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Genomic selection in crop plants: An overview 

 
Parmdeep Singh Dhanda and Arpitha Shankar 

 
Abstract 
Genomic selection involves future breeding aimed at increasing genetic gain in crops plants. Molecular 

markers and other genetic markers are applied to the conventional phenotypic selection strategies for 

increasing genetic gain of the crop plants is referred to as genomic selection. Although, genomic 

selection is more favourable than marker-assisted selection (MAS) as it allows a more significant number 

of QTL than MAS. Additionally, it aids in the early identification of the most qualified candidates for 

selection based on the plant's entire genome. While the field of high-throughput phenotyping is still in its 

infancy, it is showing signs of maturity, with the capacity to assess features more rapidly and correctly 

than was previously thought possible. The synergy between genomic and phenotypic data will usher in an 

age unlike any other in human history of inbreeding and functional genomics. 

Here, we have discussed the application of genomic selection to crop plants with significant development 

in the field. 
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Introduction 

More than 7 billion people live on the planet, and the global population clock is constantly 

ticking upward [1-5]. According to United Nations (UN) projections, this development pattern 

will continue until roughly 2050, when the world's population is expected to reach a 

remarkable 9.1 billion inhabitants. The fact that thousands of years were required to expand 

the world population to the first 2 billion people is noteworthy. However, it is also important 

to note that another 2 billion people will be added to the globe in the following twenty-five 

years. Given the enormous problem of feeding the world's population, scientists are attempting 

to develop more effective ways of food production. As a result, various innovations are being 

implemented into food production in order to fulfil the increased demand, including precision 

farming, the use of micronutrients, protected cultivation, and integrated crop management, to 

name a few. The production of cultivars via plant genetic breeding is regarded as one of the 

most significant advances in agriculture. It has been responsible for more than half of the 

improvements in crop yields over the previous century. Plant breeding may be accomplished 

using two sorts of methods: traditional breeding and marker-assisted breeding (MAB) [6-12].  

Since the 1990s, marker-assisted selection (MAS) has been utilised in plant development 

initiatives to encourage research findings for tagging genes and mapping quantitative trait loci 

(QTL) [13, 14] recommended the use of MAS to produce quicker gains and enhance selection 

efficiency when compared to selection based only on phenotypic data. Genetic linkage with 

specific loci affecting quantitative features is achieved by using morphological data and 

molecular markers in MAS (quantitative trait loci, QTL). MAS and association genetics have 

been employed in the discovery of underlying significant genes in gene pools and introducing 

these genes into breeding programmes to enhance the qualities of the offspring. Nonetheless, 

they have shown several limitations, primarily due to the lengthy selection cycles and the 

inability to search for solid marker–QTL relationships to capture 'minor' gene effects [16-18]. It 

was initially suggested by [19] and is an example of molecular-marker aided selection. 

Hundreds or thousands of DNA markers are used to concurrently anticipate the genetic effects 

on hundreds or thousands of markers' phenotypes [20]. In linkage disequilibrium (LD) with the 

QTL, these markers may have both big and minor effects, and they can account for virtually all 

of the genetic variation within a quantitative trait (see Figure1) [21-26].  

Furthermore, whole-genome prediction is more accurate than single-genome prediction 

because it better accommodates the variance caused by Mendelian segregation during gamete 

production than single-genome prediction [27-30]. In recent years, the growing availability and 

lowering prices of molecular markers covering the whole genome have enabled large-scale 
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genomic selection in breeding programmes for various 

species [31]. GWS has the potential to be used in breeding 

programmes because it allows for the efficient selection of 

traits with low heritability, allows for the most efficient use of 

available genetic resources by selecting appropriate genetic 

crosses, and increases genetic gain per unit time by enabling 

the identification of the best individuals for selection early in 

the breeding process [32-35]. Therefore, here we have complied 

the information regarding genomic selection of crop plants. 

 

Plant breeding in the traditional manner 

Traditional plant breeding requires patience since it often 

takes 8 to 12 years to develop a new cultivar owing to the 

several procedures involved, such as cross-breeding to 

determine cultivar value for cultivation and usage. Genomic 

techniques, at the very least, allow for a decrease in the 

selection time because, unlike classical breeding, which does 

not allow for phenotyping in all generations, selection may be 

undertaken by genotyping in all generations. The merging of 

traditional breeding techniques with genomic technologies 

might be beneficial in this situation. Even with the new 

technologies, genotyping procedures must be first modified to 

be compatible with phenotyping, a time-consuming and 

expensive process that takes a long time [36-41]. It is important 

to note that molecular tools do not take the place of traditional 

breeding procedures.  

