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Abstract 
World population is increasing day by day and it is expected to reach 9 billion by 2050. Global food 

demand is going to get doubled by 2050 due to increase in world's population. Rice (oryza sativa) is 

staple food for more than 3.6 billion people World Wide. Since rice is grown worldwide, it's production is 

severely effected by biotic and abiotic stresses. Biotic stresses effecting the rice crop production include 

insects, bacteria, fungus and virus and abiotic stresses include drought, salinity, low temperature and 

aluminium toxicity. During domestication process from wild rice to cultivated rice selecting desirable 

traits for higher yield lead to reduction in the genetic diversity of cultivated rice gene pool. Narrow 

genetic base of cultivated rice is major constraint for rice breeding. Crop wild relatives are useful for 

broadening the gene pool of cultivated rice because crop wild relatives are the reservoirs of useful genes 

and QTLs for stress resistance. Molecular markers and QTL mapping techniques are useful to identify 

the QTLs for stress resistance and to transfer them from wild rice to cultivated rice. This article provides 

review on importance of crop wild relatives as a source of biotic and abiotic stress tolerance in rice. 
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Introduction 

Rice (Oryza sativa) is the second most important cereal crop in the world (Khush et al., 2009). 

It can be grown under varied agro- climatic conditions World Wide (Anser et al. 2020) [4]. It 

provides staple food for nearly half of the total world’s population (Zhou et al. 2020). With 

ever increasing population demand of rice is also increasing but rice productivity is highly 

effected by various environmental stresses (Ijaz et al., 2019) [17]. Biotic stresses cause 30% 

yield losses which include insects, bacteria, virus and fungus. Abiotic factors are reason for 

50% yield losses World Wide (Arif et al., 2019) [11]. Major abiotic factors are drought, salinity, 

temperature and heavy metal toxicity (ref). Moreover, genetic variability for tolerance to biotic 

and abiotic stresses is very limited in cultivated gene pool of rice but abundantly present in 

wild gene pool of genus Oryza. There is a need to broaden the cultivated gene pool by 

transferring genes from wild species to cultivated species for improving tolerance to biotic and 

abiotic stresses (Sharma et al., 2012) [41]. The use of crop wild relatives of rice for improving 

the genetic diversity of cultivated rice is a very promising approach (Jafar et al., 2018) [18]. The 

genus Oryza consists of 24 species among which O. sativa and O. glaberrima are cultivated 

species and remaining are wild species (Jena, 2010) [19]. The wild species of genus Oryza has 

numerous genes that can be used as alternative sources of tolerance to biotic and abiotic 

stresses. Interspecific hybridization holds tremendous importance in combining higher 

productivity with biotic and abiotic stress tolerance (Paul et al., 2013) [2]. It is easy to transfer 

valuable genes from AA genome of wild rice to cultivated rice by using conventional breeding 

methods (Jena, 2010) [19]. Although there are conventional breeding methods like backcrossing 

and recurrent selection which can be used to transfer desirable genes but it is can be effected 

by a problem of linkage drag. So to avoid it molecular marker techniques like Marker assisted 

selection (MAS), marker assisted backcrossing can be used to ensure precise transfer of 

genome of interest and it also minimize the number of back crosses unlike conventional 

method (Das et al., 2017) [8]. Gene pyramiding is another method of approach to combine 

desirable target genes from different sources into single cultivar. In this review article 

importance of wild species has been discussed. 

 

Insect tolerance  
The most damaging pest of rice is Brown plant hopper (BPH) as it causes huge yield losses by 

sucking the cell sap from the leaves of rice (Ram et al., 2010) [36]. 
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This pest can infests all the stages of rice plant growth. BPH 

transmits the viral diseases by acting as a vector to the viruses 

like rice grassy stunt virus and rice ragged stunt virus (Hu et 

al., 2016) [15, 16]. Host plant resistance is the most ideal method 

to control BPH as it increases the yield of rice crop without 

causing any harm to the environment (Jena 2010) [19]. Wild 

relatives are the important source for BPH resistant genes. 

Some of the donors for BPH resistant genes from wild and 

cultivated species are Mudgo, ASD7, Rathu Heenati, 

Babawee, ARC10550, Swarnalata, T12, Chin Saba, 

Balamawee, O. officinalis, O. australiensis, O. minuta and O. 

rufipogon (Jena 2010) [19]. O. rufipogon contain twelve brown 

plant hopper resistant genes i.e., bph18, bph19, bph20, 

Bph21, bph22, bph23, bph24, bph27, bph29, bph30, bph36 

and bph38 and O. officianalis is the reservoir of bph10, 

bph11, bph13, bph14, bph15 genes (Khush et al., 2009). IR 

26 was the first resistant variety for bph with bph 1 gene and 

it was released in 1973 (Khush et al., 2009). Total 573 

cultivated varieties were identified at IRRI for bph resistance. 

