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Abstract 
Hydrogel products are a class of polymeric materials with a hydrophilic structure that allows them to 

store huge amounts of water in three-dimensional networks. The presence of hydrophilic groups such as 

NH2, COOH, OH, CONH2, -CONH-, and -SO3H, as well as the capillary effect and osmotic pressure, 

contribute to the network's hydrophilicity. Weaker forces, like van der Waals forces and hydrogen bonds, 

can frequently act as cross-links, resulting in swelling networks that behave like hydrogels. Depending on 

their physical and chemical structure, hydrogels can be classified in a variety of ways. Material scientists 

and biological researchers continue to be fascinated by hydrogels today, and significant progress has 

been made in terms of formulations and applications. However, many articles and technical studies 

dealing with hydrogel products from an engineering standpoint were investigated to provide a broad 

overview of the technological features of this rapidly expanding interdisciplinary field of study. The 

major goal of this paper is to examine the literature on the technologies used in the creation, 

categorization, and use of hydrogels. 
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Introduction 

The materials of interest in this brief overview are hydrogels, which are polymer networks that 

have been swelled with water. Hydrophilic gels, also known as hydrogels, are polymer chains 

that are occasionally found as colloidal gels and have water as their dispersion medium 

(Ahmed et al., 2013) [3]. 

The network's hydrophilicity is attributable to the presence of hydrophilic groups such as NH2, 

COOH, OH, CONH2, -CONH-, and -SO3H, as well as the capillary effect and osmotic 

pressure (Dergunov & Mun, 2009) [11]. The hydrophilic functional groups connected to the 

polymeric backbone give hydrogels their capacity to absorb water, while cross-links between 

network chains give them their resistance to disintegration. The term "hydrogel" encompasses 

a wide range of materials, both natural and man-made. 

Hydrogels have been characterized in a variety of ways by scientists throughout the years. The 

most prevalent is a hydrogel, which is a water-swollen, cross-linked polymeric network made 

by a simple reaction of one or more monomers. Another description is a polymeric substance 

that can expand and hold a substantial amount of water inside its structure but will not dissolve 

in water. Due to their remarkable promise in a wide variety of applications, hydrogels have 

gotten a lot of attention in the last 50 years (Li Yuhui et al., 2013).  

A variety of "classical" chemical methods can be used to make hydrogels. These include one-

step procedures such as polymerization and parallel cross-linking of multifunctional 

monomers, as well as multi-step procedures involving the synthesis of reactive polymer 

molecules and their subsequent cross-linking, possibly by reacting polymers with suitable 

cross-linking agents. The polymer engineer may create polymer networks with molecular-scale 

control over the structure, such as cross-linking density, and custom attributes, such as 

biodegradation, mechanical strength, and chemical and biological reaction to stimuli (Burkert 

et al., 2007) [9] 
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Classification of hydrogels  

 

 
 

Fig 1: Classification of hydrogels 

 

On the basis of origin 

Natural polymers forming hydrogels 

These hydrogels are nontoxic, biocompatible, and 

biodegradable. They do, however, have poor mechanical 

quality, and batch variation may result in poor reproducibility 

(Paleos, 2012; Kirchmajer et al., 2012) [41, 24]. 

 

Synthetic hydrogels 

Synthetic hydrogels are cross-linked polymers produced 

under controlled conditions using the addition reaction or 

ring-opening polymerization. Polyacrylic acid and its 

derivatives (Pan et al., 2019) [42], polyvinyl alcohol (Guo et 

al., 2019) [17], polyethylene glycol and its copolymers (Guo et 

al., 2019) [17], and polyvinylpyrrolidone (Ma et al., 2016), 

among others, are commonly utilised as skeletons in the 

manufacture of synthetic hydrogels.  

 

On the basis of composition 

Hydrogels are categorised into four types based on their 

polymer composition: (1) homopolymeric hydrogels, (2) 

copolymeric hydrogels, (3) semiinterpenetrating networks 

(semi-IPNs), and (4) IPNs (Ahmed, 2015) [2]. 

 

Homopolymeric hydrogel 

Homo-polymers are polymer networks formed from a single 

monomer species. It serves as the fundamental structural unit 

in any polymer network (Lizawa et al., 2007). Among natural 

polymers, cellulose hydrogel is an example of a 

homopolymeric hydrogel produced using a one-step 

polymerization procedure in which cellulose is dissolved in a 

urea/NaOH solution. As a cross-linker, epichlorohydrin is 

added, resulting in a translucent hydrogel. 

