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C Ushamalini, A Balasubramanian, KS Anjali, M Tilak, N Indra, Dr. G 
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Abstract 
Plant growth promoting rhizobacteria (PGPR) are a diverse set of bacteria found in the rhizosphere, on 

root surfaces, and in close proximity to roots that can directly or indirectly promote the extent or quality 

of plant development. Rhizobacteria that promote plant growth include rhizosphere-colonizing N2-fixing 

rhizobacteria that provide nitrogen to plants, as well as the well-known symbiosis of legume rhizobia. 

Several bacteria, including Pseudomonas, Azospirillum, Azotobacter, Klebsiella, Enterobacter, 

Alcaligens, Arthobacter, Burkholderia, Bacillus, and Serratia, have been found to improve plant 

development in recent decades. Rhizobium is the most important PGPR, which is able to develop a 

symbiotic association with its specific host plant and increase its growth and yield by biologically fixing 

atmospheric nitrogen. However, the other PGPR, such as Pseudomonas and Bacillus, are able to increase 

plant growth and yield production by colonizing the host plant roots in a nonsymbiotic manner. PGPR's 

direct promotion entails either providing the plant with a plant growth promoting substance or providing 

the plant with a plant growth promoting substance. When PGPR inhibits the harmful effects of one or 

more phytopathogenic microorganisms, it indirectly promotes plant growth. In response to PGPR 

inoculation, significant increases in growth and yield of agronomically important crops have been 

recorded. Bacterial inoculants can boost plant growth and germination, improve seedling emergence, 

improve responses to stress, and protect plants from disease. When compared to farmed crops, the impact 

of PGPR on trees has received the least attention. The current review focuses on PGPR's mode of action 

and growth-promoting activities in trees. 

 

Keywords: Plant growth promoting rhizobacteria, rhizosphere, nitrogen fixation, phytopathogens 

 

Introduction 

Plant Growth Promoting Rhizobacteria are symbiotic free-living soil microorganisms that live 

in the rhizosphere of many plant species and have a wide range of beneficial impacts on the 

host plant (Raza et al. 2016a,b) [152] through several processes such as nitrogen fixation and 

nodulation (Gouda et al. 2018; Oleńska et al. 2020) [78, 139]. The term "plant growth promoting 

rhizobacteria (PGPR)" was coined by Kloepper and Schroth (1978) [111] to describe these 

beneficial microbes. Furthermore, various microbial-based approaches, such as biofertilizers, 

biostimulants, and/or biopesticides, are currently being proposed as alternatives for increasing 

crop yield. Plant growth promoting rhizobacteria (PGPR) positively influence plant growth 

and represent promising long-term solutions for increasing plant biomass production. (Thijs 

and Vangronsveld 2015; Lindemann et al. 2016; Umesha et al. 2018; Liu et al. 2020) [186, 122, 

190]. Plant health and soil fertility are highly influenced by beneficial soil microorganisms and 

their interactions (Jeffries et al. 2003) [99]. Without understanding the chemistry or the vital 

functions played by microorganisms, Middle Eastern farmers practised crop rotation about 

6000 BC, sowing legumes and cereals alternately. Hellriegel and Wilfarth (1888) [85] 

researched rhizosphere root colonisation and proposed that soil microorganisms could 

transform atmospheric N2 into plant-usable forms and that the introduction of legumes on 

cultivated areas resulted in enhanced soil fertility (Chew 2002) [45]. Plant Development 

Promoting Rhizobacteria is such a group of beneficial bacteria that boosts plant growth 

(Bajracharya 2019) [20]. The use of rhizospheric bacteria to promote plants in nutrient uptake 

and solubilization of fixed nutrients such as phosphorus has become more important in the 

paradigm of sustainable agriculture (Hayat et al. 2010) [92]. The plant is always associated with 

a well-structured and controlled colony of microbes (Turner et al. 2013; Chaparro et al. 2014; 

Lebeis 2014) [189, 44, 118]. 

Plant growth-promoting rhizobacteria (PGPR) can directly interact with plants by improving 

the availability of important nutrients (e.g. nitrogen, phosphorus, iron), the generation and 

regulation of plant-growth-related compounds (e.g. phytohormones) and the stress hormonal 

factors (Oleńska et al. 2020) [139]. 
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The ability of PGPR to aid plant growth is critical, especially 

in the case of abiotic stress, when bacteria can enhance plant 

resilience, stress tolerance and/or even help with contaminant 

remediation (Bulgarelli et al. 2015; Smith et al. 2015b; 

Oleńska et al. 2020) [34, 173, 139]. PGPRs contain bacteria from 

the genera Pseudomonas, Azospirillum, Azotobacter, 

Klebsiella, Enterobacter, Alcaligenes, Arthobacter, 

Burkholderia, Pantoea, Bacillus, Serratia and Rhizobium, 

among others (Kloepper et al. 1992; Fernando et al. 2005) [109, 

64]. Pseudomonas, Bacillus, Azospirillum, Agrobacterium, 

Azotobacter, Arthrobacter, Alcaligenes, Serratia, Rhizobium, 

Enterobacter, Burkholderia, Beijerinckia, Klebsiella, 

Clostridium, Vario-Vovax, Phyllobacterium and 

Phyllobacterium are among the PGPR genera (Lucy, Reed & 

Glick 2004) [125]. Pseudomonas and Bacillus are the two most 

commonly reported PGPRs (Podile & Kishore 2006) [150]. 