Among them, 484 varieties are having resistance to biotype 1 

(Jena, 2010) [19]. The cultivated variety O. sativa contain bph1 

to 9, bph 19, bph 25, bph 26 genes and O. officianalis has 

seven genes i.e., bph 11, bph12, bph 14 to bph 17 (Jena, 2010) 

[19]. Some minor QTLs are also present in rice resistant 

cultivars along with the major genes. Both IR 26 and IR 64 

has bph 1 gene but in addition to this IR 64 contain few minor 

QTLs providing IR 64 with more effective durable resistance 

(Jena, 2010) [19]. Green leaf hopper is the another most 

common pest of rice fields. The adults cause damage by 

sucking the plant cell sap and they act as vectors for rice 

tungro disease (Khush et al., 2009). Donors for green leaf 

hopper resistance are Pankhari 203, ASD7, Sigadis, Ptb8, 

DV85, Asmaita, ARC10313, ARC11554, O. rufipogon. Gene 

Grh5 showing resistance to green leaf hopper is located on 

chromosome 8 is closely linked to SSR markers RM3754 and 

RM3761. These markers are being used in marker assisted 

selection to develop green leaf hopper resistant rice (Fujita et 

al., 2006) [12]. 

Sogatella furcifera, commonly known as whited backed plant 

hopper (Wbph) is another serious pest of rice crop (Chen et 

al., 2010). O. officinalis contain Wbph resistance genes i.e., 

Wbph7, Wbph8 and O. rufipogon contain three QTLs for 

white backed plant hopper resistance i.e., qWbph2, qWbph5 

and qWbph9 (Gaikwad et al., 2021) [14]. Marker assisted 

selection for insect resistance is done through markers like 

RFLP, RAPD, SSR and SNP markers. Gene Grh5 showing 

resistance to green leaf hopper is located on chromosome 8 is 

closely linked to SSR markers RM3754 and RM3761. These 

markers are being used in marker assisted selection to develop 

green leaf hopper resistant rice (Fujita et al., 2006) [12]. 

 

Disease tolerance  

Rice blast is the most damaging disease of rice crop. It is 

caused by fungus Magnaporthe oryzae (Wang et al., 2014). 

This fungus affects the rice crop at all the growth stages. It 

leads to total crop failure under suitable conditions for the 

fungal growth. Due to the narrow genetic base of cultivated 

varieties, they are favourable for pathogen survival. So there 

is a need to broaden the genepool of cultivated varieties for 

developing blast resistant cultivars. In India, this disease was 

first recorded in 1913. Kiyosawa identified the first blast 

resistant gene in 1967 in japonica variety (Sharma et al., 

2012) [41]. Nearly 100 blast resistant genes were identified 

from wild and cultivated rice varieties. CWR are the major 

source of blast resistant genes (Gaikwad et al., 2021) [14]. O. 

minuta possess blast resistant gene pi9. Gene pirf2 is found in 

o. rufipogon and pi 40 is identified from o. australiensis. QTL 

mapping was first used to identify QTLs for blast resistance in 

japonica variety (Sharma et al., 2012) [41]. Three blast resistant 

genes Piz-5, pi1 and Pita are located on 6,11,12 chromosomes 

are pyramided using RFLP markers as they are showing high 

resistance in combination. These lines are being introgressed 

to other superior rice varieties by using marker assisted 

selection (Hittalmani et al., 2000) [34]. RFLP, SSR and SNP 

markers are widely used to transfer blast resistant genes in 

crop breeding programs. 

 

Drought tolerance  

Drought is one of the major constraints for rice crop 

production worldwide (panda et al., 2021) [33]. In rice, 

reproduction growth stage is more critical to drought stress. 

Drought reduces the rice yields by reducing no. of tillers per 

plant and no. of leaves per plant (Shakiba and Eizenga, 2014) 

[40]. Worldwide, nearly one third of the total rice cultivated 

area is affected by drought stress. As the population 

increasing day by day, to meet the future global food security 

goals, there is a need to develop high yielding varieties having 

biotic and abiotic stress tolerance genes. But breeding for 

drought tolerance is very complex due to its quantitative 

nature (panda et al., 2021) [33]. Knowing the drought stress 

responsive mechanism in plants is also a prerequisite for 

developing tolerant varieties for drought stress. Crop Wild 

Relatives are the excellent reservoirs for drought tolerance 

genes (Ndjiondjop et al., 2010) [29]. O. rufipogon and O. 

logistaminata are the donors for the alleles with drought 

tolerance in rice (Liu et al., 2004). O. glaberrima has the 

ability to grow in dry soil conditions thus it has numerous 

genes for drought tolerance (Karthika and Nakao, 2020). A 

QTL qTWU3 confers drought tolerance to rice at vegetative 

stage. Marker assisted selection is very effective in 

developing the varieties for drought tolerance. In order 

combat with drought condition deep rooting is essential. Deep 

rooting mainly depends on root length and root angle. QTL 

Dro1 is deep rooting QTL mapped between markers 

RM24393 and RM7424 by using linkage analysis in order to 

detect deep rooting trait under less water conditions (Uga et 

al., 2011). Commonly used markers for drought tolerance in 

rice are RFLP, RAPD, AFLP, SSR and SNP markers. 

