www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; SP-11(6): 1353-1357 © 2022 TPI

www.thepharmajournal.com Received: 25-04-2022 Accepted: 30-05-2022

Kumar CJ

Ph.D. Scholar, Department of Agronomy, University of Agricultural Sciences, Dharwad, Karnataka, India

Duragannavar FM

Professor, Department of Agronomy, University of Agricultural Sciences, Dharwad, Karnataka, India

Hosmath JA

Professor, Department of Agronomy, University of Agricultural Sciences, Dharwad, Karnataka, India

Hebsur NS

Professor, Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Dharwad, Karnataka, India

Basavaraja GT

Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, Karnataka, India

Corresponding Author Kumar CJ Ph.D. Scholar, Department of Agronomy, University of Agricultural Sciences, Dharwad, Karnataka, India

Impact of nutrient management practices to soybeanwheat on major nutrient uptake of soybean and wheat in soybean-wheat cropping sequence under rainfed situation in northern transition zone of Karnataka

Kumar CJ, Duragannavar FM, Hosmath JA, Hebsur NS and Basavaraja GT

Abstract

Field experiments were conducted at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad (Karnataka) on vertisol to assess the effect of nutrient management in soybean-wheat sequence cropping under rainfed situation in transition zone of Karnataka during kharif and rabi seasons of 2019-20 and 2020-21. The experiment was replicated thrice in split plot design. Main plot treatments comprise nutrient management practices to soybean in kharif season viz., Absolute control, 100 per cent N + 75 per cent P₂O₅ and K₂O, 100 per cent N, P₂O₅ and K₂O and 100 per cent N + 125 per cent P₂O₅ and K₂O. Sub plot treatments comprise nutrient management practices to wheat in *rabi* season *viz.*, Absolute control, 50 per cent N and P2O5, 75 per cent N and P2O5 and 100 per cent N and P2O5. In kharif, significantly higher N, P and K uptake was recorded with application of 100 per cent N + 125 per cent P2O5 and K2O (139.78, 17.55 and 113.26 kg ha⁻¹, respectively) in soybean. In rabi, application of 100 per cent N and P₂O₅ to wheat recorded significantly higher N (111.40 kg ha⁻¹), P (30.26kg ha⁻¹) and K uptake (117.70 kg ha⁻¹). Interaction effect of application of 100 per cent N + 125 per cent P₂O₅ and K₂O to soybean followed by 100 per cent N and P2O5 to wheat recorded significantly higher N, P and K uptake (116.87, 32.68 and 117.70 kg ha⁻¹, respectively) in soybean found promising with respect to uptake of major nutrients by soybean and wheat in soybean-wheat cropping sequence in transition zone of Karnataka under rainfed situation.

Keywords: Soybean, wheat, cropping sequence nutrient management, nutrient uptake and rainfed

Introduction

Agriculture sector is vital for the food and nutritional security of India (Kadiyala et al., 2014). The sector remains the principal source of livelihood for more than 58 per cent of the population through its contribution (19.90%) to the national gross domestic product (Anon., 2021). Cropping system-based approach to agro-technology development has gained momentum during the past decade after realization of higher productivity. In which selection of crops in sequence is also a key component in the nutrient management strategies. In recent times, soybean-wheat cropping sequence has emerged as a predominant cropping system under rainfed situations. The farmers prefer soybean as a cash crop followed by wheat as a food grain crop (Chandel et al., 2014). The goal of nutrient management in cropping system is to maximize crop productivity with environmental sustainability. The conventional nutrient management is based on the nutrient requirement of individual crops ignoring the carry over effect of organic manures and inorganic fertilizers applied to the preceding crops in *kharif* season. Due to intensive cultivation of crops with unscientific nutrient management practices, the productivity of soil is declining and it is high time for reconsidering the nutrient management practices for individual crops and their interactions in cropping sequence. Further, soybean is a crop which forms root nodules and fix atmospheric nitrogen which would be utilized by the crop in sequence.

