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Abstract 
Silicon has been considered as a beneficial detoxification agent, since due to anthropogenic activities in 

the environment, there have been increased contaminants. It also has an impact on the sustainability of 

agricultural production. In this regard, Si plays a major role in amelioration of stresses imposed by both 

biotic and abiotic factors, for example extreme amount of heavy metal in plants. There are different 

systems of silicon intercession in plants, which incorporate decrease of heavy metal take-up, change in 

pH of soil, silicon substantial metal development that works by chemical and physical pathways. Silicon 

is known to be useful in moderating aluminium, manganese, cadmium and substantial metal toxicity and 

furthermore, saltiness or salinity, drought, freezing and chilling stress. The important function of Si in 

decreasing the abiotic stress includes: Chelation and stimulation of antioxidant system in plants, 

restriction in movement of toxic metal ions in growth media, root to shoot translocation, co-precipitation 

of complex formation of heavy toxic metal ions with silicon, uptake processes, changes in structure of 

plant. In any case, these components are related with plant species, genotype of the plant, metal 

components, conditions for development and the time of stress imposed to plants. Exogenous silicon use 

has been archived to build substantial metal resistance in plants. 
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Introduction 

Rapid and unplanned urbanization and industrialization, as well as labor-intensive farming, 

have put enormous strain on the worldwide environment. The contemporary era's population 

boom has resulted in mining, smelting, plastic production, e-waste manufacturing, and an 

abundance of fertilizers, herbicides, and waste water irrigation have all contributed to 

hazardous pollutants release into the atmosphere, particularly in farming soils. (Bi et al., 2018; 

Ma et al., 2019) [10, 66]. 

Si, after oxygen, is the most frequently occurring element on Earth as well as in soil and plants 

benefit from it in terms of growth and development under a variety of environmental 

situations. (Liang et al., 2007; Rasoolizadeh et al., 2018) [52, 79]. Since silicon is a plant nutrient 

and an essential element, it plays a major role in plant growth, yield, and chlorophyll. Plants 

use silicon as a nutrient acquired through their roots, to alleviate the impacts of abiotic stresses 

which include metal toxicity, salinity, water stress, temperature stress and nutrient imbalance. 

There are basically two mechanisms through which Si eases the toxicity of metals, these are 

internal and external. For external, silicon changes the metal formation to reduce metal 

concentration by adding a silicon compound, reducing activity and absorption of metal. Then 

again in internal system silicon lessens the unfriendly effects of metal toxicity by stimulating 

the enzyme activity. Anyway the defensive function of silicon can be accredited to a collection 

of polysialic acid in the cells of plant. Accordingly, with intensification in polysialic acid, the 

resilience in plants is improved and this by implication hinders with the stress factors. 

Cadmium is accumulated in higher amount in the root portion than stem. Hence Si is also is 

seen in root of the plants, making a physical barrier, and reducing the uptake of heavy metals. 

Various environmental and soil conditions, however, have a considerable impact on the 

bioavailability of Si in the soil and its delivery to plants. High rainfall causes Si leaching and a 

low pH in the soil, both of which have detrimental effects on biological Si pools in the soil and 

make Si less bioavailable to plants (Schaller et al., 2021) [85]. 

 

Metal: From being important to toxic 

Metals can be classified as elements which are not essential, such as Cadmium, Mercury, 

Palladium, Chromium, Arsenic, and Silver which are potentially toxic to plants and are the  
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most dangerous contaminants to plants (Feng et al., 2021) [31]. 

The essential micronutrients such as Copper, Zinc, Iron, 

Manganese, Molybdenum, Nickel, Cobalt, which are needed 

for healthy plant growth and development. The metals which 

are essential to the crop take part in different processes. 

Generally, any crop will grow normally when given nutrient 

quantity matches the requirement that plant needs. The 

nutrient deficiency will result in symptoms which may even 

lead to mortality under extreme conditions. Hence if there is 

more amount of metal, it may reduce and inhibit the plant 

growth, which is caused by structural, biochemical and 

physiological changes. If up taken in large amount, the metals 

will change uptake, translocation, also accumulation of 

element in any crop. Heavy metals in the soil have a negative 

impact on crop development, photosynthesis, biomass, and 

productivity, as well as limiting the intake and transfer of 

important nutrients to plants (Adrees et al., 2015; Awan et al., 

2020) [1, 5]. Dangerous impacts which metal imposes results in 

restrained growing life, reduced energy, water balance and at 

last it leads to senescence.  

