www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(7): 2120-2125 © 2022 TPI

www.thepharmajournal.com Received: 14-05-2022 Accepted: 28-06-2022

P Shyamala

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

N Manikanda Boopathi

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

P Meenakshisundaram

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

N Premalatha

Department of Cotton, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

M Williams

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Corresponding Author: N Manikanda Boopathi

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Identification and validation of SSR_s linked to fiber quality traits in cotton using RILs derived from *Gossypium hirsutum* var. MCU5 and TCH 1218

P Shyamala, N Manikanda Boopathi, P Meenakshisundaram, N Premalatha and M Williams

DOI: https://doi.org/10.22271/tpi.2022.v11.i7aa.14228

Abstract

In order to increase the fiber productivity in cotton, it is imperative to genetically improve the fiber component traits and such effort can be quickened by use of molecular markers. Totally, seventy-four simple sequence repeat (SSR) markers that were previously shown to be linked to fibre strength, boll weight, and fibre elongation were used to differentiate *Gossypium hirsutum* var. MCU5 and TCH1218 and among them two were found to be polymorphic markers. These two polymorphic markers *viz.*, TMB 0409 and CGR 6889 were used to genotype 220 F_{13} recombinant inbred lines (RILs) derived from MCU5 and TCH1218 and single marker analysis was used to confirm their linkage with target traits using the phenotypic data collected on cotton fiber yield component traits such as plant height, days to 50 percent flowering data, boll weight, number of monopodial and sympodial branches and bolls. These identified and validated markers across genetic background can be employed to genetically improve cotton through marker assisted selection.

Keywords: Fibre quality, RIL population, Gossypium hirsutum, Intra specific cross

Introduction

Cotton fiber, the largest contributor of natural fiber used by mankind, is the backbone of textile industry. Cotton is "king of fibres" and popularly known as "White Gold". India is the largest producer of cotton in the world (~ 35.2 million bales) accounting for about 22% of world cotton production (https://cotcorp.org.in/national_cotton.aspx) ^[13]. India's climate, specifically, the north and south part of country, is very favourable for cotton production.

The genus *Gossypium* contains four cultivated species and among them, the tetraploids (2n=4x=52), *G. hirsutum* and *G. barbadense* are known as new world cotton. The rest of two cultivated species *viz.*, *G. arboreum* L. and *G. herbaceum* L. are diploids (2n=2x=26) and known as old world cotton. Among these four cultivated species, *Gossypium hirsutum* is predominantly cultivated in more than 95 per cent of global cotton area as it has global demand for its natural textile fibre and vegetable oil (Zhang *et al.*, 2015) ^[15].

Genetic improvement of fiber quality and quantity is the main objective of cotton breeding program. Both yield and quality are controlled by multiple genes interacting with growing environment (Zhang *et al.*, 2011) ^[16]. For improvement of fiber quality, there is need to improve both fiber strength and length (Yang *et al.*, 2016) ^[14]. Hinderance of negative correlation of yield and fiber quality limits the process of evolving elite cotton cultivar and thus, conventional method of breeding found to be challenging as it involves complex inheritance of fiber yield and quality traits. Recent advances in molecular markers and QTL mapping paved way for alternative route to speed-up the cotton breeding program and several QTLs have been identified (Kushanov *et al.*, 2021) ^[6]. However, it is important to validate the association of marker with the fiber yield or quality traits in the parents that are used in the regional breeding program. As validated marker for genetic improvement of fiber quality traits in cotton.

In the present study, intraspecific F_{13} RIL population derived from *G. hirsutum* var. MCU 5 and TCH 1218 was evaluated using published SSRs linked to fiber traits and two markers linked to fiber strength were identified and validated in the above RILs.

Materials and Methods

Plant Materials: An intraspecific F_{13} population with 220 recombinant inbred lines was developed in which *G. hirsutum* var. MCU 5 and TCH 1218 were used as parents. The F_1 was developed at Tamil Nadu Agricultural University (TNAU), Coimbatore (Boopathi *et al.*, 2014)^[4] and advanced to F_{13} generation. The female parent MCU 5 is a medium staple fiber and during flowering stage it cannot withstand water stress whereas TCH 1218 male parent is drought tolerant.

