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Abstract 
Himalayan Bulbul Pycnonotus leucogenys is widely spread in the Himalayan Siwalik range but 
information is available on its migratory behavioural patterns. Hence, a two-year study was undertaken to 
investigate its distribution range of the species in the summer and winter seasons in Punjab and Himachal 
Pradesh. A total of twenty variables including 19 bioclimatic variables and elevation were selected for 
the development of Species distribution Modelling (SDM). Occurrence records of P. leucogenys in 
summer and winter were processed at the Maximum entropy model (MaxEnt) using the ENMeval data 
package. The results suggested a downward movement from the upper Siwalik Himalayan ranges to the 
lower Siwalik in winter, and with return migration movement in summer. However, a large fraction of 
the distribution range was found overlapping in both the models, which suggests partial altitudinal 
migration of P. leucogenys. The data recorded on the ground subordinate the finding of the model. A 
wide range of tolerance for bioclimatic variables was observed in P. leucogenys, however temperature-
related factors played a vital role in the variation in the species distribution range in the annual cycle of 
partial migration. The finding of this study would be a valuable reference for future studies on ecological 
and behavioral aspects of partial-migration of bird species in the Himalaya. 
 
Keywords: Pycnonotus leucogenys, Himalayas, Siwaliks, partial altitudinal migration, maximum 
entropy model (MaxEnt), species distribution modelling (SDM) 
 
Introduction 
Birds of hilly regions show altitudinal migration as they can migrate much shorter distances 
than the birds of plains to reach regions with favourable climatic conditions (Boyle and 
Conway 2007) [6]. Altitudinal migration is the periodic movement of birds for wintering at 
different elevations, performed by 1238 species (about 10% of the total avian species) 
(Barcante et al. 2017) [3]. Although a plethora of information is available on bird migration, 
however information about on the distribution patterns of bird species undertaking altitudinal 
migration is still lacking with very few studies done in the Himalayan region (Renner and 
Rappole 2011, Kumar S and Kler T 2021, Singh G and Kumar S 2022) [42, 23, 15]. A substantial 
decline has been observed in generalist, forest, grassland and wetland avian species in recent 
times in India (SoIB 2020) [45], which makes it more crucial to have information seasonal 
distribution range shifts. 
Long-term bio-monitoring studies are an acknowledged way of detecting variations in 
ecosystems due to climate change (Doran et al. 2003) [11], but however, monitoring all-
inclusive system at regular intervals is very expensive and difficult even for a small area 
(Lawton et al. 1998) [24]. Recent advances in technology enable us to understand unknown 
migration distribution patterns of migrant species across their annual cycle (Norbu et al. 2013) 
[29]. Species distribution modeling (SDM) utilizes information on the occurrence records by 
using long-term average climate variables to reflect the environmental requirements and 
geographical distribution with suitable climatic conditions that disclose the ecological niche of 
an organism (Pearson and Dawson 2003) [34]. MaxEnt is one of the most advanced machine 
learning software for SDM than other predictive distribution methods (Merow et al. 2013) [25] 
such as GAM (Generalised Additive Models) and GLM (Generalised Linear Models) (Elith et 
al. 2006) [12]. Distribution modelling of a species in different seasons provides reliable sources 
of information for making conservation strategies.  
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Himalayan Bulbul Pycnonotus leucogenys is a fruitivorous 
that has wide-spread in Siwalik range (Grimmett et al. 2014) 
[18]. Climatic conditions of the Himalayan range are changing 
(Chopra 2013), and a recent report on the decline in the 
population of generalist species (SoIB 2020) [45] creates an 
essential need to investigate the distribution range of P. 
leucogenys. The present study was undertaken to investigate 
the distribution range shifts of P. leucogenys in the annual 
pattern of summer and winter seasons using (SDM) MaxEnt. 
 