 

Copolymeric hydrogel 

Co-polymeric hydrogels are made up of two types of 

monomers, one of which is hydrophilic. For the development 

of drug delivery systems, Gong et al., (2009) [16] created a 

biodegradable triblock poly (ethylene glycol)-poly 

(caprolactone)-poly (ethylene glycol) (PECE) co- polymeric 

hydrogel.  

 

Semiinterpenetrating network  

A semi-IPN is formed when one polymer is linear and 

penetrates another cross-linked network with no additional 

chemical linkages between them (Ahmed, 2015) [2]. In this 

case, one polymer is crosslinked while the other is not. 

Polymer blends are formed when the component linear or 

branched polymers can be isolated from the constituent 

polymer networks without breaking chemical connections. 

 

Interpenetrating network IPNs  

Conventionally, this is described as the intimate combination 

of two polymers in which at least one monomer is 

polymerized or cross-linked in the presence of the other. A 

common process is immersing a prepolymerized hydrogel in a 

monomer and initiator solution. The interlocking structure of 

the cross-linked IPN components increases the bulk and 

surface morphology stability. IPN creation may be used to 

create moderately dense hydrogel matrices with stiffer and 

harsher mechanical characteristics. IPN hydrogels distribute 

drugs more efficiently than traditional hydrogels (Singh et al., 

2017; Ullah et al., 2015; Paleos, 2012; Garg & Garg, 2016; 

Manya et al., 2016; Das, 2013; Morkhande, 2016) [41, 46, 48, 35, 

10]. 

 

On the basis of charge 

Hydrogels are classified into five categories based on the sort 

of charges present on the polymer network (Paleos, 2012; 

Mahinroosta et al., 2018) [41]. 

1. Nonionic (neutral) substances such as dextran, agarose, 

and pullulan; 

2. Anionic substances like carrageenan 

3. Cationic substances, such as chitosan; 

4. Amphoteric electrolyte collagen 

5. Polybetaines with zwitterionic properties, such as 

polyanionic xanthan and polycationic chitosan (Ahmed, 

2015; Singh et al., 2017) [2, 46] 

 

On the basis of cross linking 

Physical hydrogels 

Physical hydrogels are three-dimensional networks created by 

noncovalent interactions (secondary bonds) between linear 

molecules that generate physical cross-linking joints, such as 

electrostatic contact, hydrogen bonding, chain entanglement, 

and hydrophobic interaction (Pan et al., 2019; Lin et al. 2019) 

[42]. Physical hydrogels frequently exhibit reversible solgel 

conversion because relatively low energies are required to 

disrupt the physical connections between the molecules (Feng 

et al., 2018) [14]. There is no chemical reaction required in 

their manufacture, and the circumstances are generally 

moderate, making them suitable for biological applications 

(Liu et al., 2019). 

 

Chemical hydrogels 

Chemical cross-linking between molecules forms chemical 

hydrogels, and this cross-linking is irreversible. Chemical 

hydrogels often feature stable qualities, adjustable 

architectures, excellent mechanical properties, and so forth 

(Nada et al., 2019; Matsumoto et al., 2015) [36, 34]. 
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On the basis of physical state 

Solid hydrogels  

Solid hydrogels are generally chemically cross-linked and 

solid at ambient temperature, but they may swell in aqueous 

environments such as water, buffer solutions, and biological 

fluids. Because they can imitate the physical, chemical, 

electrical, and biological characteristics of most biological 

tissues, they may be employed to make hydrogels for 

biomedical, environmental, and ecological purposes. The 

inclusion of nanoparticles into the polymer matrix improves 

mechanical characteristics. For example, methacrylate gelatin 

reinforced with multiwalled COOH-functionalized carbon 

nanotubes (CNTs) and gelatin-collagen modified with 

bioactive glass nanoparticles for cardiac tissue engineering 

are two examples (Varaprasad et al., 2017; Shin et al., 2011) 

[49, 45].  