Phenotypic data

A two-row randomised block design with 26 plants was laid out during August, 2021. The spacing adopted between plant to plant was 45cm and between rows was 90cm. Data on days to 50% flowering was collected 45 days after sowing (DAS) and plant height (cm), number of monopodial branches, number of sympodial branches, number of bolls per plant, boll weigh (g), number of locules per boll were collected from the RILs at the time of harvest. Throughout the growing season, essential intercultural operations including pesticide application were carried out consistently in all plots at regular intervals.

DNA isolation and genotyping

Genomic DNA was extracted from the young and fresh leaves of parents and 221 RILs using cetyltrimethylammonium bromide (CTAB) technique (Aboul-Maaty and Oraby, 2019) ^[3]. Using a Nano Drop spectrophotometer, the purity of DNA was determined and DNA was electrophoresed through 0.8% (w/v) agarose gel.

PCR amplification

PCR reaction (Proflex PCR system) for the DNA extracted samples was carried out using 74 SSR markers belonging to TMB, NAU, HAU, BNL, JESPER, CIR, DPL, CGR, CM, DC and GH series (Table 1) linked to fibre quality and boll weight. These markers were used to analyse parental polymorphism and were further screened among the recombinant inbred lines derived from these two parents. The PCR product was resolved using 3% (w/v) agarose gel and the gel was documented using documentation unit (UVITEC, Cambridge).