2. Materials and Methods 
2.1 Study area and availability of data 
Punjab and Himachal Pradesh were selected as the study area 
which includes the northern distribution range of P. 
leucogenys. Punjab has plain areas that are know for its 
intensive agricultural practices. It also has some hilly region 
along the border with Himachal Pradesh. The state of 
Himachal Pradesh is dominated by Himalayan-mountain 
ranges (1200-6000 m) and the siwalik hills (600-1200 m) 

(Fig. 1) (Chand 2013; Gosal 2004) [8, 14]. 
A total of 180 observations were recorded during surveys 
conducted in Punjab and Himachal Pradesh during the period 
of April 2018 to March 2020. Point count method is generally 
found suitable in both in plain and hilly terrains (Ralph et aj 
1995) [41] therefore all possible areas assessable via roads 
were surveyed using point count method (Verner 1985) [47] 
comprising of twenty random points each (at least 500 
meters) were taken in Punjab and border areas of Himachal 
Pradesh. Mobile phone- based Q-field application (Quantum 
geographic information system) was used for georeferencing 
(± 2 mt). As the data survey area and number of observations 
were low therefore presence data (352 records) was also 
obtained from the global biodiversity information facility 
(gbif.org) and grouped with the field recorded data.  
To develop models for summer (Model-1) and winter (Model-
2), observation records were divided into two groups, where 
April to July was taken as summer (n=215) season, and 
November to March as winter season (n=316).  

 

 
 

Fig 1: Study area with sampling points used for the distribution modelling. 
 

Climate Data Extraction and Analysis 
Twenty environmental variables including nineteen 
bioclimatic variables and one elevation variable were 
collected from World Clim 2.1 at resolution of 2.5 minute arc 
(Fick et al. 2017) [16]. Climate layers were imported into the 
QGIS version 3.12 and clipped for the study area. The clipped 
layers were converted to ASCII format as required for 
MaxEnt software (Phillips et al. 2009) [38]. Presence-only data 
with georeferencing was incorporated with clipped layers to 
extract numeric values for all variables at each occurrence 
point using point sampling tool in QGIS. The maximum, 
minimum and standard deviation values of each variable are 
given in Table 1. Using large number of variables may lead to 

multicollinearity which may results in biased model 
predictions (Dormann et al. 2013) [11], therefore, all selected 
variables were tested for variance inflation factor (VIF) 
analysis to minimize the multicollinearity effect using R 
package ‘usdm’ with (Naimi et al. 2014) in R programming 
language version 1.2.5033 (2019). Variables having VIF 
values < 3 were included in the models (Zuur et al. 2010). 
Alt, Bio1, Bio2, Bio3, Bio4, Bio5, Bio12, Bio14, Bio15 were 
selected for summer model and Alt, Bio1, Bio3, Bio4, Bio7, 
Bio11, Bio15, Bio18, Bio19 were selected for model 2 based 
on prior knowledge of the species natural history and 
distribution range and VIF analysis (Zhang et al. 2019) [49].  
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Table 1: Summary statistics of bioclimatic variables extracted for sampling the study areas based on georefenced data. 

 

Label Variables Model 1- Summer (n=215) Model 2- Winter (n=316) 
  Mean ± SE SD Min Max Mean ±SE SD Min Max 

Alt Elevation from sea level (m) 1724.9 ± 53.40 783.13 204.00 5448.00 1371.1 ± 36.83 654.85 227 3042.00 
Bio1 Annual Mean Temperature (0C) 15.73 ± 0.32 4.78 -7.43 24.09 18.09 ± 0.20 3.59 7.05 23.82 
Bio2 Mean Diurnal Range (0C) 9.86 ± 0.058 0.85 8.49 13.94 10.12 ± 0.06 1.12 8.21 13.52 
Bio3 Isothermality (BIO2/BIO7) 36.28 ± 0.09 1.36 30.09 39.76 36.29 ± 0.07 1.31 32.95 40.02 
Bio4 Temperature Seasonality (0C) 603.36 ±3.22 47.29 548.32 850.19 607.81 ± 2.77 49.30 549.60 749.24 
Bio5 Max Temperature of Warmest Month (0C) 28.52 ± 0.35 5.17 8.71 40.70 31.93 ± 0.26 4.76 19.55 39.92 
Bio6 Min Temperature of Coldest Month (0C) 1.35 ± 0.12 4.7 -24.38 6.84 3.53 ± 0.14 2.64 -6.78 7.46 
Bio7 Temperature Annual Range (BIO5-BIO6) (0C) 27.16 ± 0.27 1.79 24.04 35.13 27.86 ± 0.14 2.54 24.42 34.60 
Bio8 Mean Temperature of Wettest quarter (0C) 20.75 ± 0.38 4.06 2.73 30.37 22.86 ± 0.211 3.76 8.83 29.61 
Bio9 Mean Temperature of Driest Quarter (0C) 13.12 ± 0.31 5.71 -10.80 24.11 15.01 ± 0.23 4.15 4.90 26.34 