Commercial applications of PGPR and their interactions with 

plants exist, as well as scientific applications for sustainable 

agriculture (Gonzalez et al. 2015). 

 

Mechanism of PGPR action  

Plant roots release a wide range of organic nutrients (organic 

acids, phytosiderophores, sugars, vitamins, amino acids, 

nucleosides, mucilage) and signals that attract microbial 

communities, particularly those that can metabolise and grow 

in this microbial habitat (Ahemad and Kibret 2014; Hasan et 

al. 2014) [6]. Three distinct traits describe the PGPR: 

1. They must be able to colonise the root. 

2. They must be able to survive and multiply in microhabitats 

associated with the root surface, in competition with other 

microbiota, for at least the time required to express their 

plant promotion/protection activities. 

3. They must promote plant growth (Bishnoi, 2015) [33]. 

 

The rhizospheric soil bacteria that surround the plant root 

compete for this nutritional benefit and as a result, have an 

impact on the plant's growth, yield and defence mechanisms, 

either as free-living microbes or in a mutualistic connection 

with the plant root (endophytic/epiphytic) (Vejan et al. 2016) 
[199]. Rhizobacteria have an impact on plant development. 

When reintroduced by plant inoculation in a soil harbouring 

competitive microflora, about 2-5% of rhizobacteria have a 

good influence on plant development and are referred to as 

plant growth-promoting rhizobacteria (PGPR). The direct 

mechanism (Table 1), which directly encourages plant 

development in a direct form, is the most common method of 

action for PGPR. Nitrogen fixation, phytohormone synthesis, 

phosphate solubilization and increased iron availability are all 

part of this plant growth promotion mechanism. By removing 

pathogens or triggering plant defensive responses, PGPR can 

indirectly boost plant growth.  

Many PGPR have many mechanisms of action (Narasimhan 

et al. 2003; Gupta and Dikshit 2010; Haymer 2015; Thijs et 

al. 2016; Delshadi et al. 2017) [136, 82, 93, 184, 51]. In the absence 

of pathogens, bacterially mediated phytohormone production 

is the most likely explanation for PGPR activity (Tien, 

Gaskins & Hubbell 1979) [187], whereas siderophore 

production by PGPR is thought to be more important for plant 

growth stimulation when other potentially deleterious 

microorganisms are present in the rhizosphere (Kloepper, 

Leong, Teintze, & Schroth 1980) [108]. PGPR influence plant 

physiology and development, either directly or indirectly 

(Table 2) and hence play an important role in plant function. 

Direct stimulation includes biological nitrogen fixation 

(Zahran 2001) [204], the production or alteration of 

phytohormones such as auxins, cytokinins, gibberellins (GA) 

(Vacheron et al. 2013; Tien et al. 1979) [191, 187] or ethylene 

(Glick, Karaturovic, & Newell 1995) [76], the solubilization of 

minerals such as phosphorus and iron. The manufacture of 

antibiotics, chelation of Fe in the rhizosphere, synthesis of 

extracellular enzymes to hydrolyze fungal cell walls and 

competition for niches within the rhizosphere are all examples 

of indirect plant growth promotion (Van Loon 2007) [194]. 

Pseudomonas fluorescens and Bacillus subtilis, in particular, 

are frequently explored as the most promising candidates for 

indirect stimulation (Damayanti, Pardede, & Mubarik 2007) 
[49]. Experimental evidence reveals that plant growth 

stimulation is the consequence of many pathways that may be 

triggered simultaneously, suggesting that PGPR may use 

more than one method to boost plant growth (Martínez-

Viveros, Jorquera, Crowley, Gajardo, & Mora 2010) [130]. 

Several plant growth promoting (PGP) mechanisms of PGPR, 

according to Podile and Kishore (2006) [150], include root hair 

modification and increased branches, improved seed 

germination, increased leaf area per plant, release of certain 

phytohormones, increased nutrient and water uptake by 

plants, increased biomass of plants with more vigour growth, 

and better carbohydrate accumulation, all of which contribute 

to plant growth. Glick (2003) [74], on the other hand, divides 

bacterial supported plant development into three categories: 

plant hormone synthesis (Dobbelaere, Vanderleyden, and 

Okon 2003) [54], bacterial assisted enhanced nutrient uptake by 

plants and biological control of plant diseases 

(Saravanakumar et al. 2008) [162]. Dey et al. (2004) [52] suggest 

the need of exploring other mechanisms of plant growth 

promotion by PGPR apart from the list already studied. 