S. NO	SSR		Sequence 5' TO 3'	Trait	Chr.	Temp. (⁰ C)	PVE	Reference
1	CM076	F	TTAATTTTCAAAGGGCTCTTAGAAAG	Fiber elongation	15	61.02	9.15	Sun et al., 2012
2	011070	R	GTATAATGGTAGGAGAGAAGGGTTAGGG		15	01.02	2.10	5uii <i>er un</i> , 2012
3	BNL3649	F	GCAAAAACGAGTTGACCCAT	Fiber length	1	56.28	4.71	Sun et al., 2012
4	BIGESOID	R	CCTGGTTTTCAAGCCTGTTC	Theor length	-	50.20	1.71	5un er un, 2012
5	NAU2600	F	CTTCCTGACAAGGCAAAGAT	Fiber length	1	54.23	4.71	Sun et al., 2012
6	10102000	R	AGCCGATAAACCAAAAACAG	Tiber length	1	54.25	4.71	,
7	HAU2489	F	GGCACGAGGAGAAAATGAAAGA	Fiber elongation	15	60.92	47.1	Zhang et al.,
8		R	GATCGGATTCTGGGTCCCGC					2012
9	HAU1044	F	TGGTCTGTATCCGTTCATTG	Fiber length	1	54.23	48.5	Zhang <i>et al.</i> , 2012
10	11101044	R	TTTTCGTATTTGTGGTGGTG					
11	NAU3145	F	AAAACAGAGGCCTAATATCTCA	Fiber length Fiber strength	1	54.96	55.8 9.2	Zhang <i>et al.</i> , 2012 Zhang <i>et al.</i> , 2012
12	10105145	R	TGTTGGTTTACCTGTTGTGC			54.90		
13	CIR213	F	TCAAGTGCATCAAGAAAC			49.13		
14	CIR213	R	CACTCCTAACAATGGAAA	Tiber strength		49.13		
15	DC40175	F	TTGCTCAGGTTTTGATGTC	Fiber strength	1	53.02	7.92	Liang <i>et al.</i> , 2013
16	DC40175	R	AGGTGATGACCATCGGTA	Tiber strength	1	55.02	1.72	Enang et ut., 2015
17	HAU1417	F	CAAAACTTGTTGCTCTTCCA	Fiber strength	1	53.2	12.46	Liang <i>et al.</i> , 2013
18	11401417	R	TAACTGAAACCCCAAAAGGA	Piber strength	1	55.2	12.40	_
19	NAU3254	F	GCTTTGCTTTGGAATGAGAT	Fiber strength	1	53.2	6.85	Zhang <i>et al.</i> , 2016 ^[14]
20		R	TTGGTGCAGATAGCAAGAAA					
21	DPL0490	F	AGTATCGTCACTTGTCAAAGTCCA	Fiber length	1	59.09	7	Shao et al., 2014
22	DI L0490	R	CTCATGCATGCTTATCACACATC	i iber iengui	1	57.07	'	51140 81 41., 2014
23	NAU2165	F	TAAATTTTGAGATGGCAGCA	Fiber length	15	53.2	18.1	Shao et al., 2014
24	10102105	R	CAAGGTGAAGGCAAAGAGAT	Tiber length	15	55.2	10.1	51100 01 01., 2014
25	HAU1619	F	AAAAACAATGGAAACGGTGT	Micronaire	1 or 15	51.15	16	Shao et al., 2014
26	Interiory	R	CTTGGTTTGCCAATATGAAA	wheromatic	1 01 15	51.15	10	51140 81 41., 2014
27	NAU3291	F	GGTAGGGCTAAGGACAACAA	Fiber yellowness	12	56.28	0.0479	Wang <i>et al.</i> , 2007
28	10105271	R	AATATGTTGCAGGTGGAGGT	Tiber yenowness	12	50.20	0.0477	Wang et ut., 2007
29	NAU3346	F	ACCTGAACCTGAATGTCCAC	Fibre length	1	55.25	7.7	liu et al., 2017
30	10105540	R	CCGTTCCATGTTTTTGTGTA	i ibie iengui	1	55.25	,.,	nu cr un, 2017
31	BNL3994	F	TTGAGGGCATCCAAATCCAT	Boll weight	12	57.3	0.0614	Wang <i>et al.</i> , 2007
32	DITES	R	CCTCCACCATACACGTGCTA	Don weight	12	51.5	0.0014	Wang et ut., 2007
33	BNL2495	F	ACCGCCATTACTGGACAAAG	Boll weight	12	55.25	0.0479	Wang <i>et al.</i> , 2007
34	DIVE2473	R	AATGGAATTTGAACCCATGC	Don weight	12	55.25	0.0477	Wang et ut., 2007
35	JESPR234	F	GCATAGTTATGAATGACTCTC	Boll weight	12	56.28	0.0614	Wang <i>et al.</i> , 2007
36		R	CTAACTCGAATCCGTCAC					0
37	NAU2355	F	ACAAACAAAACGCCTTCTTC	Boll weight	1	53.83	0.13	Sassel et al.,
38	11402333	R	AACACAAAAACGGTTCCAGT					2011
39	NAU2820	F	GCCACCAATAAAGCAACTCT	Boll weight	1	1 53.2	0.22	22 Wang <i>et al.</i> , 200
40		R	TGCATCCTGAAGAAGAGACA		1		0.22	_
41	NAU5380	F	CTTTGCCTCCTCATTACCAT	Boll weight	1	55.25		Wei et al., 2011

Table 1: Details of SSR	markers used	in this study
-------------------------	--------------	---------------

