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Abstract 
The nutritional value of millet is dependent upon its metabolic profile, including the types and amounts 
of natural phenolic compounds present, which warrant evaluation in order to determine the best 
genotypes for human consumption. Barnyard millet (Echinochloa frumentacea L.) could be a good 
source of iron for vegetarians. In the present study, Metabolome profiling of barnyard millet genotypes 
containing high Fe and low Fe content in five spike development stage was performed using GC-MS 
platform and results observed highest percentage of sugar and sugar alcohol (34%) followed by organic 
acid (26%), Amino acids, sterol, other compound (23%) and fatty acid (17%) in spike development 
stages of Low Fe Vs High Fe genotypes. Heat map revealed that during spike emergence the metabolic 
compounds like d-Ribose, D-Fructose, D-Glucose, Galactose, D-Turanose, Glucopyranose, D-Mannitol, 
Hexadecanoic acid, Docosanoic acid, alpha. - Glycerophosphoric acid and beta.-Sitosterol were found 
high in high Fe genotype in comparison to Low Fe genotype. The hierarchical cluster analysis, revealed 
that high Fe five spike development stages shares close metabolite pool to each other and in low Fe four 
spike development stages also shares similarly metabolite pool to each other except spike emergence 
stage of Low Fe genotype. PCA showed that the expression patterns of the five developmental stages 
differed significantly. 
 

Keywords: Barnyard millet, GC- MS, metabolites compound, heat map, hierarchical clustering analysis, 

principal component analysis 

Abbreviations: dH2O Distilled water, GC-MS Gas chromatography-mass spectrometry, IIMR Indian 

Institute of Millets Res, H Fe High Iron, L Fe Low iron, S1 Spike emergence, S2 Pre-Pollination, S3 

Pollination, S4 Milking, S5 Seed maturation, PLS-DA Partial least squares-discriminant analysis 

 

Introduction 

Barnyard millet is a multi-purpose crop which is cultivated for food and fodder. Barnyard 
millet grains are a rich source of dietary fiber, iron, zinc, calcium, protein, carbohydrate, 
magnesium, fat, vitamins, and some essential amino acids and, most notably, contains more 
micronutrients (iron and zinc) than other major cereals. Barnyard millet could be a good 
source of iron for vegetarians. Some of its varieties have high amount of iron which is the 
richest amongst all millets and cereal grains.  
The nutritional potential of millets is limited by the presence of phytates, phenols and tannins. 
Kulkarni and co-workers assessed the tannin content of five minor millets viz., proso, kodo, 
Italian, little and barnyard millet and recorded lowest level in barnyard millet (102.96 mg). It 
has been shown that dehulling of the seeds reduces phytate and tannin levels (Kulkarni et al., 
1992) [1]. Thus, for the health-conscious genera of the present world, minor millet especially 
barnyard millet is one more addition to the existing list of healthy foods, owing to its 
nutritional superiority (Padulosi et al, 2009) [2]. 
Metabolomics aims at determining a sample’s metabolites profile and hence provides a 
straight functional statement of an organism’s physiological condition. The nutritional quality 
of millet grains is usually equivalent or superior to that of other cereals containing high 
amounts of minerals, essential amino acids, carbohydrates, and vitamins (Lorenz and Hinze, 
2002; Taira, 2002; Yang et al., 2013) [2, 3, 4]. However, its advantage has not been mirrored to 
the same extent in dissecting metabolic pathways because of the relative lack of knowledge of 
both primary and secondary metabolism in this species (Suma and Urooj, 2012) [6]. 
A combination of gas chromatography and mass spectrometry (GC-MS) allows for the 
identification and robust quantification of several hundred metabolites within a single extract. 
The primary metabolite profile is closely related to the organism’s phenotype and includes 
important nutritional characteristics (Hoekenga, 2008; Kok et al., 2008) [7, 8]. 
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In this study, Metabolic profiling in whole millet grains from 

high and low Fe content of two genotypes using GC-MS 

coupled with chemo metrics was applied to determine the 

phenotypic variation and to analyze relationships between 

their contents. Therefore, the nutritional value of millet is 

dependent upon its metabolic profile, including the types and 

amounts of natural phenolic compounds present, which 

warrant evaluation in order to determine the best genotypes 

for human consumption. Plant identification and 

differentiation at the species, population and individual 

genotype levels is of major importance for plant scientists and 

breeders. It has already been employed to direct breeding 

strategies for improving and optimizing the balance of food 

components. Consumers are aware of the need for a constant 

supply of phytochemical-containing foods for antioxidant 

support and disease prevention (Kim et al., 2013) [9]. 