Integrating both fields to increase selection accuracy while 

simultaneously decreasing the intervals between selection 

generations is of particular interest. Plant breeding is an art, a 

science, and a business that has only been around for a little 

over a century. Breeders have created agronomically better 

cultivars mainly via techniques that were established in the 

past century or so. Plant breeding must adapt and absorb new 

information as the difficulties to agricultural food supply 

become more challenging to overcome. Because of this 

progressive integration of molecular tools into ordinary 

breeding procedures, the accuracy, speed, and efficiency of 

breeding processes will improve. Even though the obstacles 

are significant, the opportunities are much bigger. 

 

Breeding development is most effectively accomplished 

with the use of molecular markers 

In building genetic maps for distinct species, the use of 

molecular markers or polymorphic DNA sequences as 

chromosomal references is the fundamental technology [42] 

that underpins the process. Until the late 1980s, the great 

majority of species, with the exception of a few model 

organisms, did not have genetic map information available to 

them. As a result, there has been a significant revolution in 

the amount of information available on linkage groups in the 

genomes of diverse species in a brief period of time. 

Additionally, it should be highlighted that various disciplines 

of genetics, like population genetics, which lacks in-depth 

experimental data due to the use of molecular markers, have 

profited from the massive volumes of data created by the use 

of molecular markers. 

 

Marker-assisted selection (MAS) and genome-wide 

selection (GWS) are two types of selection (GWS) 

Selection based on MAS has the following characteristics: it 

necessitates the establishment of marker-QTL associations 

(linkage analysis) for each family under investigation in other 

words, the identification of associations that are useful for 

selection only within each mapped family must explain a 

significant proportion of the genetic variation for a 

quantitative trait that is controlled by a large number of loci 

with minor effects, and it must present a substantial 

proportion of the genetic variation for a quantitative trait that 

is in actuality but this conclusion is not confirmed, owing to 

the polygenic nature of quantitative characteristics and the 

significant influence of the environment on these traits, 

among other reasons [43-48]. A result of these issues is the 

identification of only a few QTLs with large effects, and these 

are insufficient to fully explain the genetic variation, MAS is 

only significantly better than selection by looking at 

phenotypic data when the studied family has been genotyped 

for a large number of individuals (on the order of 500 or 

more). Because of these characteristics, the deployment of 

MAS has been restricted, and the efficiency improvements 

have been relatively minor [49].  

The attraction of molecular genetics for the benefit of applied 

genetic improvement is the direct use of DNA information for 

selection, which allows for high selection efficiency, highly 

rapid achievement of genetic gains from selection, and low 

cost when compared to traditional selection based on 

phenotypic data, as well as immediate achievement of genetic 

gains from selection. As a result, [50] introduced a new 

selection approach known as genomic selection (GS), 

sometimes known as genome-wide selection (GWS). GWS 

can be applied to all families under investigation in genetic 

improvement programmes. It has a high selectivity accuracy 

for selection based solely on markers (after their genetic 

effects have been estimated from phenotypic data in a sample 

of the selection population). It does not require prior 

knowledge of QTL positions (map), and it is not subject to 

type II errors associated with the selection of markers in 

linkage with QTLs [51]. 

 

Selection based on genomic information 

Gene set analysis (GS) is a highly effective approach that 

takes use of the linkage disequilibrium (LD) between markers 

and quantitative trait loci (QTL), as shown by [53-57]. 

Genotyping and phenotyping are performed on a training 

population, which is then used to estimate the marker effects 

that will be utilised to calculate the genomic breeding value 

(GEBV) of additional genotyped animals in the prediction 

population after they have been bred. The accuracy of the 

GEBV is critical for GS deployment [58]. The accuracy of 

GEBV depends on four factors: the level of linkage 

disequilibrium (LD) between the single nucleotide 

polymorphism (SNP) and the quantitative trait locus (QTL); 

the distribution of QTL effects; the size of the training data 

set; and the trait's heritability (h2) [59, 60]. 