Listing all the explored and investigated mechanisms of 

PGPR, following can be included: 

a) Solubilization and mineralization of nutrients notably 

phosphorus (Richardson 2001; Banerjee and Yesmin 

2006) [156, 22]. 

b) Nitrogen fixation through symbiosis and asymbiosis 

(Kennedy, Choudhury and Kecskes 2004) [105]. 

c) Release of certain plant hormones such as gibberellic acid 

and cytokinins (Dey et al. 2004) [52], indole acetic acid 

(Patten and Glick 2002) [145] and abscisic acid 

(Dobbelaere, Vanderleyden and Okon 2003) [54]. 

d) Production of 1-aminocyclopropane-1-carboxylate 

(ACC)-deaminase helping to lower ethylene level in roots 

this increasing length and vigor of roots (Penrose and 

Glick 2001) [148]. 

e) Antagonism toward plant pathogens by producing 

substances such as cyanides and antibiotics (Glick and 

Pasternak 2003) [74]. 

f) Increasing the availability of nutrients specifically of iron 

through chelating by producing siderophores (Glick and 

Pasternak 2003) [74]. 

g) Tolerance against deveral abiotic stresses such as 

oxidative (Štajner et al. 1995) [175] and drought stress 

(Alvarez, Sueldo and Barassi 1996) [9]. 

h) Water soluble vitamin production including biotin, 

niacin, thiamine and riboflavin (Revillas et al. 2000) [155]. 

i) Detoxification of heavy metals (Ma et al. 2011) [126]. 

j) Tolerance of salinity (Tank and Saraf 2010) [182]. 

k) Biological control of pests and insects (Russo et al. 2008) 
[159]. 
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Table 1: Direct mechanisms and PGPR (Verma et al. 2019) 
 

Mechanism PGPR Crops References 

Nitrogen 

fixation 

Symbiotic 

Rhizobium and allied genera 
Legumes, e.g., Soybeans, 

Peanut, Chickpea etc. 

Lucas-Garcia et al. (2004) [124], Vargas et al. 

(2010) [197], Laranjo et al. (2014) [116] and Abd-

Alla et al. (2017) [1] 

Frankia 

Higher Agiospermic plants 

(Actinorhizal plants), e.g., Alnus, 

Casurina 

Crannell et al. (1994) [48], Santi et al. (2013) [161], 

Diagne et al. (2013) [53] and Ballhorn et al. 

(2017) [21] 

Free- 

living 

Cyanobacteria, Azotobacter, 

Azospirillum, Beijerinckia 

Cereals, e.g., Wheat, Rice, 

Maize 

Steenhoudt and Vanderleyden (2000) [176], 

Cassán et al. (2009) [39] and Shariatmadari et al. 

(2013) [166] 

Phosphate 

solubilisation 
Pseudomonas, Bacillus, Rhizobium Stevia rebaudiana 

Mamta et al. (2010) [130], Schoebitz et al. (2013) 
[163] and Oteino et al. (2015) [141] 

Iron sequestration Alcaligenes, Pseudomonas, Bacillus Pigeon pea Gamit and Tank (2014) [68] 

Zinc solubilisation 
Burkholderia, Pseudomonas, 

Bacillus 
Maize, rice 

Goteti et al. (2013) [77], Vaid et al. (2014) [192] and 

Sunithakumari et al. (2016) [178] 

Potassium 

solubilisation 
Bacillus, Pseudomonas 

Pinus canariensis, Cucumis 

sativus 

Bagyalakshmi et al. (2012) [19], Parmar and 

Sindhu (2013) [143] and Prajapati and Modi (2016) 
[151] 

Phytohormone 

production 
Bacillus, Rhizobium, Pseudomonas Chick pea, onion 

Khare and Arora (2010) [106], Reetha et al. (2014) 
[154] and Pandya and Desai (2014) [142] 

 
Table 2: Indirect mechanism of PGPR (Deka et al. 2015) [52] 

 

Mechanism Effect References 

Plant growth regulator production Biomass (aerial part and root) Gutierrez Manero et al. (1996) [83] 

Flowering  Gutierrez Manero et al. (2001) [84] 

Ethylene synthesis inhibition Root length Glick et al. (1994) [73] 

Induction of systemic resistance Health Van Loon et al. (1998) [193] 

Root permeability increase Biomass and nutrient absorption Sumner (1990) [177] 

Organic matter mineralization (nitrogen, sulfur, phosphorus) Biomass and nutrient content Liu et al. (1995) [123] 

Mycorrhizal fungus association Biomass and phosphorus content Germida and Walley (1996) [70] 

Insect pest control Health Zehnder et al. (1997) [207] 

 

Interactions between PGPR and conifers have been studied in 

the genera Araucaria, Picea (spruce), Pinus, Pseudotsuga 

(Douglas fir) and Tsuga (hemlock) by number of workers 

(Bent et al. 2001; Brunetta et al. 2007; Vasconcellos and 

Cardoso 2009; Singh et al. 2010) [28, 33, 198, 171]. The best-

studied PGPR belong to Arthrobacter, Curtobacterium, 

Bacillus, Burkholderia, Chryseobacterium, Enterobacter, 

Paeni Bacillus, Phosphoro Bacillus, Pseudomonas, 

Staphylococcus, Serratia and Streptomyces (Enebak et al. 

1998; Garcia et al. 2004; Barriuso et al. 2005) [63, 69, 25]. An 

extensive screening of PGPR in conifers was carried out by 

Barriuso et al. (2005) [25] in the rhizosphere of Pinus pinea 

and Pinus pinaster, when these were colonized by 

ectomycorrhizal fungus (EMF) Lactarius deliciosus. Earlier, 

growth promotion of P. pinea by PGPR was reported by 

Garcia et al. (2004) [69]. 

