www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(7): 2825-2829 © 2022 TPI www.thepharmajournal.com

Received: 28-06-2022 Accepted: 18-07-2022

Jyoti G Dulera

Assistant Research Scientist, AINPVPM, Agril. Ornithology ICAR Unit-9, AAU, Anand, Gujarat, India

Ashish H Nayi Agriculture Officer, AINPVPM, Agril. Ornithology ICAR Unit-9, AAU, Anand, Gujarat, India

Corresponding Author: Jyoti G Dulera Assistant Research Scientist, AINPVPM; Agril. Ornithology ICAR Unit-9, AAU, Anand, Gujarat, India

Assessment of rose-ringed parakeet (*Psittacula krameri*) Depredations to Guava Fruits

Jyoti G Dulera and Ashish H Nayi

Abstract

Yield loss due to parakeet depredation recorded was 11.66 per cent in guava orchard of middle Gujarat Agro Climatic Zone. Fruit damage and number of parakeet bird was higher in morning hours than evening hours. Guava orchard is needed to protect against parakeet depredation to cultivate it economically.

Keywords: Rose-ringed parakeet, Guava, "V" shape mark

Introduction

Guava (Psidium guajava) can be considered as one of the most ideal crops for dry Deccan Plateau region of India. Its cultivation has become highly remunerative agriculture business in India. The parakeet has acquired the status as a serious vertebrate pest for the agricultural and horticultural crops (Shafi et al. 1986; Khan & Beg, 1998) ^[7, 2]. Seven species of birds were recorded in Guava orchards in India, of which rose-ringed parakeets (Psittacula krameri) and house crow (Corvus splendens) were predominant and inflicting damage to the fruits in Punjab (Malhi and Kaur, 1998)^[5]. Guava (P. guajava) was found the most preferred fruit of Roseringed parakeet (P. krameri). The parakeets showed preference both for unripened/rind and ripened fruits. The parakeet is the most common and the destructive bird of India which inflicts huge damage to grain of standing crops, orchard fruits and vegetable crops. (Kushwaha and Prabhat, 2004)^[4]. Khan et al. (2006)^[3] reported 20.1% - 40% damage by parakeet on Guava fruits. Fruits and vegetables form an important part of the economy of India. The roseringed parakeet serves as the worst vertebrate pest of India not only damages the food sources, but also causes considerable economic losses to farmers and national economy. Due to its wide feeding niche, it is regarded as one of the most destructive vertebrate pests. Thus, the present experiment was planning to assess parakeet depredation on Guava fruits.

Materials and Methods

The present study was carried out in middle Gujarat, Horticulture Farm, Anand Agriculture University, Anand. Net plot size was 44 m X 16.5 m. Total 20 trees of Local Red variety of Guava was selected from horticulture farm (Plate-1) and tagged for observation. Observation of parakeet damage by observing 'V' shape marking on fresh fruit was recorded from seven months *Viz.*, March and April and June to August, and again in November and December. Depredations on fruits were estimated through direct field observations. Observations were recorded during morning (7:30 am to 9:30 am) and evening (5:00 pm to 7:00 pm). Parakeet depredations inflicted fruits were numbered, weighed. The data obtained thus, subjected to statistical analysis after appropriate transformation to draw valid conclusion.

https://www.thepharmajournal.com

Experimental orchard, Horticulture Farm, AAU, Anand

Damaged fruit by rose-ringed parakeet

Rose ringed parakeet obserdved in Guava orchard

Plate 1: Experimental view of Guava orchard and damaged fruit by Rose ringed parakeet