				r			-	incpharmajournal.com
42		R	TTGAGTTGGGGGGCTTAGTAG				_	
43	GH542	F R	TTCAATTCTGATTCTAACGCCATCAG	Boll weight	1	60.54		
44 45		к F	TACCCAGAATCGATGAGACACATG TTTTTTGTTTCCACCCAAGC					
45	BNL3033	R	GTCGCCCCATCCGATGTC	Boll weight	1	56.86	0.48	
47		F	CAACCTTTGGTAATCTTCTTCG				-	
48	BNL2882	R	CGCTAACGCATTTGACATCT	Boll weight	1	56.17	0.48	Luan et al. 2009
49	D U D O O O O O O O O O O	F	GCCCATGTTCAAATCAATCA				0.51	
50	BNL3099	R	CCCCGACCTGAATCTAACCT	Boll weight	1	56.28	0.51	
51	DNH 2004	F	TAGAGCCAAGTGGTGATCCC		1	57.0	0.0066	NU . 1 2007
52	BNL2986	R	AAAGGGGGGAATGATTATGC	Boll weight	1	57.3	0.0966	Wang <i>et al.</i> , 2007
53	CIR062	F	CCTCCACCAAACAGACATC	Doll weight	15	57.75		Wai at al. 2011
54	CIK002	R	GTCTGGGAGAGGTTGAGTG	Boll weight	15	51.15		Wei et al., 2011
55	BNL2920	F	TTCTTGCATTGAATAATACTGGC	Boll weight	15	55.34	0.07	Wu et al., 2009
56	DIAL2720	R	CTTAATTCTAAAAATCAATAAATTTAGCC	Don weight	15	55.54	0.07	Wu ei ui., 2007
57	NAU1156	F	ACACTCTCTCAGCTGGAACC	Boll weight	15	59.34		Wei et al., 2011
58	101101100	R	GGTCTCCCTCTAGCTTGTTG	Bon weight	15	57.54		
59	NAU5107	F	CGATGAAGACGATGCTATTG	Micronaire	1	56.28	6.82	Wang <i>et al.</i> , 2015
60		R	GTAGCCTTTGGTCTTCGTGT					[16]
61	HAU1693	F	TGGATGATGTGGAAAAACAG	Micronaire	1	53.2	9.6	
62		R F	AAATCCAAAAACACCACCAC				-	
63 64	HAU1038	F R	TCAACAGGTTCATCATCAGC ACAAAGTTACCCATGGCATT	Micronaire	1	54.23	9.6	Wang <i>et al.</i> , 2016
65		F	TTCGGGGTTTCACATCCCCT				-	
66	HAU4220	R	CCCTCTTGGCTGTTTCCACC	Fiber strength	15	60.38	8.4	
67		F	TTCCGGGTTTTCAATAAACG					
68	BNL830	R	GTTAATACTTTTTTTTTTTTTTTGTGTGTG		15	54.53		
69		F	GGTGACAATGGCCTGAACTT	au 10 1				Zhang et al.,
70	CGR5826	R	CGTCTGGCCCATAAAGGTTA	fiber uniformity	15	57.3	26.3	2012
71	DDI 0700	F	ACAATGGCGGATTGGATTC	Eile an atmos ath	1	57 17	-	Ma et al. 2017
72	DPL0790	R	TTCCAAGTGTCACCCTCTCAC	Fiber strength	1	57.17	5	Ma et al., 2017
73	DPL0090	F	CACCTACTGGTCCTACCACCTAAG	Fiber elongation	1	61.87	12.51	Ma et al., 2017
74	DI L0070	R	GTTGTTGTCGTCTTGCAGATTATG	Piber cioligation	1	01.07	12.51	Wia ei al., 2017
75	BNL3902	F	GAGTTTGGGGGGCTGTGTATG	Micronaire	15	59.35	0.116	
