www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; 11(7): 2818-2824 © 2022 TPI www.thepharmajournal.com

Received: 27-04-2022 Accepted: 15-06-2022

BL Kumhar

Directorate of Research, SKN Agriculture University, Jobner, Jaipur, Rajasthan, India

D Singh

Departments of Plant Breeding & Genetics, SKN College of Agriculture Jobner, Jaipur, Rajasthan, India

ML Jakhar

Directorate of Research, SKN Agriculture University, Jobner, Jaipur, Rajasthan, India

Varsha Kumari

Departments of Plant Breeding & Genetics, SKN College of Agriculture Jobner, Jaipur, Rajasthan, India

Anju Nehra

Departments of Plant Breeding & Genetics, SKN College of Agriculture Jobner, Jaipur, Rajasthan, India

Sarfraz Ahmad

Departments of Plant Breeding & Genetics, SKN College of Agriculture Jobner, Jaipur, Rajasthan, India

NR Koli

Agricultural Research Station, Ummedganj, Kota, Rajasthan, India

Corresponding Author: BL Kumhar Directorate of Research, SKN Agriculture University, Jobner, Jaipur, Rajasthan, India

Estimation of mean performance of quantitative characters in chickpea (*Cicer arietinum* L.) under irrigated and rainfed conditions

BL Kumhar, D Singh, ML Jakhar, Varsha Kumari, Anju Nehra, Sarfraz Ahmad and NR Koli

Abstract

The present study was conducted to generate information on mean performance of the yield and yield attributes of chickpea under rainfed and irrigated conditions. The experiment was conducted in compact family block design with three replications under two separate irrigated and rainfed conditions. Observations were recorded on days to 50% flowering, days to maturity, plant height, fruiting branches per plant, pods per plant, seeds per pod, biological yield per plant, seed yield per plant, harvest index, 100-seed weight and protein content in each experiment, separately. Significant differences among the crosses were observed for all the characters under both the conditions. Pooled analysis of variance over environments revealed highly significant differences among generations and environments for most of the traits in most of the crosses. Reduction in performance was observed for all the studied characters under rainfed condition except protein content. Maximum reduction was observed in pods per plant followed by seed yield per plant, biological yield per plant, fruiting branches per plant, plant height, thus, it can be said that these characters were more prone to moisture stress. Seeds per pod and 100-seed weight showed less reduction indicated that these characters were not significantly affected by moisture stress and showing stable and highly heritable nature. Therefore it is suggested that more consideration should be given to the characters like pods per plant, fruiting branches per plant, biological yield per plant and plant height while deciding selection criteria for rainfed condition. Selection for seed weight and seeds per pod can be exercised at any stage of generation advancement due to their stable nature and high heritability. Cross IPC-94-94 x RSG-RSG-888 was observed to be earliest to flower and mature under both the conditions, which may be utilized for development of an early flowering and early maturing types. Bold seeded parents viz., ICC-4958, BG-362 and IPC-94-94 and their crosses had higher mean values for yield and yield contributing characters even in rainfed condition indicated that bold seeded genotypes and their crosses generally showed higher degree of drought tolerance in comparison to medium seeded genotypes and can be bred for drought tolerance.

Keywords: Chickpea, mean performance, rainfed condition, moisture stress

1. Introduction

Chickpea (*Cicer arietinum* L.) is the third most important food legume. The global production of chickpea in 2014 was 13.00 million tons from an area of 13.59 million ha giving an average productivity of 956 kg/ha (FAOSTAT, 2019)^[1]. Among chickpea-growing countries, India alone contributes about 70% of the world's total production (Korbu *et al.*, 2020)^[2]. In India, chickpea cultivation was done on 9.69 million ha with production of 11.07 million and productivity of 1142 kg/ha tons in the year 2019-2020 (Anonymous, 2022)^[3]. In spite of India being the largest chickpea producing country, a deficit exists in domestic production and demand which is met through imports.

Chickpea has special significance in the diet of the predominantly vegetarian population of India as it contains more protein (23%), which is complementary with cereals in amino acids profile. Production and productivity of chickpea have been stagnant for the past three decades; one of the main reasons of this is its sensitivity to moisture stress at critical stages since more than 80% area under chickpea is rainfed (Dhiman *et al.*, 2006) ^[4]. Moisture stress has been a major threat and the most unpredictable constraint with adverse effects on chickpea production and productivity worldwide (Korbu *et al.*, 2020; Kumar *et al.*, 2018) ^[2, 5]. Chickpea is mostly grown in the arid and semiarid areas and is commonly regarded as a drought-tolerant crop (Kumar *et al.*, 2018; Turner *et al.*, 2001; Varshney *et al.*, 2014) ^[5, 6, 7]. Despite the relative tolerance of chickpea to drought stress, severe or prolonged stress is detrimental to its growth

and productivity (Daryanto et al., 2015; Pang et al., 2017)^{[8,} ^{9]}. Several studies revealed that moisture stress specifically at the reproductive stage can cause up to 70% yield reduction in chickpea (Nadeem et al., 2019; Nayyar et al., 2006) [10, 11]. Significant variation among genotypes for yield and yield contributing characters under moisture stress condition in chickpea has been observed by Kumar et al. (2004) ^[12], Meena et al. (2006) [13], Krishnamurty et al. (2011) [14] and Mishra and Babbar (2014) ^[15]. Yield losses occur due to reduction in germination, plant growth (biomass) and seed size. Therefore, a strong breeding programme is needed to develop genotypes suitable for moisture stress conditions. This requires a simple and fast procedure for selection of drought tolerant genotypes in segregating populations and evaluating cultivars. Quisenberry (1982)^[16] defined drought resistance as the ability of a plant variety to produce a higher yield than another at a given limiting level of water availability. The aim of the present study was to generate information on mean value of the yield and yield contributing traits of chickpea under rainfed and irrigated conditions.