  

Semisolid hydrogels  

Semisolid hydrogels are distinguished by their adhesive 

interactions with interfacial (van der Waals, hydrogen bonds, 

and electrostatic) forces and soft-tissue networks. Because of 

their bioadhesive feature, these hydrogels are also known as 

bioadhesive or mucoadhesive hydrogels. They have 

applications in the biomedical field for extended medication 

administration and effective dosing (Varaprasad et al., 2017; 

Nep et al., 2011) [49, 37]. This category includes hydrogels 

made from the natural polysaccharide sterculia gum and poly 

(vinylpyrrolidone) (both of which are biological in nature). A 

hydrogel based on starch nanocrystals was recently created 

for transdermal application (Nep et al., 2011) [37].  

  

Liquid hydrogels 

Liquid hydrogels, as the name implies, are in a liquid phase at 

normal temperature but have a soft tissue-like elastic phase 

with acceptable functionality at a particular temperature. 

These hydrogels are injectable and have a wide range of 

biomedical applications. This category includes high 

mannuronic alginate hydrogels used for wound dressing in 

cutaneous wound healing. A smart injectable hydrogel made 

of microbial TG and human-like collagen could be used as a 

soft material for skin tissue creation. Keratinsilica hydrogel 

can be used as a dressing material (Varaprasad et al., 2017) 

[49]. 

 

Technologies adopted in hydrogel preparation 

Bulk polymerization 

For the synthesis of hydrogels, a variety of vinyl monomers 

can be used. With one or more kinds of monomers, bulk 

hydrogels may be made. Because of the large number of 

monomers available, it is possible to make a hydrogel with 

the appropriate physical qualities for a particular application. 

Any hydrogel formulation typically contains a tiny amount of 

cross-linking agents. Radiation, UV, or chemical catalysts are 

commonly used to start the polymerization reaction. 

Bulk polymerization is the most straightforward method, 

requiring only monomer and monomer-soluble initiators. The 

high concentration of monomer results in a high rate and 

degree of polymerization. However, when the conversion 

produces heat during polymerization, the viscosity of the 

process increases significantly. Controlling the response at 

low conversions can help to avoid these difficulties 

(Kiatkamjornwong et al., 2007) [23]. 

 

Solution polymerization/cross-linking 

The ionic or neutral monomers are combined with the 

multifunctional cross-linking agent in solution 

copolymerization/cross-linking operations. UV irradiation or 

a redox initiator system are used to start the polymerization 

process. The existence of a heat sink in the form of a solvent 

is the primary benefit of solution polymerization versus bulk 

polymerization. 

To eliminate the monomers, oligomers, cross-linking agents, 

initiator, soluble and extractable polymers, and other 

contaminants from the produced hydrogels, wash them with 

distilled water. When the amount of water added during 

polymerization is greater than the water content 

corresponding to equilibrium swelling, phase separation 

occurs and a heterogeneous hydrogel is created. 

Water, ethanol, water-ethanol mixes, and benzyl alcohol are 

common solvents for the solution polymerization of 

hydrogels. After the gel has been formed, the synthesis 

solvent can be eliminated by swelling the hydrogels in water. 

 

 
 

Fig 2: Hydrogel synthesis by solution polymerization 
 

Suspension polymerization or inverse-suspension 

polymerization 

Because the products are produced as powder or microspheres 

(beads), dispersion polymerization is a convenient process 

because it eliminates the need for grinding. The 

polymerization is known as "inverse suspension" because it 

uses the water-in-oil (W/O) method rather than the more 

typical oil-in-water (O/W). 

In this approach, the monomers and initiators are 

disseminated as a homogeneous mixture in the hydrocarbon 

phase. The resin particle size and form are primarily 

determined by the viscosity of the monomer solution, 

agitation speed, rotor design, and dispersant type (Ogata et 

al., 2006) [39]. There have already been some comprehensive 

talks on heterophase polymerizations published. Because the 

dispersion is thermodynamically unstable, it requires constant 

agitation as well as the inclusion of a low hydrophilic-

lipophilic–balance (HLB) suspending agent 
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Fig 3: Hydrogel synthesis by suspension polymerization 
 

Grafting to a support 

Hydrogels made by bulk polymerization have a fragile 

structure by nature. A hydrogel's mechanical characteristics 

can be improved by grafting it onto a stronger support 

surface. This process includes generating free radicals on a 

stronger support surface and then polymerizing monomers 

directly onto it, resulting in a covalently bound chain of 

monomers. Through grafting procedures, a variety of 

polymeric supports have been employed to synthesize 

hydrogels (Talaat et al., 2008; Qunyi et al., 2005) [47, 43]. 