Soybean is cultivated as rainy season crop in India on 12.09 million ha, producing 11.22 million tonnes with average productivity of 928 kg ha⁻¹. In Karnataka, it is grown over an area of 0.32 million ha with total production 0.36 million tonnes with average productivity of 1137 kg ha⁻¹ (Anon., 2020). In India, wheat is the second most important cereal crop after rice, grown on an area of 31.45 million ha with production of 107.59 million tonnes with productivity of 3421 kg ha⁻¹.

In Karnataka area and production of wheat is 1.67 million ha and 1.79 million tonnes with productivity of 1078 kg ha⁻¹ which is less than national average (Anon., 2020). Hence, in order to increase the productivity of soybean and wheat in transitional zone of Karnataka under assured rainfall situation the experiments were planned and executed. As transitional track of Dharwad is blessed with two peaks of rainfall (141.1 mm in June and 101.0 mm in October months). Keeping these points in view the present study was conducted in vertisols of Dharwad under rainfall conditions.

Material and Methods

Field experiments were conducted to study the effect of nutrient management in soybean-wheat sequence cropping system under rainfed situation during *kharif* and *rabi* seasons of 2019-20 and 2020-21 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad (Karnataka). The geographical co-ordinates of Dharwad are 15[°] 26¹ N latitude and 75[°] 7¹ E longitude with an altitude of 678 m above mean sea level (MSL). Dharwad comes under Northern Transition Zone (Zone-8) of Karnataka which lies between the Western Hilly Zone (Zoe-9) and Northern Dry Zone (Zone-3). The soil of experimental site was black clay (vertisol). The texture of soil was clay having organic carbon 0.55 per cent, pH 7.68, EC 0.19 dS m⁻¹, available nitrogen 250.50 kg ha⁻¹ (low), available phosphorus 35.40 kg ha⁻¹ (medium) and available potassium 320.50 kg ha⁻¹ (medium). The experiment was replicated thrice in split plot design. Main plot treatments comprise nutrient management practices to soybean in kharif season viz., M1: Absolute control, M2: 100 per cent N + 75 per cent P_2O_5 and K_2O , M_3 : 100 per cent N, P_2O_5 and K_2O and M_4 : 100 per cent N + 125 per cent P_2O_5 and K₂O. Sub plot treatments comprise nutrient management practices to wheat in rabi season viz., S1: Absolute control, S2: 50 per cent N and P_2O_5 , S_3 : 75 per cent N and P_2O_5 and S_4 : 100 per cent N and P₂O₅.

Soybean crop (cv. DSb-23) was sown at spacing of 30 cm x 15 cm with recommended fertilizer dose of 40: 80: 25 kg N, P_2O_5 and K_2O ha⁻¹. Wheat (cv. UAS-375) was sown at spacing of 22.5 cm row spacing with recommended fertilizer dose of 50: 25: 00 kg N, P_2O_5 and K_2O ha⁻¹.

A known weight of powdered plant samples was treated with concentrated nitric acid and kept overnight for pre digestion. Next day, the pre-digested samples were treated with di acid mixture (HNO₃:HClO₄ at 9:4 ratio) and digested on a sand bath at low temperature till colourless white residue was obtained. The residue was dissolved in 6 N HCl and filtered and made to known volume. After digestion, total nitrogen, phosphorus and potash were estimated by Micro Kjeldahl method suggested Tandon (1998) ^[11]. The following analysis was carried out in the di-acid digest. Nitrogen, phosphorus and potash nutrient uptake (kg ha⁻¹) was worked out using the formula

Nutrient uptake (kg ha⁻¹) =
$$\frac{\text{Nutrient concentration } (\%) \times \text{Total biomass } (\text{kg ha}^{-1})}{100}$$

The data was subjected to the statistical analysis (Gomez and Gomez (1984).