 

PGPR and plant growth regulation 

Plant growth regulators (PGRs) are phytohormones that are 

generated in certain organs of the plant and then translocated 

to other regions, where they trigger unique biochemical, 

physiological and morphological roles in plant growth and 

development (Hayat et al. 2012) [91]. Auxins, gibberellins, 

cytokinins, ethylene and abcisic acid are five well-known 

phytohormones and soil microorganisms, particularly 

rhizosphere bacteria, are potential producers of these 

hormones (Patten and Glick 1996; Arshad and Frankenberger 

1998) [144, 16]. By managing and modifying phytohormones 

and growth regulators, PGPR promotes drought-stressed plant 

growth (Bresson et al. 2014) [32]. Gibberellins and cytokinins 

promote plant development while ET and abscisic acid 

prevent it (Taiz and Zeiger 2010) [180]. In both symbiotic and 

nonsymbiotic roots, phytohormones are known to mediate 

processes such as plant cell expansion, division, and 

extension. Among these hormones, auxins have received the 

greatest attention, with indole-3-acetic acid (IAA) being the 

most common and well-studied. IAA is known to drive both 

short-term (e.g., cell elongation) and long-term (e.g., cell 

division and differentiation) responses in agricultural plants 

(Govindasamy et al. 2010) [79]. Root-associated microbes, 

such as symbiotic or endophytic bacteria, play an important 

role in the production of plant growth hormones 

(phytohormones), which affect seed germination, root system 

development for better nutrient uptake, vascular tissue 

development/elaboration, shoot elongation, flowering and 

overall plant growth (Sgroy et al. 2009) [165]. Hormone levels 

in plants can be controlled by microbe-produced plant growth 

regulators, which have effects similar to exogenous plant 

phytohormonal treatments (Egamberdieva, 2009; Turan et al. 

2014) [58, 188]. Microbe-produced phytohormones like auxins 

and cytokinins are similar to plant-produced phytohormones 

in that they regulate plant hormone levels, regulating 

photosynthetic processes to promote plant growth and 

development and activating pathogen defence responses 

(Backer et al. 2018) [18]. Auxins are a category of hormones 

that help plants grow and develop. Indole Acetic Acid (IAA) 

is the most frequent and physiologically active phytohormone 

in plants, and it regulates gene expression by upregulating and 

downregulating it. IAA is produced by plant shoot apical 

meristems as free/diffusible auxins and is detected in 

practically all plant tissues (Maheshwari et al. 2015) [127]. 

More than 80% of rhizospheric bacteria have been found to be 

capable of synthesising and releasing auxins. Aeromonas, 

Azotbacter, Bacillus, Brady Rhizobium, Burkholderia, 
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Enterobacter, Meso Rhizobium, Pseudomonas, Rhizobium 

and Sino Rhizobium all produce IAA, which is produced by a 

variety of bacterial genera including Aeromonas, Azotobacter, 

Bacillus, Brady Rhizobium, Burkholderia, Enterobacter, 

Meso Rhizobium (Ahmad et al. 2008; Celloto et al. 2012; 

Sharma et al. 2016; Çakmakçı et al. 2020) [7, 41, 168, 35]. A 

single bacterial strain can create IAA via many pathways in 

some situations. These biosynthesis routes can be independent 

of or dependent on tryptophan, a key IAA precursor molecule 

(Kashyap et al. 2019) [104], with mechanisms sourced from 

degraded roots or bacterial cell exudates (Spaepen et al. 2007; 

Egamberdieva et al. 2017) [174, 59]. The capacity of 

rhizospheric beneficial bacteria to manufacture IAA under 

salinity stress conditions could be critical for balancing and 

controlling IAA levels in the roots, resulting in enhanced 

plant responses to salinity stress (Egamberdieva et al. 2015) 

[60]. Microbe-produced IAA has recently been shown to boost 

root and shoot biomass output in water-stressed situations 

(Kumar et al. 2019). Many PGPR-produced phytohormones, 

including indole lactic acid (ILA), indole-3-butyric acid 

(IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid 

(IPA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 2-methyl-

4-chlorophenoxy acetic acid (MCPA) and tryptophol (TOL), 

can control various physiological processes (Ijaz et al. 2019; 

Swarnalakshmi et al. 2020) [97, 179]. PGPR with the ability to 

produce plant growth-regulating hormones, like auxins and 

cytokines, were tested on P. contorta (lodgepole pine) (Bent 

et al. 2002) [29]. 

Cytokinins are a type of hormone that affects plant growth 

and development by regulating physiological processes such 

as seed germination, cell division, apical dominance, root and 

shoot growth, flower and fruit production, leaf senescence, 

pathogen interactions and nutrient mobilisation and 

assimilation (Egamberdieva et al. 2015; Akhtar et al. 2020) 
[60, 8]. It has been observed that cytokinin, either alone or in 

combination with other phytohormones like auxin and 

abscisic acid, can enhance the growth of salt-stressed plants 

while also improving tolerance via modifying gene expression 

(Kang et al. 2012; Kunikowska et al. 2013) [102]. PGPR such 

Arthrobacter, Bacillus, Azospirillum and Pseudomonas have 

been shown to manufacture cytokinins, which have been 

shown to have beneficial effects on the root system. Plant 

growth and development are aided by cytokinin-producing 

PGPR, which are also powerful biocontrol agents against a 

variety of diseases (Naz et al. 2009; Maheshwari et al. 2015) 
[138, 127]. Plants and plant-associated microbes are known to 

have more than 30 growth-promoting cytokinin chemicals 

that are produced at varied quantities (Hayat et al. 2012; 

Amara et al. 2015) [91, 11]. In the past two decades, several 

studies have reported the effects of cytokinin producing 

PGPR on root system architecture, plant growth and tolerance 

to biotic and abiotic stresses including drought (Arkhipova et 

al. 2007; Dodd et al. 2010; Egamberdieva et al. 2015) [15, 55, 

60], salinity (Naz et al. 2009; Cordero et al. 2018) [138, 47], 

bacterial pathogens (Naseem et al. 2014) [137], fungal 

pathogens (Mishra et al. 2018) [132] and insect pests (Giron 

and Glevarec 2014; Zhang et al. 2019) [72, 208]. 