 

Polymerization by irradiation 

High-energy ionizing radiation, such as gamma rays (Karadao 

et al., 2001) and electron beams (Ajji et al., 2008) [5], has been 

employed as an initiator to generate unsaturated chemical 

hydrogels. Irradiating an aqueous polymer solution causes 

radicals to develop on the polymer chains. In addition, the 

radiolysis of water molecules produces hydroxyl radicals that 

attack polymer chains and produce macro-radicals. 

  

Applications of hydrogels 

 
 

Fig 4: Hydrogel applications 
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Wound dressings 

A wound is an injury that occurs in human tissues, either 

inside or outside, primarily in the skin, as a result of trauma, 

cutting, or other damage (Basu et al., 2017) [7]. Hydrogels are 

excellent wound dressings because they provide a moist 

environment at the wound site, aid in the removal of wound 

exudates, prevent infection, and promote tissue regeneration 

(Gupta et al., 2011) [19]. Anti-bacterial and anti-inflammatory 

hydrogels have a positive influence in wound dressing 

applications. A wound healing multifunctional and pH-

responsive composite hydrogel consisting of carboxylated 

agarose and tannic acid that is ionically crosslinked using zinc 

salts (Ninan et al., 2016) [38]. 

 

 
 

Fig 5: In comparison to the control, drug-loaded thiolated PEG hydrogel improved diabetic skin wound healing (Ninan et al., 2016) [38] 
 

Biotechnology application 

Hydrogels have been employed in sensors to achieve desired 

hardness, elasticity, selective analyte diffusion, and refractive 

indices. Smart hydrogels have been used to concentrate dilute 

aqueous solutions of macromolecular solutes, such as proteins 

and enzymes, without disrupting the enzyme's function by 

altering the temperature or pH of the environment based on 

the size and net charge of the macromolecular solutes (El-

Mohdy et al., 2008) [1]. Smart hydrogels in solutions can work 

as purification devices because they can reversibly expand 

and contract in response to a tiny change in the environment. 

The use of hydrogels like agarose and calcium alginate gels to 

immobilize adsorbents prevents fouling by colloidal 

pollutants. By modifying their swelling behavior, hydrogels 

have been used to modulate substrate reactions with 

immobilized enzymes (Overstreet et al., 2013) [40]. 

 

Potential food applications 

 
Table 1: Applications of Protein-Polysaccharide combinations 

  

Hydrogels Form Application References 

Pectin/Chitosan coatings Coating for crop protection Aider et al.,2010 [4] 

Cane bagasse/ Gelatin Films Self-fertilizing biofilms Farris et al.,2009 [13] 

Cellulose/Starch Films Food packaging Muller et al.,2009 

Starch/Zein Films Inner packaging Leroy et al.,2012 [25] 

Whey protein/Methylcellulose Films Moisture sensitive packaging Baldwin et al.,2011 [6] 

Pectin/Beta-lactoglobulin Films Food wrapping Scrinis et al.,2013 [44] 

 

Edible films 

The traditional edible films prepared by SNs usually have low 

mechanical strength, weak hindrance against gases and 

vapors, as well as poor water resistance properties (Yadav et 

al., 2019) [50]. To solve this problem, IPN-based edible films 

such as KGM-CS (Du, Yang, Ye, & Li, 2013) [12], and GA-SA 

(Ye et al., 2019) have been developed, which possess superior 

physical characteristics (mainly mechanical strength) and 

functional characteristics (resistance to gases, vapors, and 

water). 

 

Three-dimensional (3D) printing 

The food sector has shown a lot of interest in 3D printing 

technology, and it has a lot of potential in the food industry. 

