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Application of GnRH modulators in controlling 

reproductive cycle in farm animals: A review 

 
Hitesh, Harender Singh and Garima Kansal 

 
Abstract 
The hypothalamic-pituitary-gonadal axis (HPG axis) alludes to the connection between the 

hypothalamus, pituitary gland, and gonads. A number of intrinsic and extrinsic factors are integrated in 

the HPG axis that regulates the core functions of the reproductive system. A wide variety of GnRH 

modulators are already in practice but desired level of response is not achieved mostly due to their action 

at the downstream of HPG axis. In the recent past, novel neuro-peptide molecules like kisspeptin, 

phoenixin, etc. have been identified. The localization pattern of these molecules suggests a key role in the 

upstream of hypothalamic nuclei to regulate the reproductive processes. In farm animals, Kisspeptin 

plays a wide variety of actions, mainly regulating GnRH-mediated gonadotrophin release during onset of 

puberty, induction of estrus in the breeding seasonand extra-hypothalamic regulation of ovarian 

functions. Natural Kisspeptin molecules have limited therapeutic applications owing to their shorter half-

life leading to the development of a series of synthetic Kisspeptin analogues. A few studies on kisspeptin 

agonists, namely Compound-6 and Compound-17 showed better performance in ovine, caprine and 

laboratory animal model over the natural kisspeptin. Recently, Kisspeptin antagonists (P234) have also 

been used in in vivo studies showing promising effect in controlling GnRH mediated LH surge. Emerging 

evidence suggests use of Kp and other neuropeptide analogues in the therapeutic protocols of controlled 

reproduction programs in several farm animal species. Thus, there is a need to put more efforts in the 

optimization of promising GnRH modulators for use in farm animals in order to augment reproductive 

efficiency. 

 

Keywords: Kisspeptin, hypothalamus, cyclicity, GnRH, farm animals 

 

1. Introduction 

Reproduction is the most important phenomenon to ensure the survival of a species on the 

earth. Brain control of mammalian reproduction involved integration of number of factors 

which include the gonadal status of the animal, age and body condition score of the animal, 

pheromones, stressors, various body rhythms (ultradian, circadian, infradian and circannual 

rhythm) and seasonality in some species. In females, these factors show their impact on the 

ability to produce fertile gametes, completion of fertilization process, attain pregnancy, 

carrying the fetus to term and nurse the offsprings. Reproduction in males is also influenced by 

many of these factors. The mechanism of reproduction is under the control of Hypothalamus-

Pituitary-Gonadal axis. As functioning of Hypothalamus, Pituitary gland and gonads are inter-

related and often act as a single unit, so commonly referred as Hypothalamus-Pituitary-

Gonadal axis (HPG axis). Hypothalamus, being the controller of axis, regulated by various 

factors, produces and secretes the GnRH hormone which reaches the anterior pituitary gland 

via the Hypothalamo-hypophyseal portal system and stimulates gonadotroph cells leading to 

production of gonadotrophin hormones i.e. Follicle Stimulating Hormone and Luteinizing 

Hormone. GnRH is found to be released in two fashions i.e. pulsatile pattern and surge fashion 

of release. Pulsatile release of GnRH is controlled by arcuate nucleus while the surge release is 

under the control of both arcuate and pre-optic nuclei. 

Gonadotropins act on ovary to maintain the cyclicity and the production of ovarian steroids 

(Estrogen, Progesterone and Androgen) and other hormones like inhibin and activin. Ovarian 

steroids control the release of gonadotrophins by the feedback mechanism. Estrogen (E2) and 

Progesterone (P4) shows negative feedback action on the arcuate nucleus while E2 gives 

positive feedback action to both arcuate and pre-optic area prior to the ovulation resulting in 

LH surge. Recent studies suggest progesterone also playing some part in positive feedback 

mechanism.  

file:///C:/Users/gupta/AppData/Roaming/Microsoft/Word/www.thepharmajournal.com


 

~ 4289 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 

 
 

Fig 1: Hypothalamus-Pituitary-Gonadal axis 

 

2. Incidence of reproductive disorders 

Proper correlation of HPG axis is must to keep the process of 

reproduction going on and any deviation leads to infertility in 

animals. Infertility can be due to several reasons but anestrus, 

repeat breeding and delayed sexual maturity are found to be 

the most common non-infectious causes. Economic impact of 

infertility is significant as it leads to increased calving 

intervals and therefore results in reduced calf crop, decreased 

life-time milk yield, increased culling rates, etc. 10-30% of 

lactations are affected by infertility and reproductive disorder 

in developed countries (Erb and Martin, 1980) [32]. 

Anestrus, being the functional form of infertility, is simply the 

failure of exhibition of estrus by the female animal. It can be 

due to physiological (pregnancy, prepubertal or postpartum) 

or pathological (fetal mummification, pyometra, etc.) reasons. 

Anovulatory estrus is the true form of anestrus while the 

ovulatory anestrus can be due to improper observation/ 

missed heat, persistent corpus luteum and subestrus/silent 

estrus. Silent estrus is a more common disorder of buffaloes 

in summer months. 