76		R	GGGGTGCTTATGTCAGACGT					
77	TMJ24	F	GGCTCCAAAATTGAAACGTG	Micronaire	15	55.25	0.116	
78		R F	GTGGACATTGGCATTCATTG CCCATGATCAAAAGACAACA				-	Shen et al., 2005
79 80	NAU913	г R	GCTTAAAGATCGAGGACGAA	Fiber elongation	1	54.23	7.1	
81		F	GCTTAAAGATCGAGGACGAA					
82	NAU974	R	CCCATGATCAAAAGACAACA	Fiber elongation	1	54.23	29.5	
83		F	GCTTTGCTTTGGAATGAGAT					
84	NAU2343	R	ATACTGCAACCCCTCACACT	Fiber elongation	15	55.25	5.02	San et al., 2012
85	DDI 0000	F	AAACCTCGTAGTCATAGGCTCAAA	F '1 1 <i>c</i> '	1.5	50.2	0.67	
86	DPL0322	R	AACTATGCACACAGATTTGGTACG	Fiber elongation	15	59.3	8.67	Sum at al. 2012
87	CIR334	F	ACCCTTGACAGTTACCAC	Fiber elongation	15	50.82	9.15	Sun et al., 2012
88	CIK554	R	TGCCCATTTAGGTATGA	Piber elongation	15	30.82	9.15	
89	NAU3881	F	AATAGTGATGCTCCCTTTGG	Fiber length	12	56.28		Dong <i>et al.</i> , 2018
90	11103001	R	TGCCCACTAAAGAGTTAGCC	r ieer iengui	12	50.20		_
91	NAU3084	F	GATCCTCCTCTTCCTCTTCC	Boll weight	12	57.3		Zhang <i>et al.</i> ,
92		R	GATGAAAGCGGTGGTTAAGT					2013
93	BNL3867	F R	TAATTGAGTTGTTTTCTTACTTGCC	Boll weight	12	54.81	2.18	Dai et al., 2019
94 95		F	TGCCAATTTAGCAATCACCA CGAGAGATTTTAAAGGGAAACA					
95 96	BNL2921	г R	GGGAGTGGTCTGATGGAAAA	Boll weight	1	55.98		Zeng et al., 2009
90 97		F	GACTTGAAAAGATTACACAC					Shang et al.,
98	CIR307	R	GAATTTGCTGGCTCT	Fiber elongation	15	48.13	0.07	2015
99	DUT 1 FOC	F	CCCTTGGGAATAGCAGGTG	F '1 1 ·	1.7	<i>co i</i> =	10.1=	Zhang <i>et al.</i> ,
100	BNL1693	R	CATGTGTCTCCGTGTGTGTGTG	Fiber elongation	15	60.47	12.47	2016 [14]
101	CCDC000	F	AGACACCAGCATCCACATCA	Eilbernstern (1	15	57.2	E CA	Shang et al.,
102	CGR6889	R	CCGCTTCCCATTTAGGTATG	Fiberstrength	15	57.3	5.64	2015
103	DPL0182	F	TTTGAGTGGAGACTGAGAGCG	Fiber strength	15	58.18	7.92	Liang <i>et al.</i> , 2013
104	D110102	R	TGGCTTAGAGCTTTGAATTTGG	i iooi suoligui	15	50.10	1.72	Liung ci ui., 2015
105	NAU2437	F	CTTGGAAAAAGGAAGAGCAG	Fiber uniformity	1	54.23	6.5	Tan et al., 2015
106		R	TTAAAAGACCAAAGGCAAGG		-		5.0	
107	DPL0526	F	GTTCTTGGTCATGCTGGTAAGAAA	Fiber elongation	1	59.3	7.1	Tan et al., 2015
108		R	TAGCCATATCCACCTTAGCAGATT	Ŭ				