2. Materials and Methods

The present investigation on chickpea was carried out at Research Farm, Agricultural Research Sub Station, Hanumangarh, Rajasthan, India. The average precipitation was 241.6 mm and average temperature was 32.26°C. The experiment was conducted in compact family block design with three replications maintaining 30 cm row to row and 10 cm plant to plant distances. The material for this experiment comprised of five generations namely, P1, P2, F1, F2 and F3 of each of the five chickpea crosses viz., RSG-895 (Medium bold) x RSG-888 (Medium bold), RSG-888 (Medium bold) x ICC-4958 (Bold), IPC-94-94 (Bold) x RSG-888 (Medium bold), CSJD-901(Medium bold) x RSG-931(Medium bold) and BG-362 (Bold) x RSG-931(Medium bold). Parents were sown in two rows, F₁s in one row and F₂s and F₃s were sown in four rows under both irrigated (two supplemental irrigations) and rainfed (on receding soil moisture). All the recommended cultural practices were followed to raise a good and healthy crop in both conditions. Observation at vegetative, reproductive and maturity stages were recorded for different traits i.e. days to 50% flowering, days to maturity, plant height, fruiting branches per plant, pods per plant, seeds per pod, biological yield per plant, seed yield per plant, harvest index, 100-seed weight and protein content were recorded on randomly selected 10 plants from each of the P_1 , P_2 and F_1 and 20 plants from each of the F_2 and F_3 generations under both irrigated and rainfed conditions. Analysis of variance was performed as per compact family block design for comparison of crosses as well as generations of each cross. Pooled analysis of variance was also done over two environments to comparison of environments (Irrigated and rainfed) according to Panse and Sukhatme (1985) [17]. Standard statistical procedure (Snedecor and Cochran, 1968) ^[18] was used to obtain means for each generation and character, separately.

3. Results and Discussion

Analysis of variance revealed significant differences among the crosses for all the characters under both the conditions, indicating the presence of diversity among the crosses (Table 1). Pooled analysis of variance over environments revealed highly significant differences among generations and environments for most of the traits in most of the crosses (Table 2). Generation x Environment interaction was also significant for most of the characters in most of the crosses showing differential response of irrigated and rainfed conditions.

The mean performance along with standard errors of five generations of five chickpea crosses for different characters under irrigated (IRG) and rainfed (RF) conditions is given in Table 3. In the present investigation, reduction in performance was observed for all the studied characters under rainfed except protein content, which might be due to terminal drought, moisture and heat stress (Table 4). Maximum reduction was observed in pods per plant followed by seed yield per plant, biological yield per plant, fruiting branches per plant, plant height, days to 50% flowering and days to maturity, thus, it can be said that these characters were more influenced to moisture stress. A considerable reduction in vield and associated traits under rainfed condition was also reported by Rao et al. (2003) ^[19], Shane et al. (2003) ^[20], Turner et al. (2003)^[21], Kumar et al. (2004)^[12], Ozgun et al. (2004)^[22], Sanap et al. (2004)^[23], Dhiman et al. (2006)^[4] and Meena et al. (2014)^[24]. Seeds per pod and 100-seed weight showed less reduction indicated that these characters were not significantly affected by moisture stress and showing stable and highly heritable nature. Kumar et al. (2004)^[12] also observed non-significant effect of moisture stress on seeds per pod and 100-seed weight. The harvest index always calculated on the basis of the performance of seed yield and biological yield. Therefore, it increases or decreases accordingly and different index could be observed under different environments. The mean values for seed yield per plant under rainfed condition were reduced by 12.23 percent in P_{1S}, 19.62 percent in P_{2S}, 12.62 percent in F₁s, 11.41 percent in F₂s and 12.21 percent in F₃s. The detrimental effect of moisture stress in rainfed condition on seed yield was maximum through reduction in fruiting branches per plant, pods per plant, biological yield per plant and plant height (Table 4). Thus, these characters should be given more consideration while deciding selection criteria for rainfed condition. Under rainfed condition the poor seed yield of genotypes may be attributed to poor biomass production coupled with low harvest index. The results also revealed that the parents IPC-94-94, RSG-895 and CSJD-901 flowered earlier and also matured earlier, even in rainfed condition and imparted the early flowering and maturity even to their crosses. Cross IPC-94-94 x RSG-RSG-888 was observed to be earliest to flower and mature under both the conditions, which may be utilized for development of an early flowering and early maturing types. Although, a decrease in plant height was observed in all the generations in most of the crosses under rainfed condition but BG-362 was found to be least affected. BG-362 was observed to be tallest parent followed by RSG-888 and ICC-4958 under rainfed condition and imparted tallness to its crosses. Evaluation of performance across both the conditions revealed that bold seeded parents viz., ICC-4958, BG-362 and IPC-94-94 and their crosses had higher mean values for yield and yield contributing characters *viz.*, plant height, fruiting branches per plant, pods per plant, seeds per pod, biological yield per plant, harvest index and 100-seed weight even in rainfed condition indicated that these parents and crosses were least affected by moisture stress in rainfed and can be bred for drought tolerance. These findings support the findings of Kumar et al. (2004)^[12]. The highest

seed yield and harvest index were recorded in bold seeded parents IPC-94-94, ICC-4958 and BG-362 even in rainfed condition indicated that bold seeded genotypes generally showed higher degree of drought tolerance in comparison to medium seeded genotypes. Similar results also reported by Kumar *et al.* (2004) ^[12] and Yadav *et al.* (2004) ^[25]. Among