The Metabolomic profiling of barnyard millet will provide 

complete picture of available essential amino acids, minerals, 

vitamins and bioavailability of nutrients. It will also provide 

information on anti-nutritional components which can be 

improved by the use of novel method created from the 

information generated. 

However, to the best of our knowledge, Metabolomic 

profiling in various genotypes of barnyard millet have not 

been reported. There is no single report of metabolite 

profiling of barnyard millet in Fe content of spike developing 

stages. In the present study metabolome profiling of barnyard 

millet genotypes containing Low Fe and High Fe content was 

carried by GC-MS platform.  

 

Materials and Methods 

Sample Collection  
Thirty genotypes of barnyard millet were procured from 

IIMR, Hyderabad. Samples were collected based on elemental 

analysis of iron content of barnyard millet genotypes. Spike 

development stages (Figure 1) samples were collected from 

Kharif season: 2018-19 (August-October). For GC-MS 

analysis samples were kept in aluminum foil in -80oC for 

longer period of time. 

 

Extraction and derivatization of metabolites 

Metabolomic (whole metabolomic) study was performed 

using GC–MS. Metabolites were extracted as described by 

Velledor et al. (2014) [10] with minor modifications. Spike 

tissues (200 mg) were homogenized with pre-chilled mortar-

pestle in 3 ml of 100% HPLC grade methanol (pre cooled at 

−20 °C). The mixture was shaken for 10 min at 70 °C in a 

water-bath at 950 rpm and centrifuged for 10 min at 11,000 g. 

The supernatant was transferred to a SchottGL14 glass vial 

and 1.5 ml of chloroform (−20 °C) was added. After that 3.0 

ml of dH2O (4 °C) was added and vortexed for 10s. Again, 

the mixture was centrifuged for 15 min at 2200g and the 

upper phase (polar) and lower phase (nonpolar) phase were 

transferred into a separate test tube. Bothpolar and nonpolar 

phase were dried in a nitrogen stream. Extracted metabolites 

were derivative as described by Sanimah et al. (2013) [11] with 

minor modifications. The dried extracts were re-dissolved in 

50 μl of pyridine and sonicated for 10 min. Then, 100 μl of 

methoxyamine HCL (20 mg ml−1in pyridine) was added and 

vortexed for 30 s. The mixtures were then sonicated again for 

5 min and incubated with constant agitation for 90 min at 37 

°C. The trimethylsilylation (TMS) step was performed by 

adding 250 μl N-Methyl-N- (trimethylsilyl) trifluoro 

acetamide (MSTFA) to the extracts and vortex for 30 s. 

Mixtures were incubated for 1 h at 37 °C for derivatization. 

 

Metabolomic analysis by GC-MS 

For GC–MS analysis, 1 μl of derivative extract was injected 

into a DB-17MS capillary (30 m × 0.25 mm). The inlet 

temperature was set at 280 °C. After a solvent delay for 5 

min, initial GC oven temperature was set at 100 °C; after 

injection for 1 min, the GC oven temperature was raised to 

290 °C. 

The injection temperature was set to 280 °C and ion source 

temperature was 230 °C. Helium was used as the carrier gas 

with a constant flow rate set at 1 ml/min. The measurement 

was performed with electron impact ionization (70 eV) in the 

full scan mode (m/z from 50 to 700). Metabolites were 

putatively identified by matching their mass spectra to spectra 

in NIST 14 library (National Institute of Standards and 

Technology, Gaithersburg, MD, USA). Pre-processing of total 

ion chromatograms (TIC) such as baseline correction, 

alignment, peak picking, and integration were performed 

using the ACD/Spec Manager v.12.00 (Advanced Chemistry 

Development, Inc., ACD/Labs, and Toronto, Canada). CSV 

comma delimited files were created for data analysis. 