Results and discussion

Nitrogen uptake by the soybean (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean recorded significantly higher N uptake (139.78 kg ha⁻

¹) and found at par with 100 per cent N, P_2O_5 and K_2O (135.87 kg ha⁻¹). Significantly lower N uptake was recorded at absolute control (90.62 kg ha⁻¹). Similar trend was also noticed for individual years. Non significant effect of nutrient management practices to wheat during *rabi* season was noticed on N uptake by the soybean. Similar trend was also noticed for individual years. The N uptake differed significantly with interaction effect of nutrient management practices to soybean and wheat. Application of 100 per cent N + 125 per cent P₂O₅ and K₂O to soybean followed by 100 per cent N and P₂O₅ to wheat recorded significantly higher N uptake (142.07 kg ha⁻¹) (Thakur *et al.* 2009)^[12].

Phosphorus uptake by the soybean (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P₂O₅ and K₂O (M₄) to soybean recorded significantly higher P uptake (17.55 kg ha⁻¹) and found at par with 100 per cent N, P_2O_5 and K_2O_5 (16.67 kg ha⁻¹). Significantly lower P uptake was recorded at absolute control (10.56 kg ha⁻¹). Similar trend was also noticed for individual years. The effect of nutrient management practices to wheat during rabi season was found non significant on phosphorus uptake by the soybean. Similar trend was also noticed for individual years. The P uptake differed significantly with interaction effect of nutrient management practices to soybean in *kharif* and wheat in in rabi. Application of 100 per cent N + 125 per cent P₂O₅ and K₂O to soybean followed by 100 per cent N, P₂O₅ and K₂O to wheat recorded significantly higher P uptake (18.53 kg ha⁻¹). The results were in conformity with the findings of Mere et al. (2013)^[7], who reported that higher nutrient status is due to inclusion of major nutrients in adequate amount through fertilizers and crop residues added by crops involved in sequence cropping systems.

Potassium uptake by the soybean (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean recorded significantly higher K uptake (113.26 kg ha⁻¹) and found at par with 100 per cent N, P_2O_5 and K_2O (109.64 kg ha⁻¹). Significantly lower K uptake was recorded at absolute control (87.80 kg ha⁻¹). Similar trend was also noticed for individual years. The effect of nutrient management practices to wheat during *rabi* season was non significant on potassium uptake by the soybean. Similar trend was also noticed for individual years. The K uptake differed significantly with interaction effect of nutrient management practices to soybean and wheat. Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean followed by 100 per cent N and P_2O_5 to wheat recorded significantly higher K uptake (116.67 kg ha⁻¹).

The higher uptake of nutrients was associated with better metabolic activities of plant with concentration and distribution of ions in the external medium. The results were in line with the findings of Kumawat *et al.* (2000) ^[6] and Surve *et al.* (2019) ^[10], who indicated that the effects could be attributed to increased nutrient content in soil followed by increased nutrient uptake by plants due to the greater availability of the nutrients. This effect was mainly attributed by increased growth components followed by higher photosynthetic rate and its assimilation in sink as quoted by Paliwal *et al.* (2011) ^[8].

Nitrogen uptake of wheat (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean recorded significantly higher N uptake (106.48 kg ha⁻

¹). Significantly lowest N uptake was recorded at absolute control (96.43 kg ha⁻¹). Similar trend was also noticed for individual years. N uptake by the wheat differed significantly with nutrient management practices to wheat during rabi. Application of 100 per cent N and P2O5 to wheat recorded significantly higher N uptake (111.40 kg ha⁻¹). Significantly lowest N uptake was recorded at absolute control (84.00 kg ha⁻¹) Similar trend was also noticed for individual years The N uptake differed significantly with interaction effect of nutrient management practices to soybean and wheat. Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean followed by 100 per cent N and P2O5 to wheat (M₄S₄) recorded significantly higher N uptake (116.87 kg ha-¹). Similar results were reported by Anil Kumar et al. (2015) ^[15] and Hanumanth Singh et al. (2020) ^[9]. With respect to nutrient flux of soil media, nutrient level would be balanced between its applications during previous season and get mineralized to succeeding crop uptake. Wheat in this cropping sequence nutritionally benefited with positive impact.