 

Heavy metal toxicity in crop plants 
Because of unfavourable ecological effects, heavy metal in 

soil has come out as an important concern. Furthermore, leafy 

vegetables absorb and collect more heavy metals in their 

leaves than non-leafy vegetables, putting them at a higher risk 

of poisoning, devastation. These vegetables have the potential 

to be the ultimate source of heavy metals to make their way 

into the food chain (Fatemi et al., 2020) [30]. The land for 

producing crops has metal in great amount such as Cadmium, 

Lead and Zinc. This land will show some bad impact on plant, 

soil biological activity, human, animal health, also 

biodiversity. There have been different approaches including 

phytoextracts, mobilizers and more sustainably, use of silicon 

has contributed in mitigating heavy metal toxicity in plants. 

Although Si is not included among the necessary elements, it 

is involved in plant growth and development and has a broad 

spectrum of functions in plant metabolism, particularly in 

graminaceous and cyperaceous species (Liang et al., 2005) 

[51]. Furthermore, poor soil management and a high rate of 

crop harvesting had a negative impact on the Si concentration 

in the soil solution and, as a result, plants that were stressed in 

many ways (Puppe, 2020; Schaller et al., 2021) [77, 85].  

 

Silicon: A multibranched element to reduce toxic metals in 

crops: The improvement of crops to tolerate toxic metals 

derived from silicon is quite precise. Silicon has a beneficial 

role in detoxification and attributed to different processes of 

crop. Soil amendments containing Si or Si fertilisers may 

change the structure of the bacterial population, the 

physiochemical properties of the soil, and the limitation, 

immobilisation, and transformation of contaminants like 

cadmium (Ma et al., 2021; Zeng et al., 2011) [66, 102].  

The outside process of promoting metal toleration is because 

of pH enhancement when we apply silicate which results in 

metal silicate precipitation that eventually decreases 

obtainability of metal. In crops, silicon influences movement 

of metals in different areas of crop and permits to live through 

the toxicity of metal. Crops shift the capacity of gathering 

silicon, more aggregators; for example, monocot normally 

acquires more noteworthy advantages, despite the fact that 

toxicity of metal might be reduced with silicon. In case of 

rice, silicon modifications indicated decrease in aggregation 

of metal, and also enhanced the metals (Cadmium, Copper, 

Lead, Zinc), polluted the soil which was acidic. Si is likewise 

described as to expand plant energy. Previously, in the 

presence of Si, numerous plant species demonstrated a 

significant improvement in their growth under heavy metal 

stress like wheat, rice, cotton, maize and peanut (Liang et al., 

2007) [52].  

Accumulation of Zn was fundamentally repressed by silicon 

in various areas of the crop, for example, in cotton and maize, 

the underground part and also the leaf. It has been reported 

that silicon limits Cadmium metal toxicity by diminishing 

particle retention and movement in seedlings of rice from 

underground to the above ground part. Use of Si likewise 

lessened fat or triglyceride per oxidation and boost the living 

matter of crop under substantial noxious metal. Si is helpful to 

reduce Aluminium content in Barley. Correspondingly, 

diminished Aluminium amount by using Si is reported in the 

underground root part, leaf and stem part of seedlings of rice 

as well as peanut. Rice seedlings absorb Si from the soil as 

silicic acid, which is linked to a reduction in heavy metal 

transport into the rice seedlings (Cui et al., 2017) [16]. 

Si alteration when used as detoxifying element in aluminium 

harmfulness is accounted in great millet, corn, Solanum 

lycopersicum and Gycine max. Significant decrease in silicon 

in farm soils is seen when we remove the debris which has Si 

while yield collection. Therefore, if applied externally, it will 

turn into a pattern sooner to repay it’s exhaustion in soils, all 

the while receiving its reward of improving plant 

development and mitigating the metal toxicity. 