 

Data processing and statistical analysis 

Data processing and statistical analysis of metabolites was 

carried out using Metabo Analyst 4.0 (Chong et al., 2019) [12], 

an online statistical package and the data were normalized and 

processed. Data were normalized with Pareto scaling for 

metabolomic analysis. Heat Map, Hierarchical cluster analysis 

and Principle Component Analysis (PCA) was performed 

using same package.  

The relative concentrations (g/DW) of different metabolites 

for High Fe and Low Fe five spike development stages 

treatment were formatted as comma separated values (.cvs) 

files. The cvs file was uploaded to the Metabo Analyst 4.0 for 

successive analysis. To improve data quality for performing 

downstream statistical analysis, the data quality was checked 

and normalized by sum, log transformation and auto scaling. 

 

Results 

The current study carried out to understand metabolic 

alteration in different parts of the plant at the spike 

development stage that could provide a more precise 

indication of developmental changes in plants. In the present 

study a total of 35 metabolites of known structure comprising 

sugars, sugar alcohols, fatty acids, amino acids, organic acids, 

sterols and other were identified at Low and High Fe spike 

development stages as determined from chromatogram. Using 

the NIST library, metabolites were found highest amount of 

sugar and sugar alcohol (34%) followed by organic acid 

(26%). Amino acids, sterol and other were found (23%) and 

fatty acid (17%) in spike development stages of Low Fe and 

High Fe content genotypes (Figure 2). Total number of 

metabolites produced in each stage given in supplementary 

table (Table 1). Khan et al (2017) [13] reported GC-MS 

chromatograms profile of the methanolic extract of pearl 

millet genotypes showed the number of phytochemical 

constituents and identified different chemical classes of 

unsaturated fatty acid, aldehydes, organic acids, sterol and 

amino acids compounds in all genotypes of pearl millet. 

Similarly, Romina et al. (2009) [14] studied metabolic profiling 

and analysis of volatile composition of durum wheat semolina 
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and pasta and they found 34 metabolites compounds including 

amino acids, sugars, organic acids, fatty acid and sugar-

alcohols. 