109	BNL1454	F	AGGAAGGAGCGAAGGAAGAG	Fiber elongation	15	58.33	8.5	Tan et al., 2015
110	DI(L)1757	R	CTTTCCCCTCCCTTTTCAAG	Fiber eloligation	15	58.55	8.5	Tan <i>et al.</i> , 2015
111	NAU3384	F	TCATAACGGAAGCATTTTAC	Fiber uniformity	15	53.2	5.3	
112	NAU5564	R	GTTGGCTTCTCTTTGATCGT	Fiber uniformity	15	55.2	5.5	Tong at al 2015
113	CIR234	F	AGCACTCATCCATCACA	Micronaire	15	50.89	5.5	Tang <i>et al.</i> , 2015
114	CIK254	R	GCACCCTTTAGAAACAAG	wheromane	15	50.89	5.5	
115	CGR5372	F	GGGCTCACCTCTTCAGAGAA	Micronaire	1	58.33	9.84	Wang <i>et al.</i> , 2016
116	CGK5572	R	ATATGGGAGGTGTGGGAACA	wheromane	1	36.55	9.64	[14]
117	NAU0902	F	GGAGAGTGAAAATGGAATGTG	Fiber length	15	54.56	50.8	Zhang et al.,
118	NA00902	R	ACGAGAAGTTATTCGACAGA	Fiber length	15	54.50	30.8	2012
119	TMB0409	F	CAGAGGACGAAGGTAGCAG	fiber elongation	1 or 15	57.04	6.15	
120	110100409	R	TGGTGGGTTTCACTTTCACA	fiber elongation	1 01 15	37.04	0.15	
121	DNI 1052	F	AGGGTCTGTCATGGTTGGAG	Eile an atman atla	1 15	59.22	4.07	
122	BNL1053	R	CATGCATGCGTACGTGTGTA	Fiber strength	1 or 15	58.33	4.87	
123	BNL3345	F	CGAAGCGCGATTAAGAGAAC	Eile an atman atla	1 or 15	57.3	4.87	
124	BNL3345	R	AAAGCGAAGCCAACAGTCTC	Fiber strength	1 or 15	57.5	4.87	
125	114112074	F	CAGAGCCAGTTGCCGAGGAG		1 15	(2, 12)	(20	
126	HAU3074	R	CGGCTTCCTCTTTGGGTGCT	Micronaire	1 or 15	62.43	6.29	
127	DNI 2500	F	ATTGCCACAACCACAATCAA	NC .	1 15	50 10	C 20	
128	BNL2599	R	TATTTTTTGGGCTTGCTGA	Micronaire	1 or 15	52.18	6.29	
129	GH216	F	TCCACATTCCCATGCACTACTC	Eihan alamantian	1 15	59.76	6.98	
130	GH210	R	CTAAAACCTTATACATACAAAATGCAGC	Fiber elongation	1 or 15	59.76	0.98	Wang et al., 2015
131	DPL0052	F	GCTTACGTGTATGATTAAATCGCC	Eihan alemention	1	60.16	7.74	[15]
132	DPL0052	R	CAGAGGACTTGTAAACAACACTGC	Fibre elongation	1	60.16	1.14	
133	CGR6586	F	CTCGCCTCTTCAGAGAAAGAA	fiber elongation	1 or 15	57.59	7.74	
134	CGK0580	R	ATATGGGAGGTGTGGGAACA	fiber elongation	1 01 15	51.59	1.14	
135	HAU3923	F	TGGCCAGTAACACCGAGACA	Fiber elongation	1 or 15	59.35	11.63	
136	ПАU3923	R	GGCCTTCGCCTTTTCTTCCT	Fiber elongation	1 01 15	39.55	11.05	
137	CGR5001	F	TCTCCATGTATCCACCCACA	Fiber elongation	1 or 15	56.28	11.63	
138	CORSUUI	R	ATAGCGAATGCAGATCGTGA	riber eloligation	1 01 15	30.28	11.05	
139	HAU1001	F	ACAGGATGTGCATGTTATGG	Fiber elongation	1 or 15	54.23	6.54	
140	HAU1001	R	ATCTCTTGATTTGGGGGTCAA	Fiber elongation	1 or 15	54.25	0.54	
141	114112210	F	ATCTCTTGATTTGGGGTCAA	Elhan alamant'	1 15	57.2	654	
142	HAU3319	R	GATGAGGGTCAAAGGCGGCA	Fiber elongation	1 or 15	57.3	6.54	
143	11411027	F	CAGAAAGAAGAAGGGAAGACC	C1 1	1 17	55 5 A	10.01	
144	HAU035	R	TTTTGGAGAAAATGGTCAGC	fiber elongation	1 or 15	55.54	12.81	
145	114114000	F	CGGCAGGTTCGACAACGTAA	F 1 1	1 17	(0.20	10.01	Wang et al., 2015
146	HAU4228	R	CTCTTGCAGCTCCGTCTTCC	Fiber elongation	1 or 15	60.38	12.81	[15]
147	NAUGIOO	F	TCGCCATCTTCACTATTCTTC	F 1 1	1.7	54.56	0.1.4	N 1 0010
148	NAU5138	R	CATGGCGAATTTCCTTACTT	Fiber elongation	15	54.56	8.14	Yu et al., 2013
·			1					