With free collocation, it can enhance food styles, vary food 

forms, increase food quality, and balanced nutrition, as well 

as meet the demands of niche consumer groups, including the 

elderly, children, and athletes. Food products such as dough, 

minced meat, cheese, chocolate, and other items have been 

created using 3D printing technology. Extrusion is currently 

the most popular method of 3D printing for food applications, 

owing to its ease of use and wide range of "inks." Cold 

extrusion, hot-melt extrusion, and gel-forming extrusion are 

the three varieties based on the extrusion modes (Hospodiuk 

et al., 2017) [20]. Various biopolymers have been widely 

employed in 3D printing, including SA, κ-car, cellulose, 

LMP, and GA. When these biopolymers are utilized 

separately, however, they have limited shape-forming 
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capacity, and the resulting products have poor mechanical 

qualities (Li et al., 2017). Because of their improved 

printability, excellent extrudability, and high form fidelity, 

IPNs are more useful as starting materials for 3D printing than 

single biopolymers. Furthermore, the rheological 

characteristics of hydrogels (such as shear thinning and 

thixotropic behavior) are important in determining the 

resolution and form fidelity of 3D- printed objects (Li, Wang, 

et al., 2018) [28]. For 3D printing, many IPNs have been used, 

including SA-κ-car (Kim, Lee, Jung, Oh, & Nam, 2019), SA-

MC (Li et al., 2017), and GA-κ-car (Li, Tan, & Li, 2018). 

Kim et al., (2019) discovered that solo SA gels were too weak 

for successful printing, but that when combined with κ-car 

and 1% CaSO4, the resulting SA-κ-car IPNs had a remarkable 

shear-thinning capability, allowing them to be used in 3D 

printing. 

 

Encapsulation and controlled release of bioactive/aroma 

compounds 

 Incorporating various bioactive components (e.g., probiotics, 

hydrophobic and hydrophilic chemicals) or fragrance 

compounds might improve the nutritional, antibacterial, and 

organoleptic aspects of food items. Due to their instability, 

low bioavailability, solubility, and release properties in the 

small intestine, as well as intermittent unpleasant odors, 

bioactive/aroma compounds are limited in their applicability 

in food systems (Abae et al., 2017).  

 

Fat-replaced products 

Chronic illnesses have become more common as a result of 

increased intake of fat-rich meals (e.g., obesity, diabetes, and 

coronary heart disease). As a result, developing fat-reduced 

food products like ice cream and mayonnaise is critical. 

However, lowering fat in meals results in undesired features 

such as a hard texture, reduced hydration retention, and an 

unusual taste. Fat removal, for example, makes cakes and 

bread crumbs drier and firmer. The adherence of salad 

dressing to vegetables may be harmed by a lower fat level 

(Liu, Wang, Liu, Wu, & Zhang, 2018) [31]. Fortunately, IPNs 

based on proteins and/or polysaccharides can be used to 

partially replace fat droplets since their high WHC allows 

them to preserve food texture and provide a lubricity similar 

to that of full-fat products (Yang et al., 2020) [51]. The first 

stage in using IPNs as fat replacers is to develop IPNs with 

acceptable rheological characteristics, particularly thixotropy 

and viscoelasticity. Several IPN systems, including whey 

protein-pectin (Sun et al., 2018) and SA-KGM, have been 

successfully manufactured to achieve this purpose (Yang et 

al., 2020) [51]. Whey protein-pectin IPNs were used to replace 

20% of the fat in the mayonnaise during manufacture. The 

resulting products had similar rheological characteristics 

(viscosity, elasticity, and thixotropy) to the originals, and the 

inclusion of up to 60% fat replacements might greatly 

improve mayonnaise storage stability by avoiding fat droplet 

coalescence and flocculation (Sun et al., 2018). Several pure 

biopolymers, such as starch, CMC, and MCC, have also been 

reported to be used as fat-replacers, hence IPNs based on 

these biopolymers serving as fat-replacers are worth 

investigating further (Diamantino et al., 2019; Gibis et al., 

2015; Li et al., 2018; Sun et al., 2018). 

 

Conclusion 

Many hydrogel-based networks have recently been created 

and adapted to fulfill the requirements of various applications. 

The capacity of these hydrogels to expand when exposed to 

an aqueous solution is one of their most appealing features. 

The way of making hydrogels and the design process have an 

impact on the manufacturing of hydrogels using various 

procedures, which necessitate a high level of sensitivity. IPNs 

are essential for increasing the functional characteristics of 

food items. Heating-cooling, ionic, and enzymatic 

crosslinking techniques can all be used to create IPNs. IPNs 

have a denser and more compact microstructure than SNs, 

which means they have better mechanical strength, thermal 

stability, and water-holding capacity, as well as a lower 

swelling rate. 
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