Bio10 Mean Temperature of Warmest Quarter(0C) 22.24 ± 0.31 4.61 2.81 32.22 24.66 ± 0.23 4.12 14.61 31.66 
Bio11 Mean Temperature of Coldest Quarter(0C) 7.66 ± 0.33 4.98 -17.86 14.00 9.91 ± 0.17 3.16 -0.97 14.39 
Bio12 Annual Precipitation (mm) 1454.8 ± 26.71 391.69 444.00 2532.00 1493.7 ± 22.13 393.40 691.00 2532.00 
Bio13 Precipitation of Wettest Month (mm) 376.24 ± 11.19 164.20 113.00 780.00 403.76 ± 7.86 139.79 127.00 780.00 
Bio14 Precipitation of Driest Month (mm) 17.04 ± 0.28 4.24 3.00 24.00 16.48 ± 0.28 5.11 5.00 25.00 
Bio15 Precipitation Seasonality (Fraction) 91.38 ± 2.11 31.06 37.09 128.32 99.67 ± 1.46 25.99 37.16 135.49 
Bio16 Precipitation of Wettest Quarter (mm) 877.50 ± 25.72 377.24 264.00 1810.00 935.19 ± 18.32 325.71 328.00 1810.00 
Bio17 Precipitation of Driest Quarter (mm) 106.33 ± 1.36 20.05 25.00 154.00 100.59 ± 1.35 24.07 37.00 154.00 
Bio18 Precipitation of Warmest Quarter (mm) 564.76 ± 11.38 166.87 167.00 953.00 581.36 ± 8.80 156.57 260.00 953.00 
Bio19 Precipitation of Coldest Quarter (mm) 268.09 ± 3.72 54.63 38.00 377.00 199.81 ± 3.40 60.56 62.00 377.00 

 
2.2 Model Building 
Maximum entropy approach (MaxEnt version 3.4.1) general-
purpose machine learning method (Phillips et al. 2017; 
Phillips and Dudik 2008; Phillips et al. 2006) [36, 37] was used 
for distribution modeling. Maximum number of background 
points (n=5000) were selected after calculating total number 
of points available for building the model. We used R 
package ‘ENMeval’ (Muscarella et al. 2014) [27] to evaluate 
the models using AIC (Akaike information criterion). AIC is a 
relative measures the goodness of statistical model fits where 
smaller the AIC value better the model fit to data.  
Training and testing data was assigned in a ratio of 80:20. 
Training data was used to formulate the model parameters, 
whereas testing data points were used to assess its prediction 
accuracy. Duplicate presence records were removed using 
basic settings along with random seed feature. Ten replicates 
were run for both models and logistic outputs were selected 
using Baggenstoss 2018 [2]; Presse et al. 2013 [39]; Phillips and 
Dudik 2008.  
Jackknife approach was adopted to determine the importance 
of the variables used in the model (Hoenes and Bender 2010; 
Yost et al. 2009) [20, 48]. Receiver operating characteristic 
(ROC) analyses was used to evaluate the reliability and 
predictive performance of the models (Pearce and Ferrier 

2000) [33]. Area under cover (AUC) in ROC plot ranges from 
0.5 (no discrimination ability) to 1.0 (perfect discrimination) 
(Fielding and Bell 1997) [17]. More robust predictive 
performance for ROC was calculated using average AUC of 
ten cross validations (mean± standard deviation).  
The distribution range was calculated as the mean longitude 
and latitude of pixel cores where the species was predicted to 
be present. We assumed that P. leucogenys would be able to 
move through the landscape without physiological or 
environmental barriers. 
 