Phosphorus uptake of wheat (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean recorded significantly higher P uptake (28.74kg ha⁻¹) compared to absolute control (20.01kg ha⁻¹). Similar trend was also noticed for individual years. P uptake by the wheat differed significantly with nutrient management practices to wheat during *rabi*. Application of 100 per cent N and P_2O_5 to wheat recorded significantly higher P uptake (30.26kg ha⁻¹). Significantly lowest P uptake was recorded at absolute control (16.76kg ha⁻¹). Similar trend was also noticed for individual years.

The P uptake differed significantly with interaction effect of nutrient management practices to soybean and wheat. Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean followed by 100 per cent N and P_2O_5 to wheat recorded significantly higher P uptake (32.68 kg ha⁻¹)

Potassium uptake of wheat (kg ha⁻¹)

Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean recorded significantly higher K uptake (110.08kg ha⁻¹) compared to absolute control (97.21kg ha⁻¹). Similar trend was also noticed for individual years. Potassium uptake by the wheat differed significantly with nutrient management practices to wheat during *rabi*. Application of 100 per cent N and P_2O_5 to wheat recorded significantly higher K uptake (112.99kg ha⁻¹) compared to absolute control (88.68kg ha⁻¹). Similar trend was also noticed for individual years. The Potassium uptake differed significantly with interaction effect of nutrient management practices to soybean and wheat. Application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean followed by 100 per cent N and P_2O_5 to wheat) recorded significantly higher Potassium uptake (117.70 kg ha⁻¹).

Table 1: Major nutrient uptake of soybean in soybean-wheat sequence cropping as influenced by nutrient management practices

