www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(4): 1575-1578 © 2022 TPI www.thepharmajournal.com Received: 06-01-2022

Accepted: 13-02-2022

Koppula Madhuri

Researcher, Department of Entomology, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh India

Ashwani Kumar

Professor, Department of Entomology, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh India

Corresponding Author: Koppula Madhuri

Researcher, Department of Entomology, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh India

To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer *Earias vittella* (Fabricius) on okra

Koppula Madhuri and Ashwani Kumar

Abstract

The field trial was conducted at Central Research Field, Department of Entomology, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj during kharif season 2021 investigation entitled "To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer *Earias vittella* (Fabricius) on okra" Seven treatments were evaluated against, *Earias vittella* i.e., T₁Spinosad 45% SC, T₂ Lambda-cyhalothrin 2.5 EC, T₃ Flubendiamide 480 SC, T₄ Profenophos 50 EC, T₅ Neem oil 0.03% EC T₆ Emamectin benzoate5%SG, T₇ Cypermethrin 25%EC and T₈ Control. When the benefit cost ratio was worked out, interesting results was achieved. Among the treatment studied the best and most economical treatment was T₁ Spinosad 45% SC (1:6.05), T₃ Flubendiamide 480 SC (1:4.68), T₇ Cypermethrin 25%EC (1:4.64), T₂ Lambda-cyhalothrin 2.5 EC (1:4.50), T₆ Emamectin benzoate5%SG (1:4.32), T₄ Profenophos 50 EC (1:3.97) and T₅ Neem oil (1:3.08).

Keywords: Benefit cost ratio, Earias vittella, insecticide, Okra shoot and fruit borer

Introduction

Okra (Lady finger or bhendi), *Abelmoschus esculentus* (L.) Moench is cultivated in India mainly for its immature fruits. Okra fruits have nutritious as well as dietary value. Though, it is mainly used as a fresh vegetable, it is also consumed as canned, dehydrated or frozen forms (Schippers, 2002).

Among vegetables, it occupies an important position and is grown extensively throughout India. In Uttar Pradesh, okra grown in an area of 11.6 thousand hectare with the production of 131.2 thousand tones per hectare (Indian Horticultural Database, 2011).

The crop, however, is vulnerable to attack of important insect pests, among which fruit borer *Earias vittella* (Fabricius) is the most important pest causing direct damage to marketable fruits. It alone is reported to cause 57.1 per cent fruit infestation and 54.04 per cent net yield loss in okra (Chaudhary and Dadheech, 1989).

Earias vittella damage to okra crop is done by two ways. First, the terminal portion of growing shoots is bored by caterpillars, which move down by making tunnels inside. As a result, the shoot drop downward or dry up. Second, the larvae enter the fruit by making holes, rendering them unfit for human consumption. According to an estimate this pest can cause 36-90% loss in fruit yield of okra (Misra *et al.*, 2002) ^[5].

The total area and production under okra in the world is reported to be 1.26 million ha and 22.29 million tonnes, respectively. It is mainly grown in India, Nigeria, Sudan, Pakistan, Ghana, Egypt, Saudi Arabia, Mexico and Cameroon. India ranks first in okra production 5784.0 thousand tonnes (72% of total world production) having area of 1148.0 thousand hectares with an annual production of 6346 million tonnes and productivity of 11.9 million tonnes/ha. The crop is grown throughout India, Andhra Pradesh is the leading okra producing state which has production of around 1184.2 thousand tons from an area of 78.90 thousand ha, with a productivity of 15 tons / ha. It is followed by west Bengal (862.1 thousand tonnes from 74.00 thousand with 11.70 tonnes/ ha productivity. In Uttar Pradesh area, production and productivity of okra is 12.19 ha, 148.64 tonnes, 12.2 metric tons per hectare (National Horticulture Board 2018-19).

The major okra growing states in India includes Andhra Pradesh (20%), West Bengal (15%), Bihar (14%), Orissa (11%), Gujarat (10%), Jharkhand (7%), Maharashtra (4%), Assam (3%) and Haryana (3%) (Anonymous, 2012).

The Pharma Innovation Journal

The sucking pest complex of okra consisting of aphids, leaf hoppers, whiteflies, thrips and mites causes 17.46% yield loss and failure to control them in initial stages was reported to cause 54.04% yield loss (Chaudhary and Daderch, 1989).

Materials and Methods

The present study on, To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer, [*Earias vittella* (Fabricius)] on okra will be conducted under the field condition during Kharif 2021.

Experimental site

The experiment will be conducted during kharif season 2021 at Central Research Field, Department of Entomology, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India, in a randomized block design with eight treatments replicated three times using variety GR-51(green regnum) seeds in a plot size of $2m \times 2m$ at a spacing of $45cm \times 30cm$ with a recommended package of practices excluding plant protection. The soil of the experimental site was well drained and medium high.

Climate & Topography

The climate of the experimental site is sub-tropical characterized by normal rainfall. Naini is situated at 25.22'45.1"N North Latitude 81.52'37.44" East Longitude of 95.63 meter above sea level. The climate at Prayagraj is sub-tropical which prevails in the eastern part of U.P. The extremes of both summer and winter are experienced while the minimum temperature in winter may 4 °C and the maximum temperature reaches up to 45 °C in summer.