3. Results 
Omission and predicted graphs were prepared by MaxEnt to 
investigate the goodness of model by providing information 
regarding the independent nature of test and training data 
(Merow et al. 2013) [25]. The calculated omission rate (Fig. 2) 
was found closer to the predicted omission rate which 
suggested high suitability of data in both the models (Phillips 
and Dudik, 2009) [38]. The orange and blue shading 
surrounding the lines on the graph denoted variability. 
Omission on test samples (orange shading) was a good match 
to the predicted (black) omission rate and it was anticipated 
that the test and training data were independent (Merow et al. 
2013) [25]. 

 

 
 

Fig 2: Average omission and predicted area for P. leucogenys 
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During this study, the ROC curve was averaged for ten cross 
validations (mean± SD) over the replicate runs for more 
robust predictive performance. The average test AUC for the 
replicate runs for model 1 and 2 was 0.902 and 0.905 with 
standard deviation 0.067 and 0.033 respectively (Fig. 3). AUC 
in ROC calculate the quality of a ranking and avoid the 
difficulties associated with threshold effects (Fielding and 
Bell 1997) [17]. AUC is probability where presence site are 
chosen and ranked randomly on chosen absence site (Phillips 

et al. 2017) [36]. Random ranking system provides average 
AUC of 0.5 whereas a perfect ranking accomplishes the AUC 
of 1.0 (Elith et al. 2002) [13]. Higher the AUC of ROC plot 
better is the model (Pearce and Ferrier 2000) [33]. The values 
of ROC were above 0.9 in both the models in the present 
study which suggests the well performance of the model with 
high predictive accuracy, thus information in models should 
be considered potentially very useful. 

 

 
 

Fig 3: Average sensitivity vs 1-specificity for P. leucogenys 
 

Jackknife analysis of both model exposed that Bio 4 and alt 
(elevation) contributed most in developing both model when 
used in isolation (Fig. 4). Minimum contribution to both 
models was contributed by Bio 15 in both the models. Bio 4 is 

modus of temperature seasonality which reveals that 
temperature plays an important role in the distribution of P. 
leucogenys in both the seasons. 

 

 
 

Fig 4: Jackknife of regularized training gain for P. leucogenys 
 

 
 

Fig 5: Response to alt (Elevation) for P. leucogenys 
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The results show that the optimal/suitable habitat has 
expanded downward due to similar and favorable habitat 
conditions at lower altitudes in winters. This phenomenon 
may have resulted in only partial migration of P. leucogenys 
towards Siwalik Hills-since the conditions in the upper 
elevation areas are still suitable. Suitable habitat range shift 
with bearable conditions at existing habitat range offers 
conditions for partial migration. Variation in migratory 
behavior within a population is less studied has been subject 
to little studies despite its potential to provide information on 
the evolutionary origin of migration (Chapman et al. 2011). 

Environmental and genetic factors also play a significant role 
in partial migration (Chapman et al. 2011; Pulido 2011) [40]. 
During the field visits, P. leucogenys was observed in both the 
seasons at different heights with variation in abundance in 
summer and winter. Abundance was maximum in upper 
mountainous regions ranging 500 to 3000 m in summer, 
whereas downwards partial local altitudinal migration was 
observed towards lower hills, valleys, and plains of Siwalik, 
ranging 180-2500m in winter. Similar and well explained 
results were observed in the form of map using SDM 
(Maxent).  

 

 
 

Fig 6: Predicted distribution maps of P. leucogenys in summer and winter based on maxent models. 
 