Alexandre et al. 2021 reported that Arbuscular Mycorrhizal 

Fungi (Rhizophagus clarus) and Rhizobacteria (Bacillus 

subtilis) can improve the clonal propagation and development 

of Teak for Commercial Plantings. Aditya (2009) [5] reported 

on co-inoculation effects of nitrogen fixing and phosphate 

solubilizing microorganisms on teak (Tectona grandis) and 

Indian redwood (Chukrasia tubularis) that the effect of 

nitrogen fixing Azotobacter and phosphate solublising 

Bacillus megaterium on the growth of two trees; Teak 

(Tectona grandis) and Indian redwood (Chukrasia tubularis) 

were tested under nursery condition. Seed priming with 

beneficial micro-organisms including fungi and bacteria 

(Trichoderma, Pseudomonas, Bacillus, Rhizobia etc.) 

ameliorates a good sort of biotic, abiotic and physiological 

stresses to seed and seedlings (Sharma et al. 2015) [169]. PGPR 

had a wide range of impact on conifers (Table 3). These 

biological seed treatments may provide an alternate to 

chemical control of the pests and diseases and also increase 

the plant growth. Seed biopriming allows the bacteria to 

enter/adhere the seeds and also acclimatization of 

bacteria within the prevalent conditions (Mahmood et al. 

2016) [128]. PGPR are a good range of root colonizing 

bacteria which may produce IAA like compounds (Kandoliya 

and Vakharia 2013) [101], enhance plant growth by increasing 

seed emergence, plant growth and crop yield (Kloepper 1992) 
[109].  

 
Table 3: The most studied PGPR in conifers, their mode of action, the host plants (Cardoso et al. 2011) 

 

Action PGPR Effects on plants Conifer species References 

Hormones 

Bacillus sp. Pseudomonas 

fluorescens M20; P. fluorescens 

BSP53a; P. polymyxa L6; 

Chryseobacterium balustinum; 

Root length; shoot dry 

weight; root weight; 

seed germination 

Pinus pinaster; 

P. pinea; 

P. roxburghii 

Barriuso et al. (2005) [25]; Bent et al. 

(2001) [29]; Dubeikovsky et al. 

(1993) [56]; Singh et al. (2008, 2010) 
[172] 

Siderophores 

Arthrobacter oxydans Bacillus sp 

Pseudomonas fluorescens; 

Staphylococcus sp; 

Root length; shoot dry 

weight; root weight; 

seed 

P. pinaster; P. pinea; 
Barriuso et al. (2005) [25]; Singh et 

al. (2008, 2010) [172] 

Phosphate 

solubilization 

Arthrobacter oxydans 

Curtobacterium sp.; Burkholderia 

sp.; Staphylococcus sp.; 

Pseudomonas fluorescens 

Germination 

Shoot height and dry 

Mass 

P. roxburghii 

P. pinaster; P. pinea; 

P. halepensis; 

P. roxburghii 

Barriuso et al. (2005) [25]; Rincón et 

al. (2008) [157]; Singh et al. (2008, 

2010) [172] 

MHB 

B. cereus; 

B. sphaericus; 

P. fluorescens; 

Streptomyces sp. 

Root length; Shoot 

length; No. leaves 

initiated; Shoot dry 

weight; Root dry weight 

P. sylvestris; P. contorta; 

P. taeda; P. elliottii; 

Pseudotsuga menziesii; 

Bending et al. (2002) [27]; Frey- 

Klett et al. (1999) [67]; Schrey et al. 

(2005) [164] 

Induced systemic 

resistance 

Streptomyces sp. 

P. fluorescens; 

Chryseobacterium balustinum; 

Enterobacter intermedius; 

PhosphoroBacillus latus 

Root length; shoot dry 

weight; root weight; 

neck root diameter; stem 

length; Incorporation of 

thymidine and leucine 

Picea abies 

Picea abies 

P. pinea; 

Lehr et al. (2008) [120] 

Garcia et al. (2004) [69] 

Antagonism B. subtilis; – P. roxburghii Singh et al. (2008, 2010) [172] 
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ACC degradation 
P. aeruginosa 

Staphylococcus sp. 
– P. pinaster; P. pinea Barriuso et al. (2005) [25] 

 

PGPR and Nitrogen fixation 

Nitrogen is a fundamental requirement for the synthesis of 

nucleic acids, proteins, and other organic nitrogenous 

substances in all forms of life. Despite the fact that the 

atmosphere contains roughly 78 percent nitrogen, it is very 

inert and unavailable to growing plants. The process of 

biological N2 fixation (BNF), in which nitrogen-fixing 

bacteria convert elemental nitrogen into ammonia utilising a 

complicated enzyme system known as nitrogenase, converts 

atmospheric N2 into plant-usable forms (Kim & Rees 1994) 
[107].  