 F_{1s} the highest mean value for seed yield per plant was observed in RSG-888 x ICC-4958 followed by BG-362 x RSG-931 and IPC-94-94 x RSG-888 even in rainfed condition and these crosses may be utilized for development of high yielding variety for rainfed condition.

(%)									
Irrigated									
0.016									
0.622**									
0.023									
Rainfed									
0.005									
0.689**									
0.008									

*, ** Significant at 5 percent and 1 percent level, respectively.

 Table 2: Pooled analysis of variance of generation means for different characters in five crosses of chickpea over two environments (Irrigated and rainfed)

	Mean sum of squares									
Character/Cross	Rep./ Env.	Gener.	Env.	G x E	Error					
	(4 df)	(4 df)	(1 df)	(4 df)	(16 df)					
Days to 50% flowering										
RSG-895 x RSG-888	0.722	9.586**	412.799**	16.483**	1.504					
RSG-888 x ICC-4958	0.159	20.624**	208.086**	3.938*	1.096					
IPC-94-94 x RSG-888	0.466	428.814**	1320.254**	133.202**	3.384					
CSJD-901 x RSG-931	0.326	7.858**	265.083**	3.885*	0.816					
BG-362 x RSG-931	0.366	26.680**	40.756**	3.913**	0.741					
Days to maturity										
RSG-895 x RSG-888	0.766	20.391**	418.133**	7.868**	1.294					
RSG-888 x ICC-4958	1.312	30.251**	172.400**	11.586**	0.843					
IPC-94-94 x RSG-888	1.300	494.347**	580.800**	32.892*	8.508					
CSJD-901 x RSG-931	0.533	22.371**	224.079**	5.630**	0.867					
BG-362 x RSG-931	0.434	32.991**	73.299**	18.471**	1.683					
	Plan	nt height (cm)								
RSG-895 x RSG-888	0.121	41.525**	337.234**	11.768**	2.008					
RSG-888 x ICC-4958	1.812	24.789**	250.377**	28.089**	3.178					
IPC-94-94 x RSG-888	0.936	86.982**	43.056**	20.519*	4.311					
CSJD-901 x RSG-931	3.006	36.605**	121.874**	21.657**	2.540					
BG-362 x RSG-931	1.446	59.894**	318.220**	23.755*	5.010					
	Fruiting	branches per plant			-					
RSG-895 x RSG-888	0.565	17.083**	137.217**	6.903**	0.776					
RSG-888 x ICC-4958	0.983	18.536**	27.950**	6.496**	1.073					
IPC-94-94 x RSG-888	0.570	24.441**	24.300**	13.369**	0.991					
CSJD-901 x RSG-931	1.311	22.873**	19.976**	3.395*	0.738					
BG-362 x RSG-931	0.099	19.045**	11.371**	4.941**	0.441					
	Po	ds per plant								
RSG-895 x RSG-888	7.163	419.413**	973.674**	86.127**	9.789					
RSG-888 x ICC-4958	3.330	341.484**	650.164**	64.771**	7.821					
IPC-94-94 x RSG-888	2.256	251.215**	635.904**	52.686**	7.710					
CSJD-901 x RSG-931	8.139	224.393**	1152.828**	68.672**	10.861					
BG-362 x RSG-931	2.795	231.613**	555.212**	43.422**	8.834					
	Se	eds per pod								
RSG-895 x RSG-888	0.011	0.071**	0.033*	0.004	0.006					
RSG-888 x ICC-4958	0.004	0.150**	0.033	0.003	0.007					
IPC-94-94 x RSG-888	0.001	0.069**	0.039*	0.016*	0.005					
CSJD-901 x RSG-931	0.006	0.066**	0.035*	0.015*	0.005					
BG-362 x RSG-931	0.001	0.057**	0.017	0.004	0.004					
	Biological	l yield per plant (g)	· · · · · · · · · · · · · · · · · · ·							
RSG-895 x RSG-888	2.206	60.081**	191.572**	17.504**	2.564					
RSG-888 x ICC-4958	0.936	111.629**	385.137**	38.121**	2.276					
IPC-94-94 x RSG-888	0.787	54.584**	140.078**	29.749**	2.428					
CSJD-901 x RSG-931	2.351	30.553**	358.111**	28.498**	2.689					