Heat map of metabolites (Table 2 and Figure 3) showed that 

common metabolites compound in High Fe spike five 

development stages were found higher accumulation than in 

Low Fe spike development stages. High Fe Spike emergence 

and Low Fe spike emergence stage found similar 12 

compounds of metabolite but in High Fe Spike emergence 

increase accumulation of metabolite compounds like d-

Ribose, D-Fructose, D-Glucose, Galactose, D-Turanose, 

Glucopyranose, D-Mannitol, Hexadecanoic acid, Docosanoic 

acid, alpha.-Glycerophosphoric acid and beta.-Sitosterol than 

Low Fe Spike emergence stage. In both pre pollination stage 

of Low Fe and High Fe similar 8 compounds of metabolite 

observed in which High Fe pre pollination stage metabolite 

compounds like Putrescine, L-Proline and Hexadeconoic acid 

were showed higher accumulation than Low Fe pre 

pollination stage. Pollination, Milking and Seed maturation 

stages of High Fe genotype observed more metabolite 

compounds than Low Fe genotype stages. In pollination stage 

of high Fe increase accumulation of metabolite compounds 

like Butanedioic acid, Malic acid, 2,3,4-Trihydroxybutyric 

acid, Glutamine, L-Proline, Pentitol, D-Fructose, D-Glucose, 

Galactose, 1,2,3-Propanetricarboxylic acid, D-Mannitol, 

Hexadecanoic acid and Stigmasterol than low Fe pollination 

stage. High Fe milking stage showed 23 compounds of 

metabolite and 13 compounds in Low Fe milking stage. In 

which compound like 2,3,4-Trihydroxybutyric acid, d-Ribose, 

Ribonic acid, Pentanedioic acid, Pentitol, D-Mannitol, alpha.-

Glycerophosphoric acid, Eicosanoic acid, Stigmasterol and 

beta.-Sitosterol observed higher accumulation in 

HighFe_milking stage and compounds like Malic acid, 

Glutamine, 1,2,3-Propanetricarboxylic acid, Tetradecanoic 

acid, D-Mannose and Talose observed higher in Low Fe 

milking stage. Compounds of metabolite found in seed 

maturation stage of High Fe and in Low Fe seed maturation 

stage were 17 and 10 respectively. 14 metabolite compounds 

showed higher accumulation in High Fe seed maturation stage 

like Butanedioic acid, 2,3,4-Trihydroxybutyric acid, 

Glutamine, L-Proline, Tetradecanoic acid, Hexadecanoic acid, 

alpha.-Glycerophosphoric acid, 9,12-Octadecadienoic acid, 

D-Mannose, D-Glucuronic acid, Eicosanoic acid, Docosanoic 

acid, D-Glucopyranose, Stigmasterol and beta.-Sitosterol and 

3 metabolite compounds showed higher in Low Fe seed 

maturation stage like Malic acid, Glucaric acid and D-

Xylopyranose. In genotypes High Fe found constant express 

metabolite compounds were Butanedioic acid, 2, 3, 4-

Trihydroxybutyric acid, Glutamine, L-Proline, Ribonic acid, 

alpha.-Glycerophosphoric acid, D-Mannose, D-Glucuronic 

acid and Stigmasterol in pollination, milking and seed 

maturation stage. 

Based on dendrogram analysis (Figure 4) metabolites of spike 

developmental stages of High Fe and Low Fe genotypes were 

scattered into two main clusters. Cluster 1 represents clusters 

among all sample from that stage seed maturation of Low Fe 

genotype showed from the all the sample that may be have 

different metabolite pool differentially expressed during the 

spike development. In cluster 2 further divided into 3 and 4. 

In cluster 3 High Fe pollination stage showed different 

metabolite pool from High Fe pre pollination, High Fe spike 

emergence and Low Fe spike emergence stage. In cluster 3 

further divided into 5 and 6. In cluster 5 showed different 

metabolite pool in High Fe pre pollination stage from High Fe 

spike emergence and Low Fe spike emergence stage and 

results said that the High Fe pre pollination stage close to 

High Fe pollination stage. In cluster 6 found similar 

metabolite pool in both High Fe spike emergence and Low Fe 

spike emergence stage that results quite shares similarly 

metabolite compounds expressed during the spike 

development of High Fe and Low Fe genotypes. In cluster 4 

found different metabolite pool between High Fe and Low Fe 

stage. In cluster 4 further divided into 7, 8 and 9. In cluster 7 

showed similar metabolite pool in High Fe seed maturation 

and milking stage and found close to each other. In cluster 8 

observed Low Fe pre pollination stage different metabolite 

pool from Low Fe pollination and Low Fe milking stage. In 

cluster 9 found similarly metabolite pool in Low Fe 

pollination and Low Fe milking stage. In dendrogram results 

said that High Fe five spike development stage shares close 

metabolite pool to each other and in Low Fe four spike 

development stage also shares similarly metabolite pool to 

each other except spike emergence stage of Low Fe genotype. 

Similarly, total of 60 compounds of known structure, 

comprising sugars, sugar alcohols, fatty acids, amino acids, 

organic acids, phenols and sterols were identified in stem 

extracts of groundnut using GC-MS by Mahatma et al. (2017) 
[15]. They revealed that sugars and fatty acids were 