4. Discussion 
The temperature in winters is an important factor that affects 
migration patterns of birds (Schaefer et al. 2008) [43] but food 
shortage may be linked to the association between has been 
altitudinal migration (Barcante et al. 2017) [3]. The second 
contributing factor was altitude (Elevation) which showed 
wide range of distribution for P. leucogenys ranging 158 to 
6000 m for annual range however maximum optimal 
distribution was between 500 to 3000 m in summer whereas it 
decreased to 180 to 2500 m in winter (Fig. 5).  
During the study, P. leucogenys as least observed in Punjab 
whereas it remained similar in Himachal Pradesh during 
summer. In winter, the encounter rate increased in border 
areas of Punjab. The models showed increased in suitable 
distribution range during the winter in study area as compared 
to summer distribution (Fig. 6). The model predicts that the 
central area of Himachal Pradesh is consistent with 
distribution in both the seasons. It can be seen from the 
models that the distribution remained same in Himachal 
Pradesh however the suitable distribution range has increased 
towards Punjab in winter which has comparatively lower 
elevation. Thus some observations were recorded up to the 
central regions of Punjab in winter while at the same time the 
distribution range also dispersed to larger area in Himachal 
Pradesh. In winters, the temperature in the higher mountain 
ranges decreases to freezing, and the area become difficult to 
survive (Bassler et al. 2010) [4]. However a significant area of 
suitable distribution range remained similar in both the 
models suggests that the total population movement may not 
have occurred. If survival of migrant populations is higher 
and survival of winter residents is density dependent, then it 
leads to the evolution of migratory trends within species 

(Norris and Taylor 2006) [30]. Highland birds can migrate 
much shorter distances than lowland birds to reach regions 
that differ in temporal patterns of food resource availability 
(Boyle and Conway, 2007) [6]. The above discussion signifies 
that the habitat suitability decreases on higher elevations for 
P. leucogenys in winter lead to the movement of population 
towards lower areas of Punjab and Himachal Pradesh.  
Other than bioclimatic factors, partial migration can get 
triggered by variables like food, watershed, predation risk and 
competition for resources (Barcante et al. 2017) [3]. Often 
various factors act synergistically to create complex patterns 
of movement within populations (Chapman et al. 2011). 
Various strategies of partial migration have been observed by 
both temperate and tropical birds (Boyle et al. 2011) to avoid 
competition due to changes in conditions at a location for 
some time. Extreme winter conditions and intraspecific 
competition for limited food resources promotes migration 
and avoids costly aggressive struggles in some bird species 
(Nilsson et al. 2008) [28]. The body size and temperature are 
interrelated and play an important role in migration (Alonso et 
al. 2009) [1].  
The selection of feeding behavior in migratory birds may link 
to trade between energy, diet, and digestion (Molokwu et al. 
2011) [26]. Most studies propose that environmental factors 
play a vital role in partial migrations (Ogonowski and 
Conway, 2009; Olsson et al. 2006; Skov et al. 2010) [31, 32, 44]. 
Migratory behavior of birds is significantly linked with 
temperature variations (Hsiung et al. 2018) [21] and the same 
has been observed in this study. The model provided that the 
temperature related variables contribute a significant role in 
the change in distribution range over two seasons (Fig. 4) but 
factors like food and competition for resources may also had 
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played some role in partial distribution. Bioclimatic variables 
alone may not provide all information about the causes of 
migrations and suitable habitat conditions for an organism 
however the information derived on the basis of SDM cannot 
be neglected. New techniques like General-purpose machine 
learning programs (MaxEnt, ENMeval etc.) are economical 
and less time-consuming methods and can provide significant 
information about the distribution range of a species.  
Comparative studies on migrant and resident populations of 
the same species may shed some light on the behavioral, 
physiological, and genetic adaptations to migration and 
residency. It is also important to understand the impacts of 
anthropogenic disturbance and environmental variation on the 
dynamics of partial migration to provide information on 
ecological and evolutionary causes of partial altitudinal 
migration.  
This study reveals that P. leucogenys has a wide range of 
tolerance for various environmental factors but also shows 
partial migration in winters. This study provides important 
insights between environmental change and partial migration 
however more studies will be required to shed light on other 
ecological factors contributing towards partial migration. The 
study concludes that P. leucogenys shows partial altitudinal 
migration towards lower Shiwalik hills in winter. The data 
recorded on ground and SDM both suggest increase in 
abundance in lower Shiwalik ranges in winter and the 
population moves upward in summer season. A large segment 
of distribution range was overlapping in both the models 
which suggest partial altitudinal migration of P. leucogenys. 
Temperature related variables contributed vital role in the 
variation in distribution range in annual cycle of partial 
migration. We suggests further comparative studies on 
migrant and resident populations of the same species which 
may shed more light on behavioral, physiological, and genetic 
dynamics of species to provide information on ecological and 
evolutionary causes of partial altitudinal migration.  
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