https://www.thepharmajournal.com

BG-362 x RSG-931	1.716	90.519**	68.675**	24.570**	3.300			
Seed yield per plant (g)								
RSG-895 x RSG-888	1.125	25.269**	172.777**	10.524**	0.970			
RSG-888 x ICC-4958	0.726	62.193**	23.870**	6.248**	1.004			
IPC-94-94 x RSG-888	0.650	16.413**	9.509**	15.542**	0.978			
CSJD-901 x RSG-931	1.132	14.272**	62.400**	2.879*	0.606			
BG-362 x RSG-931	0.414	51.234**	19.018**	4.280*	1.328			
	Har	vest index (%)						
RSG-895 x RSG-888	5.879	96.939**	231.778**	37.386**	4.537			
RSG-888 x ICC-4958	1.553	123.058**	29.489**	25.721**	1.600			
IPC-94-94 x RSG-888	0.609	48.440**	132.806**	42.067**	1.310			
CSJD-901 x RSG-931	0.229	16.441**	30.724**	13.326**	1.944			
BG-362 x RSG-931	1.054	107.491**	17.328**	21.276**	1.497			
	100-	seed weight (g)						
RSG-895 x RSG-888	0.191	3.784**	1.152**	0.344*	0.077			
RSG-888 x ICC-4958	0.669	131.818**	14.658*	0.774	2.299			
IPC-94-94 x RSG-888	0.912	67.174**	8.175*	0.984	1.593			
CSJD-901 x RSG-931	0.144	4.718**	4.074**	1.753*	0.394			
BG-362 x RSG-931	0.913	78.924**	3.931*	0.563	0.796			
Protein content (%)								
RSG-895 x RSG-888	0.125	1.947**	1.298**	0.145	0.134			
RSG-888 x ICC-4958	0.035	3.075**	0.252*	0.111	0.045			
IPC-94-94 x RSG-888	0.057	8.523**	0.666**	0.241*	0.078			
CSJD-901 x RSG-931	0.113	2.610**	1.285**	0.823**	0.109			
BG-362 x RSG-931	0.037	1.288**	2.191**	0.505**	0.104			

 Table 3: Mean performance (mean±SE) of five generations in five chickpea crosses for different characters under irrigated (IRG) and rainfed (RF) conditions

Cross/Character	Env.	P 1	$\overline{\mathbf{P}}_2$	$\overline{\mathbf{F}}_{1}$	$\overline{\mathbf{F}}_2$	F ₃	
Days to 50% flowering							
DSC 905 - DSC 999	IRG	88.33±0.22	91.67±0.30	94.67±0.29	93.00±0.23	89.90±0.33	
K3G-895 X K3G-888	RF	83.67±0.16	86.67±0.18	82.64±0.22	83.17±0.11	84.33±0.11	
DSC 999 - ICC 4059	IRG	91.00±0.20	96.33±0.16	94.33±0.14	94.00±0.14	92.33±0.19	
KSG-888 X ICC-4958	RF	86.33±0.16	91.33±0.16	87.67±0.22	87.00±0.14	89.33±0.16	
DC 04 04 = DSC 999	IRG	65.67±0.34	91.00±0.33	87.00±0.20	87.67±0.30	88.33±0.16	
IPC-94-94 X K5G-888	RF	64.00±0.33	86.33±0.22	69.67±0.16	66.33±0.26	67.00±0.23	
CSID 001 - BSC 021	IRG	89.33±0.22	91.33±0.16	92.33±0.22	91.90±0.12	90.67±0.11	
C3JD-901 X K3G-931	RF	84.00±0.20	87.67±0.16	84.33±0.22	85.83±0.11	84.00±0.11	
BC 262 - BSC 021	IRG	96.67±0.16	92.33±0.16	94.33±0.16	95.33±0.16	93.67±0.16	
BG-302 X RSG-951	RF	94.00±0.20	87.33±0.16	93.00±0.20	93.67±0.11	92.67±0.11	
		Da	ys to maturity				
DSC 905 v DSC 999	IRG	137.33±0.32	134.67±0.32	139.33±0.28	138.67±0.43	135.67±0.23	
K30-893 X K30-888	RF	126.67±0.29	130.33±0.28	132.67±0.29	130.67±0.23	128.00±0.24	
DSC 888 - ICC 4058	IRG	134.67±0.32	142.33±0.32	137.00±0.31	138.00±0.22	136.33±0.23	
KSG-888 X ICC-4938	RF	129.33±0.28	133.33±0.28	135.67±0.29	134.03±0.23	132.00±0.23	
IDC 04 04 v DSC 999	IRG	109.67±0.69	134.67±0.44	124.00±0.48	125.00±0.50	127.67±0.38	
IPC-94-94 X K5G-888	RF	104.33±0.29	130.67±0.29	116.00±0.41	114.00±0.29	112.00±0.29	
CSID 001 v PSC 021	IRG	133.00±0.31	130.00±0.31	135.33±0.28	134.67±0.20	133.00±0.23	
CSJD-901 X KSG-931	RF	124.67±0.29	127.00±0.31	130.67±0.32	129.00±0.20	127.33±0.23	
BC 262 v BSC 021	IRG	139.67±0.28	130.63±0.33	133.33±0.32	134.00±0.22	135.67±0.29	
DO-302 X KSO-751	RF	130.67±0.29	127.67±0.41	133.67±0.29	132.33±0.23	133.33±0.23	
		Pla	nt height (cm)				
DSC 905 - DSC 999	IRG	57.97±1.08	53.87±1.15	62.13±0.90	61.00±0.98	54.80±0.98	
K30-893 X K30-888	RF	49.33±0.76	51.73±0.73	53.93±0.99	52.33±0.66	48.92±0.55	
DSG 888 v ICC 4058	IRG	53.13±0.85	62.07±1.44	57.40±1.17	59.23±0.73	61.17±0.85	
K30-888 x ICC-4958	RF	51.87±0.70	49.60±0.77	54.67±0.73	52.82±0.71	55.15±0.59	
IDC 04 04 v DSC 888	IRG	42.77±1.08	53.90±0.95	48.37±0.92	50.23±0.84	51.90±0.70	
II C-94-94 X KSU-888	RF	41.77±0.77	51.57±0.76	50.20±0.79	48.05±0.76	43.60±0.48	
CSID 001 x PSC 031	IRG	49.53±0.70	54.73±0.60	58.40 ± 0.89	56.45±0.96	51.23±0.70	
C3JD-901 X K3C-931	RF	48.43 ± 1.40	46.57±0.76	52.10±0.85	50.92±0.51	52.17±0.54	
BC 262 v BSC 021	IRG	59.27±0.91	55.17±0.97	62.20±0.93	60.45±0.76	62.93±0.75	
BU-302 X KSU-931	RF	58.47±0.66	47.33±0.87	55.27±0.85	55.18±0.71	51.20±0.68	
Fruiting branches per plant							
RSG-805 + PSC 888	IRG	12.57±0.58	15.07±0.56	18.33±0.61	17.68±0.47	14.77±0.57	
NOU-07J A NOU-080	RF	8.80±0.57	12.23±0.48	11.73±0.34	11.28±0.38	12.98±0.47	
RSG-888 x ICC-4958	IRG	15.33±0.86	12.27±0.57	17.83±0.58	16.67±0.44	18.58±0.59	