 

Silicon uptake mechanism 
The concentrations of Silicon differ in great amount in part of 

crop above ground, and range between 0.1- 10% (Epstein, 

1994, 1999; Ma and Yamaji, 2008) [26-27, 63]. This 

concentration of silicon in plant is because of Si uptake 

differences. The plants of gramineae family show more 

silicon uptake as compared to other species, on the other 

hand, most plants that belong to dicotyledonous category 

show passive absorption of silicon (Ma et al., 2001) whereas 

legumes avoid silicon take-up. On the other hand, strawberry 

and cucumber take up Silicon passively (Takahashi et al., 

1990; Ma et al., 2001; Mitani and Ma, 2005) [93, 68]. Other than 

rice, wheat (Van der Vorm, 1980; Jarvis, 1987; Casey et al., 

2003) [98, 43, 11], barley and ryegrass also take silicon actively.  

 

Defense mechanisms of silicon  

Si is routinely consumed by plants by arrangement of 

monosilicic acid. The concentration of Si as silicic acid in soil 

fluctuates between 0.1 and 0.6 mM, which is roughly two 

times higher than the concentration of phosphorus in the soil 

solution (Epstein, 1999) [27]. Because Si in the soil solution is 

monomeric or monosilicic (H4SiO4), it is easily absorbed by 

the root system and translocated to areal portions of plants, 

where it accumulates (Hodson et al., 2005) [39].  

Silicon’s defence mechanism show up all through the plant. 

Si, in leaf, is utilized in making various structures for 

example, epidermis and hair. It is likewise gathered in the 

form of phytoliths and spines. In crops, there are unique 

pathways or components through which Si removes reactive 

oxygen species and also ameliorates metals which are toxic. 

In case of cell culture, the absorption of metal and its 

movement from the underground root to the above crop part is 

diminished by Si. Si, through various methods also reduces 
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toxic metal, for example, gene expression regulation which is 

involved in transport of metal and metal-chelation, partaking 

in metal co-precipitation, variation in structure of plant, 

invigorating the enzyme activity. By mixing cadmium-silicon, 

the tolerance of Cd increases in birch plant (Song et al., 2009) 

[92]. This exhibited the function of silicon in decreasing toxic 

metal take-up and restricting root to shoot movement, and 

furthermore invigorating the activity of enzyme. Si can 

change the qualities of soil by improving air and water 

regimes, boosting nutritional content (nitrogen, phosphorus, 

and potassium), decreasing heavy metal toxicity through 

improving soil physical and chemical properties, and forming 

new silicate complexes (Adrees et al., 2015, Zhu et al., 2019) 

[1, 104]. It has been reported by numerous analysts that the co 

deposit of silicon with metal can lessen the concentration of 

these toxic particles in plants. It has been accounted for that, 

utilizing a few systems, for example, root emitting fluids; rise 

in pH level, Si restricts aluminium absorption in plant roots, it 

hastens aluminium concentrations on the surface of root. In an 

overall characterization, components of Si detoxification are 

assembled as physical or chemical processes. The latter are 

involved in co precipitation of Si with metal, whereas 

physical processes, by altering the structure of plant, reduce 

the transfer of metal to above ground parts, for example, 

apoplastic barrier. The root system of plants absorbs Si from 

the soil and improves the plant's living status by lowering 

heavy metal uptake and translocation from root to shoot, 

activating the antioxidant system, chelate compartmenting, 

and controlling heavy metal transporter expression of genes 

(Adrees et al., 2015; Etesami and Jeong, 2018) [1, 28]. In 

general, silicon takes part in process of reducing the stress in 

plants that are subject of abiotic stress as well as metal 

toxicity in a few significant systems, along with stimulating 

the antioxidant enzyme activity so that the reactive oxygen 

species removal is enhanced, complex formation, restricting 

harmful particles of metal in plant, precipitation and 

aggregation to acquire stability and toughness in leaves of 

plant tissue, mobility of water, and providing nutrient to the 

plant and co precipitating the metal toxicity. Si also reduces 

heavy metal toxicity, activates soil phosphorus (P), and 

improves P availability and absorption, which is then taken up 

by plant roots together with other necessary nutrients 

(Tripathi et al., 2015) [96].  