			Major nutrient uptake (kg/ha)									
Treatment			Nitrogen			Phosphorus			Potassium			
		2019	2020	Pooled	2019	2020	Pooled	2019	2020	Pooled		
Nutrient management practices to soybean (M)												
M_1	Absolute control	90.02°	91·22 ^b	90.62°	9.66°	11.45°	10.56 ^c	87·25°	88·34 ^b	87·80 ^c		
M ₂	$100\% N + 75\% P_2O_5 and K_2O$	122.61 ^b	132.67ª	127.64 ^b	13 [.] 86 ^b	15.90 ^b	14 [.] 88 ^b	102·18 ^b	107·46 ^a	104·82 ^b		
M3	100% N and P2O5 and K2O	129.98 ^{ab}	141.76 ^a	135.87 ^{ab}	15.68ª	17.66 ^a	16.67 ^a	107.42 ^{ab}	111.87 ^a	109.64 ^{ab}		
M_4	100% N + 125% P ₂ O ₅ and K ₂ O	136 [.] 28 ^a	143·28 ^a	139.78ª	16 [.] 68 ^a	18·42 ^a	17.55 ^a	111.36 ^a	115·17 ^a	113·26 ^a		
S.Em. ±		3.31	3.01	2.51	0.38	0.39	0.30	1.77	2.21	1.46		
Nutrient management practices to wheat (S)												
S_1	Absolute control	115.98 ^a	124.08 ^a	120.03ª	13·45 ^a	15·10 ^a	14·28 ^a	99 [.] 74 ^a	102·34 ^a	101·04 ^a		
S_2	50% N and P ₂ O ₅	118.05 ^a	126 [.] 08 ^a	122.07ª	13.55ª	15.71ª	14.63ª	100.78 ^a	104·42 ^a	102.60 ^a		
S ₃	75% N and P ₂ O ₅	122.07 ^a	128.35ª	125.21ª	14·28 ^a	16·12 ^a	15·20 ^a	103.09 ^a	107·07 ^a	105.08 ^a		
S ₄	100% N and P ₂ O ₅	122.78 ^a	130.40ª	126 [.] 59 ^a	14 [.] 61 ^a	16 [.] 50 ^a	15.56 ^a	104.58 ^a	109·01 ^a	106 [.] 80 ^a		
	S.Em. ±	3.37	2:43	2:47	0.34	0.41	0.32	1.50	2.06	1.26		
			Intera	ction (M x	S)							
M_1S_1		82·43 ^b	89 [.] 13 ^c	85.78°	8.73e	11.07 ^d	9.90 ^g	82·97 ^g	83.80c	83.38e		
	M_1S_2		86 [.] 27 ^c	87·15°	9.20e	11·20 ^d	10.20g	84.80 ^{fg}	85·17 ^c	84 [.] 98 ^e		
	M ₁ S ₃		92.90°	93.00c	10.00e	11.57 ^d	10.78 ^g	88 [.] 57 ^{fg}	89.80 ^c	89.18 ^{de}		
	M_1S_4		96 [.] 57 ^c	96 [.] 53°	10.71e	11 [.] 97 ^d	11.34 ^g	92.67 ^{ef}	94.60 ^{bc}	93.63 ^d		
	M_2S_1		129 [.] 23 ^b	124 [.] 98 ^b	13.57 ^{cd}	15·47°	14.52 ^{ef}	100 [.] 83 ^{c-e}	106.53ab	103.68c		
	M_2S_2		132.30 ^{ab}	125.52 ^b	13.05 ^d	15.67°	14·36 ^f	99.70 ^{de}	107·13 ^{ab}	103·42 ^c		
	M_2S_3		133.63 ^{ab}	129 [.] 28 ^b	14·30 ^{b-d}	16.13 ^{bc}	15·22 ^{d-f}	103.90 ^{b-d}	108·07 ^a	105.98 ^{bc}		
	M_2S_4		135.50 ^{ab}	130 [.] 77 ^b	14.50 ^{b-d}	16.33 ^{bc}	15·42 ^{c-f}	104·27 ^{a-d}	108·10 ^a	106 [.] 18 ^{bc}		
	M_3S_1		140.27 ^{ab}	133.18 ^{ab}	15.43 ^{a-c}	17·17 ^{a-c}	16.30 ^{b-f}	105.67 ^{a-d}	110.07 ^a	107.87 ^{bc}		
	M_3S_2		142.10ab	135.55 ^{ab}	15.63 ^{a-c}	17.33 ^{a-c}	16.48 ^{a-e}	108·27 ^{a-d}	110 [.] 23 ^a	109·25 ^{a-c}		
	M ₃ S ₃		142.00 ^{ab}	137.73 ^{ab}	15 [.] 97 ^{ab}	17.97 ^{a-c}	16.97 ^{a-d}	108.60a-d	112.90 ^a	110.75 ^{a-c}		
	M_3S_4		142.67 ^{ab}	137.00 ^{ab}	15.70 ^{a-c}	18·17 ^{a-c}	16.93 ^{a-d}	107·13 ^{a-d}	114·27 ^a	110.70 ^{a-c}		
	M_4S_1		137.70 ^{ab}	136.17 ^{ab}	16.07 ^{ab}	16.70 ^{bc}	16.38 ^{a-d}	109.50 ^{a-d}	108.97 ^a	109·23 ^{a-c}		
	M_4S_2		143.67 ^{ab}	140.05 ^{ab}	16.30 ^{ab}	18.63 ^{ab}	17·47 ^{a-c}	110.37 ^{a-c}	115·13 ^a	112.75 ^{ab}		
	M ₄ S ₃		144.87 ^{ab}	140.82 ^{ab}	16 [.] 83 ^a	18.80 ^{ab}	17.82 ^{ab}	111.30 ^{ab}	117.50 ^a	114·40 ^{ab}		
	M_4S_4		146 [.] 87 ^a	142.07ª	17:53ª	19.53ª	18.53ª	114·27ª	119 [.] 07 ^a	116 [.] 67 ^a		
	S. Em. ±	6.74	486	4.94	0.67	0.82	0.63	3.00	4·12	2.51		