https://www.thepharmajournal.com

			1		r	
	RF	12.04±0.58	14.03±0.77	14.97±0.60	13.97±0.45	16.02±0.37
	IDC	11 83+0 61	15.07+0.50	18 53+0 78	16 78+0 57	12 37+0 46
IPC-94-94 x RSG-888	IKU	11.85±0.01	13.97±0.39	18.55±0.78	10.78±0.37	12.37±0.40
	RF	$10.0/\pm0.77$	12.97±0.49	14.17±0.81	13.62±0.42	15.65±0.45
	IRG	12.10 ± 0.70	16.03±0.92	18.63±0.63	16.43±0.60	13.20±0.56
CSJD-901 x RSG-931	RF	11 93+0 46	13 47+0 54	14 90+0 52	15 13+0 51	12 80+0 41
		12.20+0.70	15.70+0.72	19.47.0.61	17.22.0.02	10.22 0 50
BG-362 x RSG-931	IKG	13.30±0.70	15./0±0./2	18.4/±0.61	17.32±0.63	19.33±0.50
DG 502 x RSG 551	RF	15.30±0.92	13.37±0.55	16.60±0.59	15.37±0.68	17.32±0.47
		Р	ods per plant			
	IDC	42 20+2 62	56 60+2 45	65 67+2 05	62 75+2 20	44.70+2.57
RSG-895 x RSG-888	IKU	42.30±2.02	J0.00±2.4J	03.07±2.03	02.73±2.30	44.70±2.37
	RF	32.87±1.39	37.47±1.28	49.03±1.35	50.63±1.67	45.05±1.94
DCC 899 100 4059	IRG	58.93±1.25	51.57±1.39	65.43±1.58	63.28±1.52	69.68±1.88
RSG-888 X ICC-4958	RF	38 40+1 61	48 37+1 56	57 20+1 72	55 72+2 02	62 65+1 93
		47.27.1.24	57.20 ±1.67	62.52 1.12	<u>60.17,1.06</u>	65.52 1.75
IPC-94-94 x RSG-888	IKG	47.37±1.34	57.30±1.07	03.33±1.41	00.1/±1.80	05.55±1.45
	RF	45.73±1.11	39.33±1.52	56.60±1.33	51.00±1.53	55.20±1.50
	IRG	52.13±1.51	57.20±1.52	65.90±1.75	61.37±1.98	51.23±1.90
CSJD-901 x RSG-931	DE	34.03+1.50	41 27+1 01	47 20+1 73	55 67+2 00	16 77±1 57
		54.95±1.59	41.2/±1.91	47.20±1.75	55.07±2.09	40.77±1.37
BG-362 v BSG-931	IRG	50.90±1.08	57.83±1.42	64.80±1.81	61.58±2.00	67.65±1.72
DO-302 X KSO-931	RF	49.80±2.28	41.73±2.79	56.67±1.91	51.52±3.23	60.02±1.74
		S	eeds ner nod			
	IDC	1 77 . 0 10	1.65 . 0.00	1.00.10	1 (0.007	1 45 . 0 07
RSG-895 x RSG-888	IKG	1.//±0.10	1.05±0.09	1.00±0.10	1.08±0.07	1.45±0.07
	RF	1.80 ± 0.08	1.65 ± 0.07	1.79±0.06	1.75 ± 0.01	1.55 ± 0.06
	IRG	1.68±0.09	1.30±0.08	1.45±0.08	1.47±0.08	1.28±0.07
RSG-888 x ICC-4958	DE	1 70±0.06	1 37+0.00	1 58±0.02	1 55±0.05	1 36±0.05
		1.70±0.00	1.32±0.08	1.30±0.03	1.33±0.03	1.30±0.03
IPC-94-94 x RSG-888	IRG	1.57 ± 0.08	1.67±0.10	1.77±0.09	1.67±0.09	1.88±0.08
II C 77-77 A INSU-000	RF	1.49 ± 0.07	1.73±0.07	1.55±0.06	1.65 ± 0.07	1.78±0.06
	IRG	1 97+0 06	1 67+0 08	1 71+0 08	1 79+0 07	1 59+0 07
CSJD-901 x RSG-931		1.72+0.10	1.07±0.00	1.71:0.05	1.72:0.05	1.57 0.07
	КГ	1.75 ± 0.10	1.08±0.07	1./1±0.05	1.72±0.05	1.54±0.00
PC 262 v PSC 021	IRG	1.79 ± 0.10	1.66 ± 0.09	1.68 ± 0.10	1.71±0.06	1.55 ± 0.05
DU-302 X K3U-931	RF	1.80 ± 0.07	1.67 ± 0.06	1.59 ± 0.08	1.61 ± 0.06	1.49 ± 0.06
		Biologic	al viold por plant (a	n)		
	ma	Diologica	ai yielu per plant (g	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		24.52 1.20
RSG-895 x RSG-888	IRG	34.92±1.32	39./4±1.09	43.41±1.33	41.11±1.11	34.52±1.30
KBG-075 X KBG-000	RF	34.77±1.03	30.13±1.23	37.44±1.31	35.68±1.02	30.41±1.23
	IRG	39 41+1 47	44 99+1 39	50 56+1 74	48 32+1 09	40 72+1 50
RSG-888 x ICC-4958	DE	20.07 1.07	24.69 1.61	41 61 1 40	20.20+0.02	42.52+1.00
	KF	30.0/±1.0/	34.08±1.01	41.01±1.49	39.29±0.92	42.52±1.00