 

Metal immobilization in soil by silicon 

Metal immobilization is a lot more straightforward process to 

clarify the silicon determined advantages. This mechanism 

has been accounted for in a few studies (Sahebi et al., 2015) 

[82]. The factors such as pH of soil and organic matter control 

the availability of metal and because of the increase in pH of 

soil by formation of silicate complex, the availability of metal 

decreased (Chen et al., 2000; Morikawa and Saigusa, 2002; 

Liang et al., 2005; Treder and Cieslinski, 2005; Gu et al., 

2011) [10, 70, 51, 94]. In rice, use of silicon rich modifications was 

known in expanding soil pH. Likewise, in banana, for the 

soils contaminated with lead, application of silicon was found 

to be helpful in reducing lead uptake. The diminished bio-

accessibility of lead was discovered to be related with 

fundamentally increased pH of soil and less extent of 

exchangeable lead present in the soil (Li et al., 2012). 

Moreover, silicon forms silicate complexes in soil and 

changes the toxic metal speciation to non toxic (Ma et al., 

1997; Liang et al., 2007; Putwattana et al., 2010) [52, 78]. In 

soils amended with silicon, generally cadmium was present in 

oxide form or was absorbed by oxides of Iron-Manganese 

(Liang et al., 2005) [51]. It is seen that availability of Al to 

plants can be restricted by aluminium-silicon complex 

formation, such as hydroxyaluminosilicate (Hodson et al., 

1997) [13]. It was demonstrated that by fastening the organic 

matter bound to chromium fraction precipitation will reduce 

the exchangeable chromium in the soil contaminated with 

chromium by application of silicon (Zhang et al., 2013) [55]. 

Also, the diminished metal mobility in soil contaminated with 

lead by the application of silicon (Shim et al., 2014) [88]. 

Examination with X-beam diffraction investigation has shown 

the development of insoluble lead-silicate in soil. Likewise, in 

soil contaminated with cadmium and zinc, it has been seen 

that silicon application has fastened the development of 

comparatively stable portions of zinc and cadmium (Cunha et 

al., 2008) [76]. 

 

Antioxidant defense mechanism stimulation 

Substantial metal stress instigates excessive reactive oxygen 

species formation. This leads to crop plant metabolic 

disorders (Adrees et al., 2015; Ahmad et al., 2019) [1, 2]. In this 

specific situation, non-enzymatic and enzymatic antioxidant 

mechanisms which are invigorated by silicon assist with 

reducing the oxidative stress by lowering the reactive oxygen 

species formation. Application of silicon also reduces the 

hydrogen peroxide and electrolyte leakage, under cadmium 

stress in case of Solanum nigrum (Liu et al., 2013) [55]. Silicon 

application also reduced the oxidative stress compounds for 

example hydrogen peroxide, malon dialdehyde and electrolyte 

leakage in plants suffering with zinc (Anwaar et al., 2015) [4], 

cadmium (Hussain et al., 2015) [41] and lead (Bhatti et al., 

2013) [9] stress. In maize, rice, peanut and wheat, the impact of 

supplementing silicon on antioxidants during cadmium stress 

has been noted (Lukačová et al., 2013; Zhang et al., 2008; 

Tripathi et al, 2012; Shi et al., 2010; Hussain et al., 2015) [95, 

103, 41, 56]. Under stress of heavy metals, the activities of non-

enzymatic and enzymatic antioxidants for example, ascorbic 

acid, glutathione, etc have been accounted in various species 

of plants (Song et al., 2009; Li et al., 2012) [92]. Under 

manganese, zinc, copper and lead stress, detoxification 

intervened with silicon by invigorating both non-enzymatic 

and enzymatic antioxidants have additionally been accounted 

(Wu et al., 2013) [100]. Considering all the past studies, 

induction of antioxidant mechanism in plants has been 

observed by silicon application, accordingly enhancing the 

resistance of plants to stress (Coskun et al., 2019) [2].  