Means followed by the same letters (s) within a column do not differ significantly by DMRT (P=0.05)

Soybean: 100% NPK- 40, 80 and 25 kg N, P₂O₅ and K₂O ha⁻¹

 M_2 , M_3 and M_4 received 6 t ha⁻¹FYM + 12 kg ZnSO₄ ha⁻¹+ 20 kg sulphur ha⁻¹ as soil application+ 1.25 kg *Rhizobium* + 1.25 kg *PSB* ha⁻¹ as seed treatment

Wheat: 100% NP- 50 and 25 kg N and P_2O_5 ha⁻¹

S₂, S₃ and S₄ received 6 t ha⁻¹ FYM as soil application

Table 2: Major nutrient uptake of wheat in soybean-wheat sequence cropping as influenced by nutrient management practices

M1 Absolute c M2 100% N + 75% P M3 100% N and P2	2 Nut	019	rogen (kg/ 2020	ha)	Phos	nhorus (k	a/ha)	Dat	• /1					
M2 100% N + 75% P M3 100% N and P2	Nut		2020		Phosphorus (kg/ha)			Potassium (kg/ha)						
M2 100% N + 75% P M3 100% N and P2		riont n	2020	Pooled	2019	2020	Pooled	2019	2020	Pooled				
M2 100% N + 75% P M3 100% N and P2	ontrol 94	Nutrient management practices to soybean (M)												
M ₃ 100% N and P ₂	, , ,	5·42°	97·45 ^b	96·43 ^b	19.69 ^b	20·33 ^b	20.01 ^b	95.83°	98·59 ^b	97·21°				
	2O5 and K2O 98	8.65 ^{bc}	102.87 ^{ab}	102.76 ^{ab}	23.08ab	26.68ª	24.88ª	98.60 ^{bc}	110.02 ^a	107·31ª				
M 1000/ N 1050/ I	D ₅ and K ₂ O 102	2·10 ^{ab}	105·01 ^a	103.55 ^{ab}	25·37ª	28.38ª	26.88ª	102·01 ^{ab}	110·20 ^a	108·10 ^a				
M ₄ 100% N + 125% I	P ₂ O ₅ and K ₂ O 10	4·06 ^a	108.89a	106·48 ^a	27·02 ^a	30·46 ^a	28·74 ^a	104·42 ^a	115.73 ^a	110.08a				
S. Em.±	1	·38	2.05	1.46	1.21	1.67	1.32	1.55	2.79	0.95				
Nutrient management practices to wheat (S)														
S ₁ Absolute c	ontrol 83	3.89°	84·10 ^b	84·00 ^c	16.26 ^c	17·26 ^c	16.76 ^c	86 [.] 65 ^c	90.72°	88.68c				
S ₂ 50% N and	P ₂ O ₅ 10	0·13 ^b	107·11 ^a	103·62 ^b	22.98 ^b	27·27 ^b	25·12 ^b	99 [.] 56 ^b	111 [.] 53 ^b	105.55 ^b				
S ₃ 75% N and	P ₂ O ₅ 10	5.98 ^a	110.45 ^a	108·21ª	26.84 ^{ab}	29.89 ^{ab}	28.37 ^a	106·29ª	114.67 ^a	110 [.] 48 ^a				
S4 100% N an	d P ₂ O ₅ 11	0·23 ^a	112.56 ^a	111·40 ^a	29.08 ^a	31.44a	30·26 ^a	108·36 ^a	117.63ª	112 [.] 99 ^a				