 

Selection based on Genomic Information 

Genomic selection refers to strategies that employ genotypic 

data from throughout the whole genome to predict any 

attribute with sufficient precision to enable selection based 

only on that prediction. The possibilities for speeding the 

breeding cycle and the increase in selection intensity that may 

be achieved are mind-blowing [61]. A four-year breeding 

cycle, which includes three years of field testing, may be 

condensed into the four months it takes to develop and cross a 

single plant. There are thousands of qualified people who can 

be examined without ever stepping foot on a field [62]. 

In the case of GS, it is common practise to employ 
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populations that are distinct from the initial reference group. It 

is common practise to use both a training and validation 

dataset in combination with each other [36] while doing 

genomic selection [63]. There are three pieces to this puzzle: 

(1) phenotypic data from appropriate breeding material 

examined under a variety of environmental conditions, (2) 

molecular marker scores, and (3) information on ancestry or 

blood relations. As a result, the marker effect is evaluated, 

and the genomic breeding value or genetic values of new 

genotypes are only predicted on the basis of the marker effect 

using certain statistical methodologies. Candidate genotyping 

(but not phenotyping) was performed on the validation set's 

selection candidates (derived from the reference population) 

based on marker effects calculated in the training set [64]. 

Selection candidates are also included in the validation set 

(derived from the reference population). 

Selecting for quantitative characteristics solely based on 

marker effects has had a significant impact on normal 

breeding procedures in both plant and animal breeding. 

However, in public plant breeding initiatives, the advantages 

of GS have only been examined via computer modelling 

rather than in-person experiments. In an applied plant 

breeding programme, genotyping is now less expensive than 

phenotyping because marker technology is constantly 

lowering the cost per data point and increasing the number of 

accessible markers [65]. Along with the ability to speed up the 

selection cycles, GS also provides the option to boost the 

selection gains achieved per unit of time. As a result, it is 

anticipated that alternating progeny field testing with 

selection based only on markers would maximise the genetic 

gains per unit of time. However, there are still some 

unanswered problems, such as how much (if any) genetic 

diversity would be lost due to the combination of phenotypic 

and genetic selection [66]. 

Genomic selection is a strategy for determining the breeding 

value of individuals in a population by using genome-wide 

markers. A genotyped and phenotyped population is used to 

train or calibrate a statistical model, which is then used to 

anticipate breeding or genotypic values of non-phenotyped 

selection candidates for the purpose of performing GS. The 

training population (TP) is a genotyped and phenotyped 

population used for research purposes. When referring to the 

second group of individuals that have been genotyped but not 

phenotyped, it is referred to as "the breeding population" 

(BP). As a result, allelic association with loci linked with 

phenotypic diversity in the TP's performance is utilised to 

predict the BP's performance for a variety of qualities. 

According to the results of this work, a collection of diverse 

lines from a breeding programme that have been carefully 

phenotyped and genotyped may be used as a good training set 

for robust calibration models [67-70]. 

It is generated from a mix of advantageous loci revealed in 

the genomes of individual patients with BP. This technique 

enables a direct estimation of the probability that each 

individual will have a superior genotype (i.e., high breeding 

value). The GEBV is used to determine which new breeding 

parents should be selected for the following generation of 

animals. The breeding cycle time is reduced since it is no 

longer required to wait for late filial generations (usually F6 

or later in the case of wheat) before phenotyping quantitative 

measurements such as yield and its components. There is now 

complete genotyping and phenotyping of the third group of 

individuals, dubbed the validation population (VP). The GS 

model's validity is assessed by computing the GEBV for the 

VP and correlating this value to the actual phenotypic value 
[71, 72]. 

GS is defined as G = irA/y, where I represents selection 

intensity, r symbolises selection accuracy, A denotes additive 

genetic variation, and y is the time required to complete one 

breeding cycle (in years). Even if both genetic and phenotypic 

selection have equal selection intensities and genetic variance, 

it is possible to achieve greater gains per unit of time if the 

reduction in breeding cycle duration caused by genetic 

selection (GS) more than compensates for the reduction in 

selection accuracy caused by phenotypic selection (PS). When 

reasonable assumptions regarding selection accuracy, 

breeding cycle lengths, and selection intensities are employed, 

comparing genetic selection (GS) to traditional breeding may 

boost annual genetic gain in both animal and crop breeding 
[73-75]. When reasonable assumptions regarding selection 

accuracy, breeding cycle lengths, and selection intensities are 

adopted, genetic selection may boost annual genetic gain in 

both animal and crop breeding. For traits with a long 

generation time or that are difficult to evaluate (for example, 

insect resistance, bread-making quality, and others), GS 

becomes more cost effective or easier to perform than PS, 

allowing for the characterization of a greater number of 

candidates at a given cost and, as a result, an increase in the 

selection process's intensity [76]. 