Nitrogen fixing organisms are generally categorized as 

1. Symbiotic N2-fixing bacteria including members of the 

family rhizobiaceae (Rhizobium, SinoRhizobium, Brady 

Rhizobium, Meso Rhizobium and Azo Rhizobium, 

collectively termed rhizobia) which forms symbiosis with 

leguminous plants (Zahran 2001) [204] and nonleguminous 

trees (e.g. Frankia). 

2. Non-symbiotic (free living, associative and endophytes) 

nitrogen fixing forms such as cyanobacteria (Anabaena, 

Nostoc), Azospirillum, Azotobacter and Azocarus, etc.  

 

(Bhattacharyya & Jha, 2012) [30]. In the rhizobia legume 

symbiosis, the signalling pathways (Long 2001), evolutionary 

history (Henson, Watson, & Barnum 2004) [94] and molecular 

features affecting host specificity (Young, Mutch, Ashford, 

Zeze & Mutch 2003) have all been reviewed. BNF contributes 

106 metric tonnes per year globally, with symbiotic nitrogen 

fixation accounting for 80% and free-living nitrogen fixation 

accounting for the remaining 20%. As a result, BNF 

represents a cost-effective and environmentally friendly 

alternative to the current agricultural practise of using high 

doses of chemical fertilisers (Adesemoye, Torbert, & 

Kloepper 2009) [4]. 

Biological inoculants have gained popularity in recent years 

for sustainable crop production in various parts of the world, 

and biological nitrogen fixation is a key source of N input in 

agricultural soils, especially those in arid regions. The 

cyanobacteria Rhizobium, Azo Rhizobium, Brady Rhizobium, 

Sino Rhizobium, Allo Rhizobium, Meso Rhizobium and 

Frankia are symbiotic nitrogen-fixing bacteria (Paul and Clark 

1996) [146]. The mechanisms of Rhizobium-legumes symbiotic 

N2 fixation have been extensively researched. Frankia's 

symbiosis with non-leguminous actinorhizal plants is also 

being studied these days. The principal N2-fixation 

mechanism, the symbiotic system, plays a critical role in 

enhancing the fertility and maximising production of low-N 

soils. 

Biological N2-fixed by the Rhizobium-legume symbiosis can 

also benefit cereals grown in intercrops or crops cycled with 

legumes. The grasses in many natural grassland systems 

utilise nitrogen fixed by their legume counterparts to meet 

their nitrogen needs, and the protein provided as a result of 

this connection improves the fodder quality for animal 

production (Paynel et al. 2001) [147]. Rhizobia as PGPR can 

contribute to growth promotion in non-legume species in 

addition to symbiotic N2 fixation in legumes (Höflich et al 

2000) [95]. Rhizobia naturally produce molecules that promote 

crop growth (auxins, abscisic acids, cytokinins, riboflavin, 

lumichrome, lipo-chitooligosaccharides and vitamins) to act 

as PGPR, and their colonisation and infection of cereal roots 

would be expected to increase vigour and grain yield (Matiru 

and Dakora 2004) [131]. Rhizobium's other PGPR roles include 

phytohormone production (Arshad and Frankenberger 1998) 
[16], inorganic phosphorus solubilization (Chabot et al. 1996) 
[42], siderophore release (Plessner et al. 1993; Jadhav et al. 

1994) [149, 98] and antagonism against plant pathogenic bacteria 

(Ehteshamul-Haque and Ghaffar 1993) [62]. 

 

PGPR and phosphorus solubilisation 

Phosphorus (P) is one of the most important macronutrients 

for plant growth and development and insufficient P 

availability to crop plants is a global problem. P availability 

reduces crop output on 30-40% of the world's arable land 

(Vance, Uhde-Stone, & Allan 2003) [195]. PSBs (phosphate 

solubilizing bacteria) may play a key role in providing 

phosphate to plants in a more environmentally friendly and 

long-term manner. Mineral forms such as apatite, 

hydroxyapatite and oxyapatite, as well as organic forms such 

as inositol phosphate (soil phytate), phosphomonoesters, 

phosphodiesters and phosphotriesters, are found in soil. 

Phosphate-solubilizing bacteria (PSB) are one of the most 

essential bacterial physiological features in soil 

biogeochemical cycles (Jeffries, Gianinazzi, Perotto, Turnau, 

& Barea 2003) [99], as well as in plant growth promotion by 

PGPR. 

Bacillus, Rhizobium, and Pseudomonas bacteria have been 

found to be the most effective phosphate solubilizing bacteria 

(Banerjee et al. 2010) [23]. The most common PSB bacteria 

include Azotobacter, Bacillus, Beijerinckia, Burkholderia, 

Enterobacter, Erwinia, Flavobacterium, Microbacterium, 

Pseudomonas, Rhizobium and Serratia (Bhattacharyya & Jha, 

2012) [30]. Azotobacter chroococcum, Bacillus circulans, 

Cladosporium herbarum, BradyRhizobium japonicum, 

Enterobacter agglomerans, Pseudomonas chlororaphis, 

Pseudomonas putida and Rhizobium leguminosarum are some 

examples of widely reported P-solubilizing microbial species 

intimately associated with a wide range of agricultural crops 

(Antoun, Beauchamp, Goussard, Chabot, & Lalande 1998; 