Trait = Trait to which marker is linked, Chr. – Chromosome number; Temp ($^{\circ}$ C) = annealing temperature of the given primer which was used to set PCR profile, PVE = Phenotypic variance explained (%).

Results and Discussion

In this study, 220 F_{13} RILs derived from *G hirusutum* var MCU5 and TCH 1218 were evaluated phenotypically for quantitative traits and significant variation for plant height (20

-160 cm), boll number (1 - 19), boll weight (1.2 - 5.6g), sympodial branches (2 - 29), days to 50 percent flowering (70 -85 DAS) and monopodial branches (0 - 3) were noticed (Table 2).

Table 2: Variation in phenotypic data of 220 F13 RILs derived from MCU 5 and TCH 1218

Traits	Mean	Minimum value	Maximum value
Plant height (cm)	78.95	20	160
Number of bolls	4.6	1	19
Boll weight	3.8	1.2	5.6
Days 50% flowering data	72.6	70	85
Number of Sympodial branches	14.9	2	29
Number of Monopodial branches	1.22	0	3

Genotyping with seventy-four SSR markers exhibited that two markers *viz.*, TMB 0409 and CGR 6889 (which had amplicon size of 221 bp and 131 bp, respectively) that were already shown to be linked with fiber strength (Table 1) were also found to be polymorphic between the investigated parents (Figure 1).

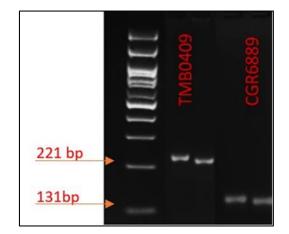


Fig 1: Agarose gel electrophoresis of PCR products amplified by TMB 0409 and CGR 6889. Lane 1- 100bp ladder; Lane 2 and 3- PCR product amplified by TMB 0409 in MCU 5 and TCH 1218, respectively; Lane 4 and 5- PCR product amplified by CGR 6889 in MCU 5 and TCH 1218, respectively

On further screening among the recombinant inbred lines (RIL) derived from these two parents with identified two polymorphic markers, a total of 183 RIL and 198 RIL progenies were found to possess the allele for fiber strength, respectively. While 137 RILs found to have allele for both the polymorphic markers.

Genotypic mean performance of progenies was found to be more when compared with parents for quantitative traits like plant height (cm), boll weight (g), number of bolls, days to 50 percent flowering data, monopodial branches.

The mean phenotypic performance of quantitative traits for TMB 0409 marker and CGR 6889, as indicated in Figure 2, demonstrated that there was a significance difference for plant height, 50% flowering data, number of sympodial branches, boll weight and boll number.

Fig 2: Histogram showing variation in quantitative traits with respect to marker alleles that were measured from 220 RILs derived from *Gossypium hirsutum* var MCU5 and TCH1218 for two SSR markers *viz.*, TMB 0409 (1a to 1f) and CGR 6889 (1g to 1l).

A significance difference in the expression of quantitative trait between the two alleles indicates that the given marker is linked to particular QTL (Meena *et al.*, 2017)^[9]. Studies on single marker analysis conducted by Semizer-cuming *et al.*, 2015 ^[10] identified 43 QTLs for fiber colour and fiber quality traits. Similarly, 11 markers linked to node of first fruit branch (NFFB) and first node of highest fruiting bodies (FNHB) were identified (Li *et al.*, 2012) ^[7]. In present study, single marker analysis of two polymorphic markers observed significance difference in the expression of various quantitative traits and this reveals that these markers were

linked to fiber strength.