 

Compartmentation in plants 

Improved compartmentation of metal with supplementation of 

silicon in tissues of the plant has been seen in a few 

experiments. It has been observed that in barley, the impact of 

silicon in easing manganese toxicity was not the consequence 

of decrease in concentration of manganese; however the 

reason was enhanced compartmentation inside the tissues of 

leaves (Williams et al., 1957) [99]. Another compartmentation 

level with supplementation of silicon, which is generally 

controlled by the process of translocation and results in 

increment in concentration of metal in roots of the plant rather 

than shoots, has been observed (Yamaji N et al., 2008; Keller 

et al., 2015) [63, 45] It was reported that when treated with 

silicon, the zinc transport to shoot from plant root decreased, 

and an increment in zinc getting attached to the cell wall lead 
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to reduction in concentration of zinc in rice shoot (Yamaji et 

al., 2008) [63]. In case of wheat, cadmium translocation to the 

shoot from root was reduced by application of silicon (Naeem 

et al., 2015) [71]. Shi et al., 2005 noted that cadmium 

translocation from root to shoot decreased by about 33% by 

silicon application. This plainly demonstrated that cadmium 

accumulated in epidermis and endodermis, in any case, a high 

measure of silicon was deposited more close to endodermis as 

compared to epidermis. Due to this deposition of silicon in 

endodermis, the cadmium translocation reduced from 

epidermis to endodermis. In expansion, when silicon was 

applied to rice, cadmium deposition decreased in the shoots, 

this was related to increase in cadmium compartmentalization 

in cell wall of the roots (Zhang et al., 2008) [103]. In cucumber, 

under stress of Mn, silicon was additionally seen to build the 

localization of manganese in cell wall (Maksimović et al., 

2012) [24]. Besides, in the plants treated with silicon, symplast 

had less manganese translocation (less than 10%), and cell 

wall had more than 90% manganese (Rogalla et al., 2002) [81]. 

Subsequently, detoxification of the toxic metals interceded by 

silicon by their compartmentation into various tissues of the 

plant is a major component of the valuable role of silicon.  

 

Chelation mediated reduction of metal toxicity with silicon 

application 

The detoxification of heavy metals by silicon mediation 

transcendently incorporates metal chelation by organic acids 

or flavonoid-phenolics. In maize, 15 times expanded phenol 

exudation has been seen when supplemented with silicon 

(Kidd et al., 2001) [47]. In maize, under aluminium stress, an 

impressive increment of malic acid upon application of silicon 

has been revealed (Barceló et al., 1993) [23]. Chelation of 

aluminium with malic acid has resulted in reduction in 

toxicity of aluminium. In Bamboo plant, Silicon plays a role 

in enhancing the Cu(I)S ligand concentration that helps in 

chelating Copper and enhancing it’s segregation to a form 

which is less harmful (Collin et al., 2014) [14]. In wheat, 

reduced copper translocation from root to shoot when 

supplemented with silicon was observed. This may be due to 

an increment in the citrate or malate proportion in roots of 

wheat. These examinations, altogether, propose that silicon 

reduces the phytotoxicity in plants by enhancing the heavy 

metal chelation (Keller et al., 2015) [45]. 

 In Arctic soils, Si availability was found to be substantially 

linked with phosphorus mobilisation (Schaller et al., 2019) 

[84]. Some reports also show that silicon helps in expanding 

the mobilization of phosphorus and also in enhancing the soil 

respiration in soils that are lacking phosphorus. Other than a 

significant nutrient element, phosphorus is also helpful in soil 

biochemical activities. An impressively high number of 

reports have demonstrated the significance of phosphorus to 

lessen the heavy metal bioavailability through immobilization 

of metal ions in soil (Gupta et al., 2014) [36]. Subsequently, 

silicon intervened mobilization of phosphorus appears to be 

an important alternative for managing availability of 

phosphorus sustainably, just as for limiting the losses caused 

by heavy metals in agro-biological system. 

 

Metal stress tolerance by structural alterations in plants 

Supplementation of silicon helps in conquering the toxicity 

due to heavy metals by improving the morphology and 

anatomy of the crop plants. Prominent models where the plant 

height, length of root, leaf number and size has been increased 

by application of silicon under zinc, lead and cadmium stress 

in the plant (Farooq et al., 2013; Bharwana et al., 2013) [3, 7]. 