IDC 04 04 v PSC 888	IRG	35.30±1.01	39.39±1.27	44.71±1.21	43.27±0.92	36.46±1.01
IFC-94-94 X K50-000	RF	34.44±0.72	30.41±1.01	38.91±1.62	35.82±0.71	37.94±0.71
	IRG	34 51+1 37	38 28+0 85	42 38+1 17	38 11+1 25	41 35+0 97
CSJD-901 x RSG-931	ING	34.31±1.37	36.26±0.65	42.30±1.17	36.11±1.25	41.55±0.77
	KF	29.09±0.81	34.55±1.13	32.49±1.30	35.52±0.95	28.43±0.76
	IRG	34.63±1.20	39.00±1.34	43.26±1.37	44.46±1.25	47.61±1.25
BG-362 x RSG-931	RF	38 35+1 51	33 38+1 45	40 92+1 58	38 27+1 59	42.91+0.85
	nu	Sold Sand		10.92_1.50	30.27 11.37	12.91_0.05
		Seeu y	field per plant (g)		10.10.0.11	ao (a o za
RSG-895 x RSG-888	IRG	14.02±0.64	17.31±0.56	20.14±0.54	18.63±0.66	20.43±0.72
	RF	11.25±0.72	13.35±0.65	16.35±0.68	14.60 ± 0.48	10.98±0.58
	IRG	17.85+0.89	15.58+0.58	22.44+0 57	20.73+0.67	22.43+0.67
RSG-888 x ICC-4958	DE	12.67 1 40	15.97+0.65	20.80+0.02	10.10+0.57	21.40+0.62
	КГ	12.0/±1.40	13.0/±0.03	20.09±0.92	19.19±0.37	21.49±0.02
IPC-94-94 v RSG-888	IRG	15.43±0.65	17.98±0.72	20.24±0.52	19.08±0.47	15.98±0.54
II C-74-74 A KOU-000	RF	16.38±0.49	12.53±0.72	18.63±0.97	16.63±0.43	18.91±0.46
	IRG	13,93+0.75	16.14+0.62	18.50+0.52	15.09+0.72	13,95+0.60
CSJD-901 x RSG-931		11.01.0.27	10.02.0.67	1276.075	14.02:0.55	11.00.0.42
	КГ	11.01±0.37	12.95±0.0/	13./0±0./3	14.25±0.33	11.20±0.43
PC 262 v PSC 021	IRG	15.04±0.53	16.87±0.62	20.95±0.63	20.00±0.61	21.91±0.65
BU-302 X KSU-931	RF	15.63±0.77	12.74 ± 0.82	19.73±0.75	18.21±0.86	20.50±0.51
		Har	west index (%)			
	IDC	20.02+1.12	11 67 1 1 17	19 64 1 40	16 15 1 02	51 70 1 20
RSG-895 x RSG-888	IKG	39.03±1.13	44.0/±1.1/	48.04±1.42	40.45±1.85	51./0±1.30
	RF	34.33±1.22	41.55±1.34	46.14±1.44	43.35±1.17	37.33±1.00
	IRG	45,29+1.13	38,96+1.55	49,25+0.94	47.85+1.68	52,50+1.34
RSG-888 x ICC-4958	DE	<u>41 44+1 13</u>	16 13+1 80	52 74+1 03	50 12+1 02	53 04+0 04
		41.25.0.05	44.14.0.72	J2.74±1.03	JU.12±1.02	JJ.04±0.94
IPC-94-94 x RSG-888	IRG	41.35±0.86	44.14±0.72	4/.68±1.16	4/.08±1.11	41.15±1.32
$\mathbf{n} \subset \mathbf{\lambda} \mathbf{T}^{-} \mathbf{\lambda} \mathbf{T} \mathbf{N} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$	RF	47.56±1.66	41.21±1.44	51.88±0.80	49.17±0.66	52.62±0.92
	IRG	40.36+1.41	42,16+1 37	45.82+1.04	44,24+0.63	40.61+0 57
CSJD-901 x RSG-931	DE	10 61+0 96	37 12+1 20	12 25+0 49	10.06±0.79	12 60+0 50
		40.04±0.80	J1.42±1.30	42.33±0.08	40.00±0.78	42.00±0.39
BG-362 v RSG-031	IRG	39.97±1.43	43.26±1.17	48.43±1.37	46.02±0.94	48.04±0.73
DO-302 A NOU-731	RF	44.22±1.04	38.17±0.91	50.70±1.06	48.86±0.68	51.37±0.66
100-seed weight (g)						
	IDC	17 44 0 54	15.96+0.44	17 20 - 0.49	17.00 + 0.47	18 20 - 0.51
RSG-895 x RSG-888	IKG	17.44±0.54	13.80±0.44	17.20±0.48	1/.00±0.4/	16.20±0.51
	RF	16.28±0.45	15.76±0.76	17.30±0.66	16.60±0.46	17.80±0.44
	IRG	15.87±0.48	28.72±0.58	26.25±0.63	25.46±0.54	26.48±0.65
KSG-888 x ICC-4958	RE	15 68+0 73	27 19+0 80	24 13+0 61	23 93+0 12	24 86+0 36
	1/1	10.00±0.75	21.17±0.07	27.13±0.01	23.75±0.42	27.00±0.00