In earlier studies QTLs linked to wilt resistance were identified and they were precisely introgressed into *G* hirsutum from *G* barbadense through marker assisted backcross breeding program (Li *et al.*, 2013) ^[8]. By identifying markers linked to fiber quality traits and introgressing them from diverse Uzbek cotton germplasm (Abdurakhmonov *et al.*, 2008; Abdurakhmonov *et al.*, 2009) ^[1, 2], new varieties with fiber qualities traits such as "Ravnaq-1" and "Ravnaq-2" were developed (Darmanov *et al.*, 2015) ^[5]. Therefore, the major and consistent breeder friendly

markers viz., CGR 6889 and TMB 0409

(Shang *et al.*, 2015; Wang *et al.*, 2015) ^[11, 12] that were reported elsewhere have also been validated in this study using another independent mapping population.

Conclusion

As these markers that were linked to fiber strength in upland cotton are consistent across genetic backgrounds, they may be useful in efficient marker assisted selection for fiber quality trait improvement in cotton.

References

- 1. Abdurakhmonov IY, Kohel RJ, Yu J, Pepper A, Abdullaev A, Kushanov F. Molecular diversity and association mapping of fiber quality traits in exotic *G. hirsutum* L. germplasm. Genomics. 2008;92(6):478-487.
- Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE. Linkage disequilibrium based association mapping of fiber quality traits in *G. hirsutum* L. variety germplasm. Genetica. 2009;136(3):401-417.
- 3. Aboul-Maaty NAF, Oraby HAS. Extraction of highquality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre. 2019;43(1):1-10.
- Boopathi NM, Sathish S, Dachinamoorthy P, Kavitha P, Ravikesavan R. Usefulness and utilization of Indian cotton germplasm. World Cotton Germplasm Resources. 2014;315-323.
- Darmanov MM, Makamov AK, Kushanov FN, Buriev ZT, Abdurakhmonov IY. Marker-assisted selection for cotton.in Proceedings of the Tashkent international Innovation forum, Section Agriculture, Uzbekistan, Tashkent, May. 2015;19-21:260–267.
- 6. Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK. Genetic diversity, QTL mapping and MAS technology in cotton (*Gossypium* spp.).Frontiers in Plant Science. 2021, 2971.
- Li C, Wang C, Dong N, Wang X, Zhao H, Converse R. QTL detection for node of first fruiting branch and its height in upland cotton (*Gossypium hirsutum* L.). Euphytica. 2012;188(3):441-451.
- 8. Li C, Wang X, Dong N, Zhao H, Xia Z, Wang R. QTL analysis for early-maturing traits in cotton using two upland cotton (*Gossypium hirsutum* L.) crosses. Breeding Science. 2013;63(2):154-163.
- 9. Meena AK, Ramesh M, Nagaraju C, Kumhar BL. A review of QTL mapping in cotton: Molecular markers, mapping populations and statistical methods.International Journal of Current Microbiology and Applied Sciences. 2017;6:3057-3080.
- SEMİZER-CUMING D, Altan F, Akdemir H, Tosun M, Gurel A, Tanyolac B. QTL analysis of fiber color and fiber quality in naturally green colored cotton (*Gossypium hirsutum* L.). Turkish Journal of Field Crops. 2015;20(1):49-58.
- 11. Shang L, Liang Q, Wang Y, Wang X, Wang K, Abduweli A. Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (*Gossypium hirsutum* L.). Euphytica. 2015;205(3):877-888.
- 12. Wang H, Huang C, Guo H, Li X, Zhao W, Dai B. QTL mapping for fiber and yield traits in upland cotton under

multiple environments. PLoS One. 2015;10(6):e0130742.

- https://cotcorp.org.in/national_cotton.aspx. Accessed on 10th April, 2022.
- 14. Yang X, Wang Y, Zhang G, Wang X, Wu L, Ke H. Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton. Molecular Genetics and Genomics. 2016;291(4):1625-1638.
- 15. Zhang S, Wang T, Liu Q, Gao X, Zhu X, Zhang T. Quantitative trait locus analysis of boll-related traits in an intraspecific population of *Gossypium hirsutum*. Euphytica.2015;203(1):121-144.
- Zhang W, Fang L, Shao-Hui L, Wei W, Chun-Ying W, ZHANG XD. QTL analysis on yield and its components in recombinant inbred lines of upland cotton. Acta Agronomice Sinica.2011;37(3):433-442.