Cattelan, Hartel, & Fuhrmann 1999; Chabot, Beauchamp, 

Kloepper, & Antoun 1998) [14, 40, 43]. There have also been 

cases of phosphate solubilization by Azotobacter, a non-

symbiotic nitrogen fixer (Kumar et al. 2001) [113]. Rhizobium 

(e.g., Rhizobium/Brady Rhizobium) phosphate-solubilizing 

activity is linked to the synthesis of 2-ketogluconic acid, 

implying that the organism's phosphate-solubilizing activity is 

solely attributable to its capacity to lower medium pH (Halder 

and Chakrabarty 1993) [87]. The ability to dissolve phosphate 

also depends on the type of nitrogen source utilised in the 

media, with more solubilization in the presence of ammonium 

salts than in the presence of nitrate. This is thought to be due 

to protons being extruded to compensate for ammonium 

uptake, resulting in a lower extracellular pH (Roos 1984) [158]. 

The action of low molecular weight organic acids generated 

by diverse soil bacteria typically results in the solubilization 

of inorganic phosphorus (Zaidi, Khan, Ahemad & Oves 2009) 

[206]. In contrast, organic phosphorus is mineralized through 

the production of a variety of phosphatases that catalyse the 

hydrolysis of phosphoric esters (Glick, 2012). Phosphate 

solubilization and mineralization can coexist in the same 

bacterial strain (Tao, Tian, Cai, & Xie 2008). Phosphorus 

solubilizing bacteria not only provide P to plants, but they 
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also help them grow by increasing the efficiency of BNF and 

increasing the availability of other trace elements (Tao, Tian, 

Cai, & Xie 2008) such as iron, zinc. The possibility of 

enhancing P uptake of crops by inoculation with P-

solubilizing strains of PGPR presents a promising approach 

towards recovering the reservoirs of insoluble phosphorus 

from the soil and thus minimizing the external application of 

phosphate fertilizers to the soil. 

 

PGPR in phytoremediation 

Plant and microbe interactions are used in green technology to 

improve contaminated soil. Phytoremediation is a cost-

effective, ecologically friendly, solar-powered soil 

remediation method that depends on plants' ability to 

intercept, take up, accumulate, sequestrate, stabilise, or 

translocate pollutants. Abiotic and biotic factors such as soil 

pH, soil components, nutrient availability, plant selection and 

kind of contaminants all influence phytoremediation (Thijs et 

al. 2016) [184]. It has recently been discovered that the 

effectiveness rate of phytoremediation is significantly 

dependent on the plant microbiome (Hou et al. 2019) [101]. 

When PGPR are introduced to a contaminated site, they boost 

the ability of plants to store heavy metals, recycle nutrients, 

maintain soil structure, detoxify pollutants, and manage 

diseases and pests; PGPR also reduces metal toxicity by 

modifying their bioavailability in plants. Root exudates such 

as free amino acids, proteins, carbohydrates, alcohols, 

vitamins, and hormones, which are significant sources of 

sustenance for microbes, are provided by the plants (Tak et al. 

2013) [189]. Researchers have described a biological 

application of PGPR for heavy metal phytoremediation and 

salt-impacted soil phytoremediation (Nakkeeran et al. 2006; 

Barea 2015; Le Mire et al. 2016) [141, 24, 122]. Plant-microbiome 

interactions are currently being explored as part of a 

metaorganism strategy to determine the most promising 

strategies to improve phytoremediation success rates. 

The role of 

a) Plant host selection. 

b) Root exudates. 

c) Investigation of single or microbial consortium in situ. 

d) Molecular study of PGPR strains are all combined in the 

PGPR-based metaorganism approach (Thijs et al. 2016) 
[184]. 

 

PGPR for biocontrol  

Through antibiosis, parasitism, competition for resources and 

space in the vicinity of plant roots, and/or activation of host 

defence responses, PGPR indirectly aids plant growth by 

suppressing harmful bacteria that restrict plant growth or root 

diseases (Podile and Kishore 2006) [150]. Bacillus subtilis 

strains are the most extensively utilised PGPR because of 

their disease-fighting and antibiotic-producing capacities 

(Kokalis-Burelle et al. 2006) [112]. Fluorescent pseudomonads 

are also known to reduce soil-borne fungal diseases by 

creating antifungal compounds and sequestering iron in the 

rhizosphere by releasing iron-chelating siderophores, making 

it unavailable to other species (Dwivedi and Johri 2003) [57]. 

Suppression of deleterious microorganisms by PGPR is 

mainly by parasitism, by competing for available nutrients, 

production of enzymes or toxins and inducing resistance by 

activating plant defence response against pathogens (Podile 

and Kishore 2006) [150]. Fluorescent pseudomonads attach 

themselves to plant roots and absorb available nutrients, 

reducing the nutrients available for disease growth (Walsh et 

al. 2001) [201]. For pathogen eradication, PGPR competes for 

resources with native rhizosphere microorganisms. 

Siderophore synthesis by PGPR sequesters the majority of 

available Fe 3+ in the rhizosphere, forcing pathogens to 

becoming iron-deficient and is hence a key contributor to 

pathogen suppression (O'Sullivan and O'Gara 1992) [140]. The 

PGPR synthesises hydrolytic enzymes, enhances nutrient 

competition, regulates the level of the plant hormone ethylene 

via the ACC-deaminase enzyme and creates siderophores to 

protect the rhizosphere from plant diseases (Kumari et al. 