S. Em.±		·60	2.08	1.37	1.66	1.32	1.00	1.66	2.45	1.28				
Interaction (M x S)														
M_1S_1		6·20 ⁱ	77·13°	76.67 ^f	7·27°	7.77 ^e	7.52 ^f	73.67 ^f	75.53 ^g	74.60 ^h				
M_1S_2		-70 ^{d-f}	102·77 ^b	99 [.] 73 ^d	21.33ab	22.40 ^{cd}	21.87с-е	98·40 ^{b-d}	102·37 ^{с-е}	100.38ef				
M_1S_3		•53с-е	103·73 ^b	101.63cd	22.03ab	23.53 ^{b-d}	22.78 ^{c-e}	104·23 ^{a-c}	104·37 ^{b-f}	104·30 ^{c-f}				
M_1S_4		9·23 ^{a-c}	106.17 ^{ab}	107.70 ^{b-d}	28·13 ^a	27.63 ^{a-d}	27.88 ^{a-c}	107.03ab	112·10 ^{a-e}	109.57 ^{a-d}				
M_2S_1		8.63 ^{hi}	87·27°	85.45 ^e	14.87 ^{bc}	19.63 ^d	17·25 ^e	85.90 ^e	97.57 ^{ef}	91·73 ^g				
M_2S_2		·37 ^{e-g}	106.13ab	100.75 ^{cd}	21·13 ^{ab}	26.63 ^{a-d}	23.88 ^{b-d}	95·67 ^{c-e}	111.67 ^{a-e}	103·67 ^{d-f}				
M_2S_3		5·53 ^{a-e}	108.80ab	107·17 ^{b-d}	26.67ª	29.97 ^{a-c}	28·32 ^{a-c}	105·23 ^{a-c}	114·30 ^{a-d}	109.77 ^{a-d}				
M_2S_4		0.07 ^{a-c}	109·27 ^{ab}	109.67 ^{a-c}	29.63 ^a	30.50a-c	30.07 ^{ab}	107.60 ^{ab}	116.53 ^{a-d}	112·07 ^{a-d}				
M_3S_1		·37 ^{f-h}	83·43°	86·40 ^e	21.77 ^{ab}	19·23 ^d	20.50de	95·17 ^{c-e}	88.57 ^{fg}	91·87 ^g				
M_3S_2		3·67 ^{b-e}	107.70 ^{ab}	105.68 ^{b-d}	24.10ab	28.73 ^{a-c}	26·42 ^{a-d}	101·37 ^{b-d}	113.70 ^{a-e}	107.53 ^{b-e}				
M_3S_3		8·37 ^{a-c}	113·20 ^{ab}	110.78 ^{ab}	27.97 ^a	32·40 ^a	30.18 ^{ab}	106·30 ^{a-c}	118·47 ^{a-c}	112.38a-c				
M_3S_4		7·00 ^{a-d}	115.70 ^{ab}	111.35 ^{ab}	27.63ª	33·17 ^a	30.40ab	105·20 ^{a-c}	120.07 ^{ab}	112.63a-c				
M_4S_1		5.37 ^{gh}	88·57°	87·47 ^e	21.13ab	22.40 ^{cd}	21.77с-е	91.87 ^{de}	101·20 ^{d-f}	96.53 ^{fg}				
M_4S_2		4·77 ^{a-e}	111.83ab	108.30 ^{a-d}	25.33 ^{ab}	31.30ab	28·32 ^{a-c}	102.80a-c	118·40 ^{a-c}	110.60a-d				
M_4S_3		0·47 ^{ab}	116.07 ^{ab}	113.27 ^{ab}	30.70 ^a	33.67ª	32·18 ^a	109.40 ^{ab}	121.53ª	115.47 ^{ab}				
M_4S_4		4·63 ^a	119·10 ^a	116.87 ^a	30.90 ^a	34·47 ^a	32.68ª	113.60 ^a	121.80 ^a	117.70 ^a				
S. Em.±	3	3·19	4·17	2.75	3.32	2.64	1.99	3.31	4.90	2.57				

Means followed by the same letters (s) within a column do not differ significantly by DMRT (P=0.05)