predominant in stem extracts as compared to other 

metabolites, heat map and dendrogram analysis to visualize 

the relative levels and relationships of metabolites. Sharma et 

al. (2017) [16] studied the effects of soaking time, germination 

time and temperature on the responses; total phenolics, total 

flavonoids and antioxidant activity for the biochemical 

enhancement of bioactive components of Kodo millet. They 

similar found the GC–MS analysis of raw and optimized 

Kodo millet samples revealed the presence of number of 

compounds Hexadecanoic acid, 9,Octadecenoic acid and 

Stigmasterol. The first dynamic metabolome of the 

developing grain of the elite Chinese bread wheat cultivar 

Zhongmai 175 was analyzed, using non-targeted gas 

chromatography/mass spectrometry (GC/MS) for metabolite 

profiling reported by Zhen et al. (2016) [17]. They said that 

clustering analysis and heat map representation of levels of 74 

metabolites from grain development and found all 74 

metabolites were evaluated and five expression patterns 

during dynamic metabolome changes in grain development. 

PCA was used to summarize the multivariate metabolite data, 

capturing the variables that explained the greatest variation 

[principal components (PC)] in each treatment group. The 

key-contributing metabolites, as determined by their 

contribution to the PCA plots, can be identified by their 

pairwise score plots and loadings values, as summarized in 

the Figure 5 and 6. PCA showed that the expression patterns 

of the five developmental stages differed significantly. PC1 

accounted for 40.9%, PC2 for 21.2%, PC3 for 11.8%, PC4 for 

10.5% and PC5 for 9.2% of the variance, together amounting 

to 93.6% (Figure 5). In PCA score/loading plots found that 

the class of fatty acid, organic acid, sugar and sterol 

molecules including Octadecanoic acid, 9,12-Octadecadienoic 

acid, Tetradecanoic acid, alpha-D-Glucopyranoside, D-

Glucose, Galactose, D-Fructose, 1,2,3-Propanetricarboxylic 

acid, Malic acid, Butanedioic acid and beta-Sitosterol (Figure 

6). Zhen et al. (2016) [17] showed that the PCA expression 

patterns of the six wheat developmental stages differed 

significantly using gas chromatography/mass spectrometry 
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(GC/MS) for metabolite profiling. The developmental stages 

of grain could also be separated into distinct clusters 

according to the results of PLS-DA which further revealed 

distinct metabolic alterations between the different stages. 

Similarly, the quantitative data for the 48 metabolites were 

subjected to PCA to assess the overall experimental variation 

and to outline the differences in the metabolite profiles among 

varieties of proso millet identified by Kim et al. (2013) [9]. 

 
Table 1: Functional classification of number of compounds identified in GC-MS 

 

Stage Name 
Class 

Amino acid Fatty acid Organic Acid Sugar Sugar Alcohol Sterol, Polyamines and other Total 

HFeS1 2 3 11 14 1 9 40 

LFeS1 3 5 9 9 1 7 34 

HFeS2 2 5 9 12 2 8 38 

LFeS2 2 4 13 10 2 10 41 

HFeS3 3 12 10 10 2 9 46 

LFeS3 3 10 14 10 3 10 50 

HFeS4 2 9 11 9 2 15 48 

LFeS4 3 9 14 17 1 10 54 

HFeS5 3 9 13 6 4 12 47 

LFeS5 3 11 11 10 4 8 47 

 
Table 2: Metabolites showed in Heat map 

 

Stage name Metabolites of High-Fe Genotype Metabolites of Low-Fe Genotype 

Spike emergence 12 12 

Pre pollination 8 8 

Pollination 21 13 

Milking 23 13 

Seed maturation 17 10 

 

 
 

Fig 1: Sample collection 

 

 
 

Fig 2: Pie charts shoes the classification of metabolites
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Fig 3: Heat map shows the common metabolite identified in spike development stages 
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Fig 4: Clustering result shown as dendrogram 

 

 
 

Fig 5: Score plots between the selected PCs. The explained variance of each PC is shown in the corresponding diagonal cell 
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Fig 6: Shows the loading plot between the selected PC 

 

Conclusion 

Metabolome profiling identified dynamic changes in 

metabolite levels and correlations among such levels in spike 

development stages of iron content barnyard millet genotypes 

for developing seeds. Our comprehensive metabolic heat map 

and dendrogram results may be useful when breeding 

programs seek to improve grain quality. 
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