2016; Anand et al. 2016) [114, 12]. There are numerous 

examples of PGPR being used to effectively control soil-

borne illnesses (Haas and Defago 2005) [86]. 

 

PGPR and biotic stress tolerance 

Drought, salinity, high and low temperatures, heavy metal 

toxicity, and nutrient deficiency are all examples of extreme 

environmental conditions that can cause significant annual 

reductions in overall crop production, yield and quality 

worldwide as climate change risks arise (Acquaah 2009; 

Awasthi et al. 2014; Shrivastava and Kumar 2015) [3, 17, 170]. 

Living organisms, such as bacteria, viruses, fungi, insects and 

nematodes, cause biotic stress in plants (Hamid et al. 2021) 
[88]. The accumulation of specific solutes, such as proline, 

sugars, polyamines, betaines, polyhydric alcohols and other 

amino acids, results in PGPR-mediated plant osmolytes 

homeostasis, which plays a key role in maintaining turgor-

driven cellular swelling to withstand osmotic stress caused by 

drought and high soil salinity (Vurukonda et al. 2016) [200]. 

PGPR releases osmolytes that function in tandem with those 

produced by plants to improve plant growth and development 

and so maintain plant health (Sandhya et al. 2010; 

Vardharajula et al. 2011) [160, 196]. Another study found that 

using a combination of PGPR, compost, and mineral fertiliser 

resulted in increased amounts of soluble sugar and proline, 

which improved wheat's capacity to retain membrane 

stability, chlorophyll content and water potential under stress 

(Kanwal et al. 2017) [103]. 

 

PGPR in seed priming 

Soaking seeds in bacterial solution activates physiological 

processes in the seed, preventing plumule and radicle 

development until the seeds are exposed to temperature and 

oxygen after being sowed (Anita et al. 2013) [13]. Even before 

sowing, PGPR continue to replicate in the seed and proliferate 

in the spermosphere (Taylor and Harman 1990) [183]. Seed 

biopriming is being studied because it allows endophytic 

bacteria to enter the sidewalls while avoiding the harmful 

effects of high temperatures. The use of a biopriming 

treatment may help to promote faster and more even 

germination, as well as improved plant growth (Moeinzadeh 

et al. 2010) [133]. In crops such as carrot (Jensen et al. 2004) 
[100], sweet corn (Callan, Mathre and Miller 1990, 1991) [37] 

and tomato (Callan, Mathre and Miller 1990, 1991) [37], 

biopriming using rhizospheric bacteria has been documented 

(Harman and Taylor 1988; Legro and Satter 1995; Warren 

and Bennett 1999) [89, 119, 202]. When it comes to the efficacy 

and survivability of biological agents, priming has been 

shown to be advantageous and to improve plant growth and 

yield (Harman, Taylor and Stasz 1989; Callan, Mathre and 

Miller 1990, 1991; Warren and Bennett 1999) [90, 37, 202].  

Seed priming with PGPR results in better germination and 

seedling establishment (Anita et al. 2013) [13]. When 

combined with bacterial coating, bio-osmopriming can 
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considerably improve the uniformity of germination and plant 

growth features. When uniform germination and superior 

stand establishment choices are taken into account, 

biopriming is the preferred strategy. Biopriming has been 

practised and explained in a variety of ways by various 

researchers (Callan, Mathre and Miller 1991; Bennett, Mead, 

and Whipps 2009; Moeinzadeh et al. 2010) [36, 27, 133]. There 

are many methods for explaining biopriming, which differ in 

the temperature and length of time the seeds are soaked 

(Gholami, Shahsavani and Nezarat 2009; Abuamsha, Salman, 

and Ehlers 2011) [71, 2]. Some of the researchers have also 

surface disinfected the seeds before soaking into the bacterial 

suspension (Sharifi, Khavazi and Gholipouri 2011; 

Firuzsalari, Mirshekari and Khochebagh 2012) [167, 65]. 

Biopriming of Abies hickelii and A. religiosa with 

Pseudomonas fluorescens alongside hydropriming has 

shown a rise within the germination percentage up to 91.45% 

in A. hickelii and 68% during A. religiosa (Rodriguez et al. 

2015). Alwathnani et al. (2012) [10] demonstrated the 

antagonistic effect of Trichoderma harzianum and 

Trichoderma viride against Fusarium oxysporum as inhibition 

of radial growth of pathogen. Bio priming with Pseudomonas 

flourescens improved flooding tolerance in Sandal (Santalum 

album) seedlings. (Chitra et al. 2021) [46] 

 

 
 

Fig 1: Mode of action of Plant Growth Promoting Rhizobacteria (Gupta et al. 2015) [81] 
 

Conclusion  

Recently, studies on PGPR have attained more significant and 

scientific attention. PGPR plays an essential role in helping 

plants to establish and grow in nutrient deficient conditions. 

Considering the good impact of PGPR in terms of 

biofertilization, biocontrol, and bioremediation, all of which 

exert a positive influence on crop productivity and ecosystem 

functioning, encouragement should be given to its 

implementation in agriculture. Several PGPR stains are being 

commercialized for various crops in agriculture and these are 

widely used. By exploiting the PGPR from forest ecosystem, 

it is possible to develop microbiome and these can be well 

utilized for plantations trees and also for agriculture crops, 

since forest is a source of diversified microbes, flora and 

fauna, which can be well exploited for the natural sources. 
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