF of the time series presented in Fig. 10 shows a slow 

linear decay of the autocorrelation coefficients. Fig.11 

represents the PACF plot which shows significance at lags 1 

indicating the non-stationarity of time series. To make the 

series stationary, it was first differenced after which the data 

attained stationarity as shown in Fig. 12. 

 

Identification of the model 
ARIMA (1, 1, 1) model was fitted based on the 

Autocorrelation function and Partial autocorrelation function 

of the differenced series as shown in Fig.11 and Fig. 12, since 

all the lagged values remained within the limit both in ACF 

and PACF plots. Outliers were detected and removed to get a 

significant model. Based on R2, RMSE and MAPE values, 

ARIMA (1, 1, 1) model was found to be the best fit after 

eliminating one significant outlier. The significant outlier 

detected is shown in Table 1. The estimates of the parameters 

are given in Table 2. The adequacy of the model was also 

appraised based on the values of Ljung-Box Q statistic as 

shown in Table 3, which was found to be non-significant. The 

R2, RMSE and MAPE values for ARIMA (1, 1, 1) model are 

given in Table 3.Residual analysis was carried out to check 

the adequacy of the model. The residuals of ACF and PACF 

were obtained from the tentatively identified model, all the 

lags were found to be non-significant which is depicted in 

Fig. 12. Thus, from the analysis it was inferred that ARIMA 

(1, 1, 1) model was adequate to forecast the future production 

of cotton in Raichur district. 

 

Forecasting accuracy and forecasting 

The forecasting adequacy was checked using the RMSE and 

MAPE values. The predicted values using ARIMA with the 

model fit statistics like RMSE and MAPE values are given in 

Table 3. ARIMA (1, 1, 1) model was the best fit with lower 

RMSE (24.961) and lower MAPE (20.309) as given in Table 

3.Forecasting was done for the next four years using the 

ARIMA (1, 1, 1) model as in Table 4.ARIMA (1, 1, 1)was 

selected as a model for forecasting in ARIMA technique after 

analyzing the ACF and PACF plots given in Fig. 11 and Fig. 

12 respectively. The model was said to be the best fit with a 

R2 value of 87.20per cent. Wali et al. (2017) [22] revealed that 

ARIMA (1, 1, 1) were the best fitted model for forecasting 

production of cotton crop in India. 

 

Conclusion 

A prudent attempt has been made in the present study to 

forecast production of cotton crop in selected districts of 

Karnataka. viz., Dharwad, Ballari and Raichur using ARIMA 

model The data was obtained from Directorate of Economics 

and Statistics, Karnataka for the period from 1970-71 to 2015-

16. It was found that ARIMA (2, 1, 2) was the best model for 

forecasting production of cotton in Dharwad. ARIMA (2, 1, 

2) was the appropriate model to predict the production of 

cotton in Ballari. Whereas, ARIMA (1, 1, 1) found to be 

suitable for forecasting production of cotton in Raichur 

district. 
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