 

Salinity tolerance  

The concentration of salt present in the soil is called as 

salinity and the ability of plants to grow and complete their 

life cycle in the presence of high concentrations of soluble 

salts is called salt tolerance. Salinity is one of the major 

constraint for rice crop production (Solis et al., 2020) [42]. 

Nearly one third of the irrigated rice lands around the world 

suffer from salinity (Mammadov et al., 2018) [25]. Excess 

salinity causes osmotic stress and ion toxicity in crop plants 

which causes huge yield losses. So there is an important need 

to develop salt tolerant varieties to combat food supply (Garg 

et al., 2014) [23]. Success in the development of salinity 

tolerant varieties is limited due to lack of donors for salinity 

tolerant genes (Solis et al., 2020) [42]. Wild halophytes possess 

salt tolerant mechanisms to survive in high salt concentrations 

(Garg et al., 2014) [23]. These are the reservoirs for salinity 

tolerant genes. Wild halophyte Porteresia coarctata is a wild 

https://www.thepharmajournal.com/


 
 

~ 1505 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 
relative of rice having salinity and submergence tolerant 

genes. These genes are transferred to Oryza sativa by bridge 

crossing (Mammadov et al., 2018) [25]. Cultivars like Pokkali, 

getu, Bokra, Cheriveruppu and nona possess salt tolerant 

genes. IR 29 and pokkali are crossed to develop FL479 which 

confers salt tolerance to rice at seedling stage. salinity tolerant 

QTLs of rice are qST1 and qST3 identified from inbred line 

developed by a cross between japonica varieties Milyang23 

and Gihobyeo. QTL Saltol is identified at chromosome 1 loci 

of salinity tolerant cultivar pokkali. This QTL saltol confers 

tolerance to salinity mainly at vegetative stage. SSR markers 

RM8094 and RM10745 are used for Marker Assisted 

Selection of QTL saltol (Nejad et al., 2008). Now a days SSR 

and SNP markers are being widely used for marker assisted 

selection of salinity tolerance in rice. 

 

Cold tolerance  

One of the major constraint effecting rice crop production is 

the chilling injury. Worldwide, nearly 15 million hectares of 

rice fields are effected by chilling injury (Lou et al., 2007) [24]. 

Average temperature required for rice crop growth is 20 ℃ to 

27 ℃. If temperature goes below 15 ℃ it leads to poor 

germination of seedlings. Major consequences of chilling 

injury are wilting, stunting and necrosis (Shakiba and 

Eizenga. 2014) [40]. So there is a need to develop cold resistant 

varieties to minimize rice yield losses. As Wild rice cultivars 

are the reservoirs for cold resistant genes, they are utilized to 

develop cold resistant varieties (Lou et al., 2007) [24]. Over 

past few years, many QTLs for cold tolerance have been 

identified in Indica and Japonica cultivars. At reproductive 

stage, QTLs for cold tolerance are qCtb1, qCTB2a, qPSST‐3 

and qLTB3 and at germination stage, QTL for cold tolerance 

is qCTP11 and QTLs qCtss11 and qCTS4a are for seedlings 

stage. O. rufipogon also contain QTLs for cold tolerance 

(Gaikwad et al., 2021) [14]. These QTLs are tagged with 

molecular markers and transfer to develop elite genotypes in 

plant breeding programs (Gaikwad et al., 2021) [14]. Cold 

tolerant variety of rice Norin-PL8 is developed by 

introgression of cold tolerance genes from Japonica variety 

Silewah. On 4th chromosome of Norin-PL8, two QTLS Ctb1 

and Ctb2 were identified conferring resistance to cold 

tolerance (Saito et al., 2001) [37]. These days SSR and SNP 

markers are being widely used for cold tolerance in rice. 

 

Tolerance to Aluminium toxicity  
Aluminum toxicity is one of the major problems for rice 

growing in acidic soils (Ndjiondjop et al., 2010) [29]. Al 

restricts the uptake of water and nutrients by plant by 

inhibiting the root growth leading to severe crop losses. Wild 

relatives of Oryza contain genes for aluminum tolerance. O. 

rufipogon is a donor for QTLs of aluminum tolerance 

(Gaikwad et al., 2021) [14]. Japonica cultivar, Asominori 

contain genes for aluminum tolerance. It is crossed with 

Indica cultivar IR24 to develop recombinant inbred line 

possessing QTLs for aluminum tolerance in rice (Xue et al., 

2007) [47]. For gene pyramiding of al tolerance genes, marker 

assisted selection is widely used in crop improvement 

programs (Nguyen et al., 2003) [30].  

 

Conclusion  

In the process of domestication from wild rice to cultivated 

rice, valuable genes for resistance to biotic and abiotic 

stresses have been lost during selection. As the global food 

demand is expected to increase to 852 million tonns by 2035, 

there is an urgent need to develop cultivars possessing 

tolerance to biotic and abiotic stresses to minimize the yield 

losses. For this we need to broaden the cultivated gene pool of 

rice by transferring the tolerant genes from the crop wild 

relatives with the help of QTL mapping and marker assisted 

selection.  
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