Soybean: 100% NPK- 40, 80 and 25 kg N, P_2O_5 and $K_2O\ ha^{-1}$

 M_2 , M_3 and M_4 received 6 t ha⁻¹FYM + 12 kg ZnSO₄ ha⁻¹ + 20 kg sulphur ha⁻¹ as soil application + 1.25 kg *Rhizobium* + 1.25 kg *PSB* ha⁻¹ as seed treatment

Wheat: 100% NP- 50 and 25 kg N and $P_2O_5\ ha^{\text{-1}}$

 $S_2,\,S_3$ and S_4 received 6 t $ha^{\text{-}1}\,FYM$ as soil application

DAS- Days after sowing

Conclusion

Significantly higher major nutrient uptake was recorded in soybean with application of 100 per cent N + 125 per cent P_2O_5 and K_2O in *kharif* soybean,. In *rabi* application of 100 per cent N and P_2O_5 to wheat recorded significantly higher major nutrient uptake. Interaction effect was noticed with application of 100 per cent N + 125 per cent P_2O_5 and K_2O to soybean followed by 100 per cent N, and P_2O_5 to wheat found promising with respect to uptake of major nutrients by soybean and in soybean-wheat cropping sequence in Northern Transition of Karnataka under rainfed situation.

References

- 1. Anonymous. Agricultural Statistics at a Glance-2020. Directorate of Economics and Statistics, Department of Agriculture and Cooperation, New Delhi, 2020.
- 2. Anonymous. Economic Survey of India-2021, GOI, New Delhi, 2021.
- Chandel BS, Singh Sandeep, Singh H, Singh V. Direct and residual effect of nutrient management in wheat maize cropping sequence. J Indian Soc. Soil Sci. 2014;62(2):126-130.
- 4. Kadiyala S, Harris J, Headey D, Yosef S, Gillespie S. Agriculture and nutrition in India: Mapping evidence to

pathways. Annals New York Acad. Sci. 2014;1331:43-56.

- 5. Kumar A, Pathak RK, Sarvesh Kumar, Kaushal Kumar, Devendra Singh, Sooraj Pal. Influence of integrated nutrient management on yield, uptake and crop quality of wheat Int. J Tech. Res. Appl. 2015;3(6):77-79.
- Kumawat SM, Dhakar LL, Maliwal PL. Effect of irrigation regimes and nitrogen on yield, oil content and nutrient uptake of soybean (*Glycine max*). Indian J Agron. 2000;45(2):361-366.
- Mere V, Singh AK, Singh M, Jamir Z, Gupta RC. Effect of nutritional schedule on productivity and quality of soybean varieties and soil fertility. Legume Res. 2013;36:528-534.
- 8. Paliwal DK, Kushwaha HS, Thakur HS, Tailor RS, Deshwal AK. Effect of vermicompost in combination with fertilizers on nodulation, growth and yield of soybean (*Glycine max*) in soybean-wheat cropping system. Soybean Res. 2011;9:95-102.
- Singh H, Sushma Ingle R, Tej Pratap, Sumit Raizada, Prashant Kumar Singh, Rajneesh Singh, *et al.* Effect of integrated nutrient management on nitrogen content, uptake and quality of wheat (*Triticum aestivum* L.) under partially reclaimed sodic soil. Pharma Innovation J.

2020;9(5):299-301.

- Surve US, Dhonde AS, Kumbhar JS, Bhosale PU. Effect of integrated nutrient management on productivity, nutrient uptake, soil properties and economics of soybean-wheat cropping system in western Maharashtra. Int. J Chem. Stud. 2019;7(2):497-500.
- 11. Tandon HLS. Methods of Analysis of Soils, Plant, Water and Fertilizers. Fertilizer development and consultation organization. 1998;31:9-16.
- 12. Thakur R, Sawarkar SD, Vaishya UK, Singh M. Impact of continuous use of inorganic fertilizers and organic manure on soil properties and productivity under soybean- wheat intensive cropping of a Vertisol. J Indian Soc. Soil Sci. 2009;59(1):74-81.