The GEBV is calculated by combining beneficial loci in each 

individual's genome, and it offers a direct estimate of the 

probability that each individual will have a better phenotype 

than the rest of the population (i.e., high breeding value). 

Because it is no longer necessary to wait for late filial 

generations (typically F6 or later in the case of wheat) to 

phenotype quantitative traits such as yield, susceptibility to 

biotic and abiotic stresses, or other phenotypic traits, GEBV-

based selection of new breeding parents results in a shorter 

breeding cycle duration. As suitable assumptions regarding 

selection accuracies, breeding cycle durations, and selection 

intensities are made, genetic selection (GS) may significantly 

boost annual genetic gain in animal and crop breeding when 

compared to traditional breeding [77-80]. When compared to 

traditional breeding, genetic selection (GS) has the ability to 

boost the genetic gain each year in both animal and crop 

breeding. For traits with a long generation time or that are 

difficult to evaluate (for example, insect resistance, bread-

making quality, and others), GS becomes more cost effective 

or easier to perform than PS, allowing for the characterization 

of a greater number of candidates at a given cost and, as a 

result, an increase in the selection process's intensity. For the 

purposes of this discussion, genetic selection (GS) has a 

number of advantages over conventional selection (PS), 

including a shorter selection duration and an improvement in 

accuracy, intensity, effectiveness, and gains per unit of time, 

all of which result in time and money savings. This strategy 

generates more reliable results while being less damaging to 

the environment [81-84]. This allows the development of new 

crop kinds to address the challenges posed by climate change 

and diminishing arable land to proceed much more rapidly 

and effectively. The computation of GEBVs is the core 

genetic screening procedure. People with just genotypic data 

are calculated GEBVs using a model that has been "trained" 

on individuals with both phenotypic and genotypic data. 

GEBVs of selection candidates (for example, breeding lines) 

with only genotypic data are calculated using the "training 
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population," which consists of individuals with both 

phenotypic and genotypic data. The training population is 

used to estimate model parameters that will then be used to 

calculate GEBVs of selection candidates (for example, 

breeding lines) with only genetic data. These GEBVs are then 

used to select individuals for progression in the breeding 

cycle based on their genetic characteristics. Therefore, the 

selection of an individual without phenotypic data may be 

accomplished by developing a model to anticipate the 

individual's breeding value, which can then be used to make 

the selection. A training population representative of selecting 

candidates in the breeding programme to which GS will be 

applied must be used to ensure the maximum accuracy of 

GEBV estimations [85, 86]. 

Future elite and parental lines may be chosen based on their 

GEBV rather than their phenotypic records from extensive 

field testing, given the high accuracy of GEBV shown in 

studies. The most obvious consequence of this situation 

would be a significant increase in the pace of the breeding 

cycle, which would result in an increase in selection gains per 

unit of time. This transition would also have a significant 

impact on the function of phenotyping in plant breeding. In a 

GS-driven breeding cycle, phenotyping aims to quantify or re-

estimate the impact of genetic markers. At this stage, it is 

unclear whether it will be more beneficial to review just the 

best lines or if it will be more advantageous to examine a 

small number of lines with high replication [87-90]. 

 

Conclusion 

The cost per data point for molecular markers has fallen by a 

factor of two or three since the development of high-

throughput genotyping. This reduction was made possible by 

three parallel advancements: Numerous single nucleotide 

polymorphism (SNP) markers have been identified in a 

variety of species; high-throughput technologies such as 

multiplexing and gel-free DNA arrays for screening SNP 

polymorphisms have been developed; and automation of the 

marker-genotyping process, including streamlined DNA 

extraction procedures, has been developed. Genetic selection 

can accelerate breeding progress by increasing selection 

intensity while shortening the breeding cycle. The 

methodology of genome-wide association studies (GWAS) 

has progressed to the point where it is now a powerful tool for 

the analysis of simple traits under additive genetic scenarios 

and the dissection of complex genetic architectures. Despite 

its infancy, field-based high-throughput phenotyping shows 

signs of maturity, with the capacity to quantify features more 

rapidly and precisely than previously thought possible. The 

combined power of genomics and phenomics will usher in an 

age of inbreeding and functional genomics that has never 

been seen before. 
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