Result and Discussion

During the period, total 860 observations were recorded for visitation of parakeet on guava tree. Average 42.81 mean number of birds was recorded in guava orchard during morning while it was recorded average 35.42 mean numbers of birds during evening. Difference in bird visitation during evening and morning period was found statistically significant (Table-1). The fruit damage was recorded 0.97 % and 0.54 % in morning and evening period, respectively. Statistically significant differences were found due to parakeet depredation by t-test (Table-2). Estimation of the predication

equation indicated a sufficiently strong coefficient of regression R^2 (0.35%) for damage assessment on guava was Y(MD+ED) = 0.162 + 0.015X (MP+EP) (Table-3). The regression equation predicted for the parakeet visit in morning on guava was Y(MD) = 0.277 + 0.016 X (MP) (Y= Morning Damage; X= Morning Parakeet), while the coefficient of estimation R^2 (0.59%), indicated a positive relationship between the parakeet visit and depredation in the morning (Table-4). The regression equation predicted for the parakeet visit in evening on guava was Y(ED) = 0.139 + 0.011 X (EP) (Y= Evening Damage; X= Evening Parakeet), while the

The Pharma Innovation Journal

coefficient of estimation R^2 (0.30%), indicated a positive relationship between the parakeet visit and depredation in the

evening (Table-5). Other bird community also recorded during march- December 2018 and march- December 2020 (Table-6).

Table 1: Morr	ning and Evenin	g visitations of re	ose -ringed t	parakeet in ex	perimental	plot (Y	ear 2018 & 2020)*
		B						/

Variable (Dair 1)		Ν			Mean			Std. deviation				Std. Error Mean		
variable (raii 1)	2018	2020	pooled	2018	2020	poole	ł 201	8	2020	pooled	2018	3 2020	pooled	
Morning Parakeet	480	380	860	41.47	44.49	42.81	27.2	32	21.016	24.712	1.243	3 1.078	0.843	
Evening Parakeet	480	380	860	34.28	36.85	35.42	23.4	37	18.412	21.389	1.070	0.945	0.729	
					Pai	red San	iple T	Te	est					
Doir 1			Т					Ι	Df			Sig.	(2- tailed)	
Fall 1	2018	20	020	pooled	2	018 2	020		Pooled	20	018 2	020	pooled	
Pair t Test	25.958*	* 24.1	147**	5.446 **	* 4	79	379	79 859		0	00 0	.00	0.00	

** significant at 1%

Table 2: Intensity of Morning and Evening rose -ringed parakeet depredations in experimental plot. (Year 2018 & 2020)*

Variable (Dair 1)		Ν			Mean			St	d. devia	tion	Std. Error Mean		
variable (rair 1)	2018	2020	poolee	d 2018	2020	Poo	oled	2018	2020	pooled	2018	2020	pooled
Morning Damage	480	380	860	0.88	1.08	0.	97	0.889	0.726	0.827	0.041	0.037	0.028
Evening Damage	480	380	860	0.47	0.63	0.	54	0.602	0.574	0.594	0.027	0.029	0.020
				Pai	red Sa	mple '	T- Tes	t					
Doir 1			Т]	Df			Sig. (2	- tailed))
Fall 1	2018	3 2	020	Poole	d	2018	2020	Pooled		2018	2020		pooled
Pair t Test	9.696*	** 10.	672**	14.248	**	479	379	859		0.00	0.00		0.00

**significant at 1%

*In year 2019, trees were pruned to manage bark eating caterpillar infestation and as a result the experiment was not possible to conduct

Table 3: Effect of parakeet on damage assessment in experimental plot (Year 2018 & 2020)

Model	Sur	n of squa	ares	Df			Μ	ean squa	are		F		Sig.		
Widdei	2018	2020	Pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled
Regression	142.333	67.480	215.479	1	1	1	142.333	67.480	215.479	303.947	173.209	492.277	0.000^{a}	0.000^{a}	0.000 ^a
Residual	448.616	295.308	752.000	958	758	1718	0.468	0.390	0.438						
Total	590.949	362.788	967.479	959	759	1719									
		Unstand	lardized C	Coeffici	ients		standard	ized Coe	efficients		т		Sig		
Model		В		S	Std. Er	ror		Beta		1			Sig.		
	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled
1 (Constant)	0.105	0.251	0.162	0.039	0.051	0.031				2.664	4.911	5.202	0.008	0.000	0.000
Parakeet	0.015	0.015	0.015	0.001	0.001	0.001	0.491	0.431	0.472	17.434	13.161	22.187	0.000	0.000	0.000

a. Predictors: (Constant), Parakeet

b. Dependent variable: Damage

D1 = 0.105 + 0.015 Total parakeet (Year 2018) ($R^2 = 0.24$)