Method of Recording Observation Efficacy of treatments

The population of okra shoot and fruit borer was recorded before 1- day spraying and on 3rd day, 7th day and 14th day after insecticidal application. The populations of okra shoot and fruit borer was recorded on 5 randomly selected and tagged plants from each plot and then it was converted into per cent of infestation by following formula.

On Shoot

At each picking the total number of shoots and number of shoots infested of five selected plants from each treatment replication wise was recorded.

% Shoot infestation =
$$\frac{\text{No. of shoot infested}}{\text{Total no. of shoot}} \ge 100$$

http://www.thepharmajournal.com

On Fruit

At each picking the total number of fruits and number of fruits infested of five selected plants from each treatment replication wise was recorded.

Fruit infestation =	No. of fruit infested	x 100
Fruit intestation	Total no. of fruit	· A 100

Treatments No.	Treatments	Dosages Gm/ml/lit	
T ₁	Spinosad 45% SC	0.3-0.4ml/lit	
T ₂	Lambda-cyhalothrin 2.5 EC	0.5-1ml/lit	
T ₃	Flubendiamide 480 SC	0.3ml/lit	
T 4	Profenophos 50 EC	2ml/lit	
T5	Neem oil 0.03% EC	2ml/lit	
T ₆	Emamectin benzoate 5% SG	0.4g/lit	
T ₇	Cypermethrin 25% EC	2ml/lit	
T ₀	Control	-	

Results and Discussion

The results of the experiment entitled, "To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer, *Earias vittella* (Fabricius) on okra" to study cost benefit ratio during *Kharif* season of 2021. The data so obtained through observation on various aspects were subjected to statistical analysis wherever necessary and the compiled mean data are tabulated in the following pages. Results obtained are presented aspect wise here under.

Shoot infestation

A mong all the treatments lowest per cent shoot, infestation was recorded T_1 Spinosad 45% SC (5.22), T_3 Flubendiamide 480 SC (11.68), T_7 Cypermethrin 25%EC (13.39), T_2 Lambda-cyhalothrin 2.5 EC (16.81), T_6 Emamectin benzoate5%SG (17.44), T_4 Profenophos 50 EC (19.25) and T_5 Neem oil (20.67) is found to be least effective than all the treatments and is significantly superior over the control (25.61).

Fruit infestation

The data on the percent infestation of shoot and fruit borer on okra 3^{rd} , 7^{th} and 14^{th} day after second spray revealed that all the chemical treatments were significantly superior over control. A mong all the treatments lowest per cent shoot, infestation was recorded T₁ Spinosad 45% SC (5.85), T₃ Flubendiamide 480 SC (12.37), T₇ Cypermethrin 25%EC (14.57), T₂ Lambda-cyhalothrin 2.5 EC (15.51), T₆ Emamectin benzoate5%SG (16.06), T₄ Profenophos 50 EC (17.43) and T₅ Neem oil (18.63) is found to be least effective than all the treatments and is significantly superior over the control (25.40).

 Table 1: To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer, [Earias vittella (Fabricius)] on okra (First Spray): (Percent shoot infestation).

		Percent shoots infestation of <i>E. vittella</i>				
Treatments		One day before spray	After spray			
			3 DAS	7 DAS	14 DAS	Mean
T1	Spinosad 45% SC	16.51	4.06	3.81	7.79	5.22
T_2	Lambda-cyhalothrin 2.5 EC	19.48	16.23	16.90	17.3	16.81
T3	Flubendiamide 480 SC	15.86	11.45	11.73	11.87	11.68
T_4	Profenophos 50 EC	20.24	18.63	19.40	19.74	19.25
T5	Neem oil 0.03% EC	20.67	21.04	20.53	20.45	20.67
T ₆	Emamectin benzoate5%SG	17.75	16.44	17.76	18.14	17.44
T ₇	Cypermethrin 25%EC	15.72	12.92	12.08	15.19	13.39
T_0	Control	21.20	23.67	25.79	27.38	25.61

Overall Mean	18.42	15.55	16	17.23	16.80
F- test	NS	S	S	S	S
S. Ed. (±)	-	0.59	0.67	0.59	0.68
C. D. (P = 0.05)	-	1.75	2.02	1.71	1.69

 Table 2: To study the field efficacy of certain chemical and neem oil against shoot and fruit borer, *Earias vittella* (Fabricius) on okra (Second spray): (Percent Fruit infestation).