In barley, it has been observed that treatment with silicon and 

chromium tends to increase the length of root, height of plant, 

tiller number, and the size of leaves in comparison with the 

plants that were treated with only chromium (Ali et al., 2013) 

[3]. Likewise, the length of root and the size of shoot also 

essentially increased when treated with silicon as compared to 

no treatment with silicon (Farooq et al., 2013) [3]. In maize, 

silicon was also reported to enhance the thickness in 

epidermal layer of leaf when exposed to manganese stress 

(Doncheva et al., 2009) [23]. An enhancement in the diameter 

of xylem, mesophyll, epidermis as well as collenchyma when 

treated with silicon was reported under zinc and cadmium 

stress (Cunha et al., 2009) [17]. Development of apoplastic 

boundaries in endodermis near to apex of root when silicon 

was present in plants treated with cadmium in wheat (Greger 

et al.,2011) [33]. Accordingly, basic modifications incited by 

silicon under toxic metal stress may clarify the mitigation of 

toxicity by metals.  

 

Metal coprecipitation by silicon application 

Numerous studies recommend that silicon can mitigate the 

metal toxicity in plants by co-precipitating the metals. For 

instance, when plants were under aluminium stress, it was 

suggested to treat them with silicon, since it would lead to 

formation of aluminosilicates in the apoplast of plant root, 

which eventually results in detoxification of aluminium 

(Barcelo et al., 1993; Cocker et al., 1998) [6, 13]. Silicon was 

also accounted for zinc co precipitation as their silicates in 

epidermis of leaf cell wall (Neumann et al. 1997) [72]. Si-

heavy metals are metals that have a lot of silicon in them. Co-

precipitation aids in cell wall thickness by creating strong 

silica barriers that bind and prevent heavy metal transport 

(Bhat et al., 2019) [8]. 

The absence of Si–Cd compounds in maize plants treated with 

Si under Cd stress is also supported by the findings (Dresler et 

al., 2015) [25]. In rice, co precipitation of silicon with cadmium 

was reported to decrease the concentration of heavy metals in 

leaves (Gu et al., 2011). It was reported by Zhang et al., 2008 
[103], that silicon and cadmium accumulated in the centre and 

around the phytoliths of rice shoots.  

 

Gene expression regulation 

Mechanism of detoxification of heavy metal in plants is 

represented by synthesis of phytochelation (Rea et al., 2012) 

[79]. The mitigation of toxic metals by silicon mediation is 

ascribed to the altering gene expression role of silicon. In 

Arabidopsis, supplementation of silicon was seen to stimulate 

genes to produce a chelating agent which is metallothioneins 

under cadmium stress (Li et al., 2008). In rice supplemented 

with silicon, down regulated gene expression which encodes 

heavy metal carriers and also up regulated gene expression 

liable for transport of silicon has been observed (Kim et al., 

2014) [48]. Likewise, under copper stress in Arabidopsis 

species, the reduced metallothionein expression of gene and 

enhanced phytochelatin synthase 1 has been observed 

(Khandekar et al., 2011) [46]. As of late, in rice, silicon 

supplementation under cadmium stress was reported to up 

regulate the OsLsi1 gene expression and down regulate 

Nramp5 expression, which is known to transport cadmium 

(Ma et al., 2015). Moreover, there are plant species that are 

poor accumulators of silicon and do not carry silicon 
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transporters such as NIP III aquaporin and are therefore called 

as poor Silicon accumulators. These species are from the 

families of brassicaceae, lineaceae, solanaceae (Sonah et al., 

2017; Shivaraj et al., 2017) [89, 91]. 

 

Approaches to improve accumulation of silicon in plants  
Useful silicon impact to alleviate harmful impact of metals is 

generally evident that amass in plants at significant levels of 

silicon (Ma et al., 2001; Yamaji et al., 2008) [63]. Si 

aggregation depends on the silicic acid availability in soil and 

also the characteristic capacity of plant to uptake silicon. If 

we apply silicon rich fertilizers or modify the soil properties, 

the availability of silicon in soil will be improved, while the 

genetic alterations can enhance the inherent limit of any 

species for accumulation of silicon.  

 

Fertilization by silicon: Consistent cropping of the crops that 

accumulate silicon results in a noteworthy decrease of 

available silicon to plants in the soil (Meunier et al., 2008) [67]. 