D2=0.251 + 0.015 Total parakeet (Year 2020) ($R^2 = 0.53$)

D3 = 0.162 + 0.015 Total parakeet (Year-2018 and 2020) ($R^2 = 0.35$)

Table 4: Effect of morning parakeet on morning damage in experimental plot (Year 2018 & 2020)

Madal	Sui	n of squa	ares		Df		Μ	ean squa	are		F		Sig.		
Widdei	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled
Regression	103.216	30.031	135.415	1	1	1	103.216	30.031	135.415	179.223	66.933	257.313	0.000^{a}	0.000^{a}	0.000 ^a
Residual	275.284	169.600	451.538	478	378	858	0.576	0.449	0.526						
Total	378.500	199.632	586.953	479	379	859									
		Unstand	ardized C	Coeffic	ients		standard	ized Coe	efficients		т			C :-	
Model		В		5	Std. Er	ror		Beta			1		Sig.		
	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled	2018	2020	pooled
1 (Constant)	0.168	0.483	0.277	0.063	0.081	0.049				2.662	5.997	5.603	0.008	0.000	0.000
Morning Parakeet	0.017	0.013	0.016	0.001	0.002	0.001	0.522	0.388	0.480	13.387	8.181	16.041	0.000	0.000	0.000

a. Predictors: (Constant), MP

b. Dependent variable: MD

c. MD1 = 0.168 + 0.017MP (Year 2018) ($R^2 = 0.27$)

d. MD2 = 0.483 + 0.013MP (Year 2020) ($R^2 = 0.99$)

MD3 = 0.277 + 0.016MP (Year 2018 and 2020) ($R^2 = 0.59$)

Table 5: Effect of eve	ening parakeet on ev	vening damage in o	experimental plot	(Year 2018 & 2020)
	01	0 0	1 1	· · · · · · · · · · · · · · · · · · ·

Madal	Sur	n of squa	ares	Df		Mean square				F		Sig.			
Widdei	2018	2020	pooled	2018	2020	pooled	2018	2020	Pooled	2018	2020	pooled	2018	2020	pooled
Regression	28.247	21.331	50.766	1	1	1	28.247	21.331	50.766	92.861	78.016	172.348	0.000^{a}	0.000^{a}	0.000 ^a
Residual	145.401	103.351	145.401	478	378	858	0.304	0.273	0.295						
Total	173.648	124.682	173.648	479	379	859									
		Unstand	ardized (Coeffic	ients		standard	lized Coe	efficients		т		C:-		
Model		В		S	Std. Er	ror		Beta			1			Sig.	
	2018	2020	pooled	2018	2020	pooled	2018	2020	Pooled	2018	2020	pooled	2018	2020	pooled
1 (Constant)	0.118	0.154	0.139	0.045	0.060	0.036				2.637	2.566	3.891	0.009	0.011	0.000
Evening Parakeet	0.010	0.013	0.011	0.001	0.001	0.001	0.403	0.414	0.409	9.636	8.833	13.128	0.000	0.000	0.000

a. Predictors: (Constant), EP

b. Dependent variable: ED

c. ED1 = 0.118 + 0.010 EP (Year 2018) (R² = 0.16)

d. ED2 = 0.154 + 0.013 EP (Year 2020) ($R^2 = 0.33$)

ED3 = 0.139 + 0.011 EP (Year 2018 and 2020) ($R^2 = 0.30$)

Table 6: Checklist of Bird visiting in experimental plot at Horticulture farm, Anand (Year 2018 & 2020)

Sr. No	Name of bird
1	Purple Sunbird (Nectarinia asiatica)
2	Red vented bulbul (Pycnonotus cafer)
3	Pigeon (Columba liviadomestica)
4	Sparrow (Passer domesticus)
5	Indian pea fowl (Pavo cristatus)
6	Black Drongo (Dicrurus macrocercus)
7	Greater Coucal (Centropus sinensis)
8	Common Myna (Acridotheres tristis)
9	House crow (Corvus splendens)
10	Red wettled Lapwing (Vanellus indicus)
11	Red naped Ibis (Pseudibis papillosa)
12	Cattle Egret (Bubulcus ibis)
13	Rose-ringed parakeet (Psittacula krameri)