https://www.thepharmajournal.com

	IRG	25.56±0.70	15.99±0.47	23.32±0.65	22.56±0.65	23.41±0.40			
IPC-94-94 X KSG-888	RF	23.55±0.49	15.74±0.71	22.50±0.76	22.20±0.31	21.63±0.35			
CSID 001 # BSC 021	IRG	16.79±0.42	15.41±0.37	17.50±0.27	17.14±0.37	17.80±0.27			
CSJD-901 X KSG-951	RF	14.38±0.68	15.99±0.58	16.68±0.62	16.48±0.27	17.43±0.50			
PG 262 v PSG 021	IRG	23.65±0.52	15.71±0.75	24.83±0.43	24.22±0.38	24.47±0.21			
BU-302 X KSU-931	RF	23.01±0.73	15.82±0.52	24.01±0.61	23.56±0.37	22.86±0.40			
	Protein content (%)								
RSG-895 x RSG-888	IRG	18.56±0.14	17.19±0.14	17.58±0.14	17.29±0.10	16.99±0.14			
	RF	18.69±0.14	17.22±0.14	18.19±0.14	17.99±0.10	17.60±0.10			
RSG-888 x ICC-4958	IRG	17.13±0.14	18.50±0.15	19.38±0.14	18.38±0.10	18.43±0.10			
	RF	17.44±0.14	18.91±0.14	19.09±0.14	18.59±0.10	18.70±0.10			
	IRG	20.63±0.14	17.50±0.15	18.56±0.15	18.25±0.10	17.50±0.10			
IPC-94-94 X KSO-888	RF	20.69±0.14	17.69±0.14	18.66±0.15	18.38±0.10	18.51±0.10			
CSJD-901 x RSG-931	IRG	20.00±0.14	17.50±0.14	18.44 ± 0.14	18.19±0.13	18.63±0.10			
	RF	19.82±0.13	19.18±0.14	18.43±0.14	18.60 ± 0.10	18.80±0.10			
PC 262 v PSC 021	IRG	19.69±0.14	17.75±0.14	18.98±0.14	18.63±0.10	18.19±0.12			
DU-302 X KSU-931	RF	19.50±0.14	19.09±0.14	19.17±0.14	19.25±0.10	18.93±0.10			

Table 4: Percent decrease in the mean performance of different characters under rainfed condition as compared to irrigated condition

Characters	P _{1S}	P ₂₈	F ₁ s	F ₂ s	F ₃ s
Days to 50% flowering	4.41	5.04	9.80	9.94	8.26
Days to maturity	5.91	3.47	3.04	4.52	5.34
Plant height (cm)	4.87	11.77	7.74	9.77	10.99
Fruiting branches per plant	10.73	11.95	21.15	18.27	4.44
Pods per plant	19.83	25.79	18.02	14.43	9.74
Seeds per pod	2.98	-1.3	0.63	0.44	0.42
Biological yield per plant (g)	6.74	18.99	14.69	14.26	9.19
Seed yield per plant (g)	12.23	19.62	12.62	11.41	12.21
Harvest index (%)	-1.06	3.95	-1.66	0.04	-1.26
100-Seed weight (g)	6.45	1.30	4.11	3.39	5.24
Protein content (%)	-0.14	-4.13	-0.65	-2.29	-3.12

Note:- Minus (-) indicates that there was slight increase in the mean values of these characters

4. Conclusion

On the basis of the findings of this experiment it is concluded that there is differential influence of moisture stress on different quantitative characters because characters like seeds per pod and 100-seed weight were not affected significantly whereas pods per plant, seed yield per plant, biological yield per plant, fruiting branches per plant were affected the most by moisture stress. Therefore it is suggested that more consideration should be given to the characters like pods per plant, fruiting branches per plant, biological yield per plant and plant height given while deciding selection criteria for rainfed condition while selection for seed weight and seeds per pod can be exercised at any stage of generation advancement due to their stable nature and high heritability. The highest seed yield and harvest index were recorded in bold seeded parents IPC-94-94, ICC-4958 and BG-362 even in rainfed condition indicated that bold seeded genotypes generally showed higher degree of drought tolerance in comparison to medium seeded genotypes.