		Percent fruits infestation of E. vittella				
Treatments		One day hafana ayyay	After spray			
		One day before spray	3 DAS	7 DAS	14 DAS	Mean
T1	Spinosad 45% SC	15.52	5.42	4.45	7.70	5.85
T ₂	Lambda-cyhalothrin 2.5 EC	17.26	14.32	15.55	16.67	15.51
T ₃	Flubendiamide 480 SC	20.25	11.47	10.81	14.85	12.37
T4	Profenophos 50 EC	19.48	16.40	17.47	18.42	17.43
T5	Neem oil 0.03% EC	20.24	18.18	17.72	19.99	18.63
T ₆	Emamectin benzoate 5% SG	19.07	14.95	15.89	17.34	16.06
T7	Cypermethrin 25% EC	16.90	14.29	13.43	16.00	14.57
T ₀	Control	20.97	23.03	25.01	28.16	25.40
Overall Mean		18.71	14.75	15.04	17.39	16.47
F- test		NS	S	S	S	S
S. Ed. (±)		-	1.01	1.01	0.73	0.64
C. D. (P = 0.05)		-	3.16	3.11	2.14	1.39

 Table 3: Table representation of to study the field efficacy of certain chemical and neem oil against shoot and fruit borer, [Earias vittella (Fabricius)] on okra on Economics and cost of benefit ratio of okra

Treatment Symbols	Yield (q/ha)	Cost of yield (RS/q)	Gross return (RS)	Total cost of cultivation (RS)	Net return (RS)	B:C Ratio
T1	196.5	1850	363525	60061	357464	1:6.05
T_2	136.3	1850	252155	55941	196214	1:4.50
T3	150.4	1850	278240	59361	218879	1:4.68
T_4	120.2	1850	222370	55901	166469	1:3.97
T5	105.3	1850	194805	56033	138772	1:3.47
T ₆	130.18	1850	240833	55701	185132	1:4.32
T7	140.2	1850	259370	55801	203569	1:4.64
T ₀	92.2	1850	170570	55301	115269	1:3.08

Conclusion

From the above discussion it was found that, spraying of insecticides significantly reduced the shoot and fruit borer percent infestation in okra. The present findings conclude that the new generation insecticides like T₁Spinosad 45% SC (0.3-0.4ml/lit) T₂ Lambda-cyhalothrin 2.5 EC (0.5-1ml/lit) T₃ Flubendiamide 480 SC (0.3ml/lit) T₄ Profenophos 50 EC (2ml/lit) T₅ Neem oil 0.03% EC (2ml/lit) T₆ Emamectin benzoate5%SG (0.4g/lit) T₇ Cypermethrin 25%EC (2ml/lit) and treatment of untreated control plant T₀ were found effective against shoot and fruit borer of okra Earias vittella. Further, it was observed that the cost benefit ratio was also high with T₁ Spinosad 45% SC and T₃ Flubendiamide 480 SC. Hence, it is suggested that the effective insecticides may be alternated in harmony with the existing Intergrated pest management programes in order to avoid the problems associated with insecticidal resistance, pest resurgence etc.

Reference

- 1. Anitha KR, Nandihali BS. Seasonal incidence of sucking pests in okra ecosystem. Karnataka Journal of Agricultural Science. 2008;21:137-38.
- Dash L, Ramalakshmi V, Padhy D. Bio-efficacy of emamectin benzoate 5% SG against shoot and fruit borer *Earias vitella* (Fabricius) on okra. The Pharma Innovation Journal. 2020;9(12):144-146.
- 3. Kanchan Padwal G, Kumar A. Efficacy of plant products and combinations with cypermethrin in management of *Earias vittella* of Okra. Annals of Plant Protection.

Science. 2014;22(1):73-75.

- Kumar P, Singh DV, Dabas JPS, Sachan K, Kumar M. Assessment the Efficacy and Economic of Insecticides And Bio-Pesticides Against Major Insect Pests of Okra (*Abelmoschus esculentus*). International Journal of Agriculture Sciences. 2016;48(8):2050-2052.
- 5. Misra HP. Field evaluation of some newer insecticides against aphid (*Aphis gossypii*) and jassid (Amrasca biguttula biguttula) on okra. Indian Journal of Entomology. 2002;64:80-84.
- 6. Naidu G, Kumar A. Field efficacy of certain insecticides against shoot and fruit borer (*Earias vittella* Fab.) on rainy season okra in Prayagraj (U.P.). Journal of Entomology and Zoology Studies. 2019;7(6):1211-1213.
- Rakshith KA, Kumar A. Field Efficacy of Selected Insecticides and Neem Products against Shoot and Fruit Borer [*Earias vittella* (Fabricius)] on Okra [*Abelmoschus esculentus* (L.) Moench]'. International Journal of Current Microbiology and Applied Science. 2017;6(8):122-128
- 8. Singh GP, Yadav Ramkewal, Singh RS, Vikrant. Effect of Certain Eco-Friendly Insecticides on *Earias vittella* (Major Insect) Of Okra Crop in Central Region of Uttar Pradesh, India. Plant Archives. 2017;17(1):135-140.
- Srivastava N, Srivastava AK, Alok M, Gupta P, Singh SK. Efficacy of Selected Insecticides And Neem Oil Against Shoot and Fruit Borer (*Earias vittella* fab.) Onokra (*Abelmoschus Esculentus* L.). International journal of pharmacy and life sciences (Ijpls).

The Pharma Innovation Journal

2014;5(12):4096- 4099.

 Roy A, Shrivastava SK, Mandal SM. Functional properties of okra Abelmoschus esculentus L. (Moench): traditional claims and scientific evidences.' Plant Science Toda. 2014;1(3):121-130.