Out of 20 sampled trees tested, 179.03 mean number of total fruit, 20.98 mean numbers of fruit was damaged and 158.05 mean numbers of fruits were healthy. Average 11.66 per cent damaged fruits per tree were observed while fruit yield was

88.34 per cent. Total weight of damaged fruit and healthy fruit was 68.80 kg and 1630.51 kg, respectively. Other birds also observed in Guava Orchard during study period (Table-7).

Table 7: Guava fruits and weight after parakeet predation in experimental plot (Year 2018 & 2020)*

No. of two				N	lumber	of Fruits	s/ tree						
No. of tree (20)	То	tal fruit			Ι	Damaged	fruit	H	Iealthy f	ruit			
(20)	2018	2020	Poo	oled 2	2018	2020	Pooled	2018	2020	Pooled			
Total	3925	3236	358	0.50	442	397	419.50	3483	2839	3161.00			
Mean	196.25	161.80	179	9.03 2	22.10	19.85	20.98	174.15	141.95	158.05			
No. of tree		Te				al weight of fruits/tree (kg)							
(20)	Da	maged fr	uit										
	2018	20	2020 Pc		led	2	2018			pooled			
Total	59.11	78	3.48	68.8	80	2028.00		1233.0	2	1630.51			
Mean	2.96	3	.92	3.4	4	10	01.40	61.65		81.53			
No. of tree				N	Number of fruits/ tree								
(20)	Da	maged fru	uits				Heal	thy fruits					
	2018	20	020	Poolec	1	201	8	2020		pooled			
Total	222.52	24	3.86	233.19)	1777	.48	1756.14		1766.81			
Per cent	11.13	12	2.19	11.66		88.	87	87.81		88.34			

*In year 2019, trees were pruned to manage bark eating caterpillar infestation and as a result the experiment was not possible to conduct

Conclusion

Difference in bird visitation during evening and morning period was found statistically significant. The fruit damage was recorded 0.97 % and 0.54 % in morning and evening period, respectively. The regression equation predicted for the parakeet visit in morning and evening on guava was indicated a positive relationship between the parakeet visit and

depredation in the morning and evening. Out of 20 sampled trees tested, 20.98 mean numbers of fruit was damaged and 158.05 mean numbers of fruits were healthy. Total 419.50 numbers of fruits were damaged with 68.80 kg weight loss from twenty sampled trees. Average 11.66 per cent damaged fruits per tree were observed due to parakeet depredation.

References

- Iftikhar H, Shahid M, Shakeel A, Aziz Khan A. Bird pest damage to guava fruits, Islamabad. Pakistan J. Agri. Sci.1991;28(1):5-8.
- Khan HA, Beg MA. Roosts and roosting habits of roseringed parakeet (*Psittacula krameri*) in Central Punjab, Pakistan. Pakistan J Biol. Sci. 1998;(1):37-38.
- 3. Khan HA, Anwar N, Perveen S. Abundance of Roseringed parakeet (*Psittacula krameri*) and house sparrow (*Passer domesticus*) on guava and sunflower farmlands in an agro- ecosystem in Faisalabad Pakistan. J of Agri. and Social Sciences. 2006;2:125-128.
- 4. Kushwaha P, Kumar P. Ecology of Psittaculla karmeri, Scopoli, a ferruginous birds with special reference to its role as a pest of crop and fruits. Lucknow. J of science. 2004 Issue 1.
- 5. Malhi CS, Tejdeep Kaur. On avian damage to pomegranate. Indian J. of forestry. 2004;21(1):31-33.
- 6. Rana BD, Banakr GJ. Damage to pomegranate fruits by rose ringed parakeet, *Psittacula krameri*, at Jodhpur. Pavo. 1992;30(1-2):1-3.
- Shafi MM, Khan AA, Hussain I. Parakeet damage to Citrus fruit in Punjab. J. Bombay Nat. His. Soc. 1986;83:439-444.