5. References

- 1. FAOSTAT. Food and Agriculture Organization (FAO), Rome, Italy, 2019. Statistical database; Online reference http:// faostat.fao.org/site
- Korbu L, Tafes B, Kassa G, Mola T, Fikre A. Unlocking the genetic potential of chickpea through improved crop management practices in ethiopia a review. Agronomy for Sustainable Development, 2020, 40(2). https://doi.org/10.1007/s13593-020-00618-3
- 3. Anonymous. INDIASATAGRI: Socio-Economic Statistical Information about Agriculture in India, 2022.

https://www.indiastatagri.com/table/agriculture/selectedstate-wise-area-production-productivity-g/1409248

- 4. Dhiman N, Yadav SS, Kumar J, singh D, Mohan J. Effect of moisture stress on agronomic and morphophysiological traits in chickpea. Indian J. Pulses Res. 2006;19(2):197-200.
- Kumar P, Boora KS, Kumar N, Batra R, Goyal M, Sharma KD *et al.* Traits of significance for screening of chickpea (*Cicer arietinum* L.) genotypes under terminal drought stress. Journal of Agrometeorolog. 2018;20(1):40-45.
- Turner NC, Wright GC, Siddique KHM. Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy. 2001;71:193-271. https://doi.org/10.1016/S0065-2113 (01) 71015-2
- Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L *et al.* Genetic dissection of drought tolerance in chickpea (*Cicer arietinum* L). Theoretical and Applied Genetics. 2014;127:445-462. https://doi.org/10.1007/s00122-013-2230-6.
- Daryanto S, Wang L, Jacinthe PA. Global synthesis of drought effects on food legume production. PLOS ONE, 10, e012740. 2015. https://doi.org/10.1371/journal.pone. 0127401.
- 9. Pang J, Turner N, Khan T, Du YL, Xiong JL, Colmer T, *et al.* Response of chickpea (*Cicer arietinum* L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany. 2017;68(8):1973-1985.
- 10. Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X *et al.* Research progress and perspective on drought stress in

legumes: A review. International Journal of Molecular Sciences, 2019, 20(10).

https://doi.org/10.3390/ijms20102541.

- Nayyar H, Kaur S, Singh S, Upadhyaya HD. Differential sensitivity of desi (small-seeded) and kabuli (largeseeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. Journal of the Science of Food and Agricultur. 2006;86(13):2076–2082. https://doi.org/10.1002/jsfa.2574.
- 12. Kumar J, Yadav SS, Kumar S. Influence of moisture stress on quantitative characters in chickpea (*Cicer arietinum* L.). Indian J. Genet. 2004;64(2):149-150.
- 13. Meena HS, Kumar J, Deshmukh PS. Genetic variability and correlation studies for traits related to drought tolerance in chickpea (*Cicer arietinum* L.). Indian J. Genet. 2006;66(2):140.
- Krishnamurty L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V *et al.* Large genetic variation for heat tolerance in the reference collection of chickpea (*Cicer arietinum* L.) germplasm. Plant Gen. Research. 2011;9(1):59-69.
- 15. Mishra S, Babbar A. Selection strategies to assess the promising kabuli chickpea promising lines under normal and heat stress environments. Electronic J. of Plant Breeding. 2014;5(2):260-267.
- 16. Quisenberry JE. Breeding for drought resistance and plant water efficiency. In: Breeding Plants for Less Favorable Environments'. (Eds. Christiansen MN and Lewis, CP John Wiley Publishers: New York), 1982.
- 17. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers. II Edition. Indian Council of Agricultural Research, New Delhi, 1985.
- 18. Snedecor GW, Cochran WG. Statistical methods. The Iowa state University Press, Iowa, USA, 1968.
- Rao YK, Durga KK, Reddy MV. Performance of chickpea genotypes under irrigated and unirrigated conditions. International Chickpea Conference, Raipur, India, 2003, 31.
- 20. Shane DV, Mhase LB, Jamadagni BM. Performance of desi and kabuli chickpea genotypes under irrigated and rainfed conditions. International Chickpea Conferance, Raipur, India, 2003, 92.
- Turner NC, Leport L, Siddique KHM. Adoption of chickpea to drought. International Chickpea Conferance, Raipur, India, 2003, 84.
- 22. Ozgun OS, Beer BT, Sakar D. Agronomic and morphological characters of chickpea under irrigated conditions in Turkey. International Journal of Agriculture and Biology. 2004;6(4):606-610.
- 23. Sanap MM, Mungse HB, Deshmukh DV. Growth and yield variation in chickpea for drought tolerance. Journal of Maharastra Agricultural Universities. 2004;29(2):143-145.
- 24. Meena HP, Kumar J, Ramesh M. Evaluation of the reaction of chickpea (*Cicer arietinum* L.) genotypes to drought conditions using various stress tolerance indices. Legume Res. 2014;37(5):453-459.
- 25. Yadav SS, Kumar J, Turner NC, Berger J, Redden R, Mc Neil D *et al.* Breeding for improved productivity, multiple resistance and wide adaptation in chickpea (*Cicer arietinum* L.). Plant Genetic Resources: Characterization and utilization. 2004;2(3):181-187.