If rice is cultivated for five long years continuously, then it 

may deplete maximum amount of silicon available to the 

plants (Desplanques et al., 2006) [21]. Also, some soils have 

low degree of silicon, especially the plant-accessible forms, 

and these soils incorporate Oxisols, Histosols and Ultisols and 

also the soils that are made up of large quartz fraction. Silicon 

is absorbed as monosilicic acid and its fixation in soil will 

decide the fraction of plant accumulates (Henriet et al., 2006) 

[37]. The concentration of this acid can be increased by 

fertilization and this has become a typical practice in areas 

where intensive cropping system is followed, especially for 

the soils which are low in the soluble silicon (Guntzer et al., 

2012; Tubaña et al., 2015) [35, 97]. It has been observed that 

there were less concentrations of zinc and copper in plants 

grown with silicon based fertilizers (Jarosz et al., 2013; Ning 

et al., 2014) [42]. Some studies, on the other hand, have found 

that the fertilisation method can affect the quantity of Si 

accessible to the plant (Ouellette et al., 2017) [74] 

 

Modification in soil properties: The rich amount of silicon 

present in soil is not related to plant available silicon 

concentrations (Tubaña et al., 2015) [97]. Silicic acid 

concentration in soil is impacted by a number of soil factors, 

for example, temperature, pH, soil weathering, dampness, 

redox potential of soil, clay amounts, minerals, organic matter 

and oxides or hydroxides of iron or aluminium (Savant et al., 

1997) [83]. The amorphous and crystalline silica solubility is 

around steady from pH 2-8.5, and is rapidly increased when 

pH is 9. The pH of the soil also alters the silicon complex 

formation with other elements, for example, the monosilicic 

acid amount which is consumed by oxides of aluminium or 

iron shows an increase from a pH of 4-10. Under soil acidic 

conditions, the amount of free silica increases, this was stated 

by Kaczorek and Sommer, 2004 [44]. Likewise, with decrease 

in ph, the silicon availability increases (Höhn et al., 2008) [40]. 

In such manner, the use of fertilizers producing acids increase 

the silicic acid concentration in soil solution, whereas high 

organic matter and liming reduce the silicic acid concentration 

and mobility.  

 

Genetic gain approaches: Two silicon transporter genes 

were identified by utilizing low silicon mutants of rice, and 

this has been an achievement that fastened the silicon research 

by numerous folds (Ma et al., 2015). One gene responsible for 

silicon uptake from soil to the root cells is a passive 

transporter which belongs to an NIP group (Mitani et al., 

2009; Deshmukh et al., 2016) [69, 19]. A few homologs of Lsi1 

are recognized and practically approved in various species of 

plant. Lsi2 is another gene which encodes a functioning efflux 

carrier and has a place in cation transport family. The data 

about Lsi1 and Lsi2 was useful to comprehend the silicon 

uptake from root and ensuring the transfer to aerial parts 

(Pandey et al., 2019) [75]. As of late, Deshmukh et al., 2015 [20] 

demonstrated the arrangement of plant species as high or poor 

silicon accumulator in view of the presence of Lsi1 homolog. 

The variation in interspecies can be adequately clarifies by the 

Lsi1 homolog presence. This can be explained by Lsi1 

homolog characterization. This interspecies variation, running 

from 0.1-10% has been accounted for concentration of silicon, 

despite the fact that these variations have all the earmarks of 

being restricted at intraspecific levels (Hodson et al., 2005) 

[39]. For instance, the silicon concentration in sugarcane has 

been seen to run from 6.4-10.2 mg-1 in shoots of various 

genotypes (Deren et al., 2001) [18]. Likewise, in a study of 

around 400 barley cultivars, the concentration of silicon in 

barley grain extended from 1.24-3.80 mg-1 (Ma et al., 2003). 

Japonica rice cultivars generally accumulate greater silicon 

than the indica cultivars (Ma et al., 2007). 

 

Conclusion 

Natural and artificial activities have brought about a higher 

convergence of toxic metals in farmlands which lead to 

serious unfavourable consequences for crop production and 

profitability and also for human health. In this manner, silicon 

has risen as handy choice to diminish phytotoxicity of heavy 

metals in plants. Gainful impacts of silicon are accounted by a 

few studies and also clarified by various potential processes. 

Numerous studies contend that utilization of silicon fertilizers 

comprise an essential way for mitigating the metal stress. 

Simultaneously, the upgrade of genetic potential to take up 

silicon would speak to a road to upgrade their response to 

silicon in plants. This technique would fit well in a 

sustainable agriculture program to enhance tolerance to heavy 

metals in plants. 
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