 
Table 1: Incidence of Anestrus condition in bovines in India 

 

State Species Anestrus (%) References 

Andhra Pradesh 
Cattle 49.70 Rao, 1993 [101] 

Buffalo 30.76-50 Rao and Sreemannarayanan, 1982 [102] 

Gujarat 
Cattle 24.73 Patel et al., 2007 [95] 

Buffalo 20.84-45.97 Modi et al., 2011 [85] 

 
Cattle 53.15 Pandit, 2004 [94] 

Buffalo 29.12-60.83 Pandit, 2004; Kumar et al., 2013 [94, 64] 

Maharashtra 
Cattle 2.13-45.97 Narladkar et al., 1994 [89] 

Buffalo 29.5-41.4 Bharkad and Markandeya, 2003 [9] 

Tamil Nadu 
Cattle 16.6 Selvaraju et al., 2005 

Buffalo 9.09 Selvaraju et al., 2005 

Punjab 
Cattle 43-67.11 Singh et al., 2003 [112] 

Buffalo 38.98-55.5 Singh et al., 2006 [113] 

Bihar Cattle 39.01 Singh, 1981 [111] 

Kerela Cattle 65 Kutty and Ramachandran 2003 [66] 

Kashmir Cattle 27.52-31 Bhattacharyya and Buchoo, 2008 [10] 

Uttar Pradesh 
Cattle 3.32 Verma S K et al., 2018 [124] 

Buffalo 14.69-45.20 Luktuke et al., 1973 [73] 

Karnataka Buffalo 56 Hussain, 1984 [53] 

Haryana Bovine 28.66 Meena M S et al., 2009 [75] 

Meghalaya Cattle 10.76 Khan M H et al., 2016 [60] 

Orissa Cattle 37.39 Harichandan P.P. et al., 2018 [49] 
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3. Existing modulators of HPG axis in practice 

 
Table 2: Summary of molecules showing effect on reproductive axis 

 

Molecule Mechanism Effect 

Buseralin acetate GnRH-R agonist Stimulate LH and FSH release 

Acycline GnRH-R antagonist Inhibit release of LH and FSH 

hCG LH-R agonist Simulates the actions of endogenous LH 

pFSH FSH receptors Performs all actions of endogenous FSH 

eCG 
FSH receptors 

LH receptors 
Has predominantly FSH like activity with somewhat LH like activity 

Progestogens Progesterone receptor agonists Inhibit LH release 

Epostane 
Blocks β-hydroxy steroid dehydrogenase 

isomerase enzyme 
Prevents synthesis of progesterone 

Estradiol Estrogen receptor agonists 
Negative feedback on tonic GnRH release 

Positive feedback on surge release of GnRH 

Tamoxifen citrate Estrogen-R antagonist Blocks the effect of estrogen 

Dinoprost Natural PGF2α Lyse corpus luteum and removes P4 dominance 

Cloprostenol Synthetic PGF2α Lyse corpus luteum and removes P4 dominance 

Melatonin Indirect action via dopaminergic neurons Transition from non-breeding to breeding season i.e. onset of cyclicity 

Noradrenaline norAdr-R in POA and ARC 
Stimulatory role on LH surge release 

Inhibitory effect on tonic LH release 

Growth hormone Growth hormone receptors Advances pubertal age 

GABA POA Inhibits GnRH/ LH secretion 

Leptin Leptin receptors Stimulate LH release during pubertal escape from negative feedback of estrogen. 

 

All of the above molecules act at the peripheral part of the 

reproductive axis and either overstimulation or shows over-

inhibitory effect on endogenous secretion of reproductive 

hormones leading to significant side effects. There is much 

more variability in their effects.  

 
Table 3: Summary of responses of existing GnRH modulators 

 

Compound Animal model Response (Conception rate) Reference 

Buseralin acetate Cattle 28.1% Stevenson et al. 2007 [55] 

Ovsynch protocol Buffalo (anestrus) 37.5% Kumar et al. 2016 [67] 

hCG Cattle 33.6% Stevenson et al. 2007 [55] 

Cloprostenol Cattle 65.2% with 59.4% ODR Baryczka et al. 2018 [1] 

CIDR synchronized Cattle 45.5% with 79.5% ODR Romano et al. 2013 [58] 

Melatonin Buffalo 32.4% with 90% ODR Kumar et al. 2018 

 

These disadvantages limit their use for modulation of estrous 

cycle and necessitating the discovery of new and more potent 

modulators. 

 

4. New players in reproductive function 

With the advancement in science, scientists came forward 

with many new molecules acting superiorly to GnRH and 

showing significant effect on HPO axis. In Sheep, the neurons 

producing GnRH receive relatively little synaptic inputs with 

respect to other neurons in the Hypothalamus (Decourt et al. 

2014, Lehman et al. 1988, Magee et al. 2009, McGrath et al. 

2016) [69, 77, 82]. Wide array of different neurons control GnRH 

activity but one particular set of neurons come to prominence-

those producing Kisspeptin. 

 

4.1 Kisspeptin  

In 1996, KISS1 gene was discovered as a metastasis-

suppressor gene in Hershey, Pennsylvania (Lee et al., 1996) 
[68]. KISS1 gene encodes a 145 amino-acid polypeptide, later 

which gets cleaved into several isoforms (all sharing a 

common C-terminal decapeptide sequence)-collectively called 

kisspeptins (Kotani M. et al, 2001) [63]. The biologically 

active peptides are named as per the number of amino-acid 

they are having i.e. (longest forms: Kp54 in human, Kp53 in 

sheep or Kp52 in rodents and smaller forms: Kp16, Kp14, 

Kp13 and Kp10) (Decourt et al., 2018) [19]. Kisspeptin is a 

family of neuropeptides that acts as high-level mediators of 

the HPG axis acting upstream to level of GnRH. These 

neuropeptides activate the orphan G-protein coupled receptor, 

which later termed as KISS1R (Muir et al, 2001) [87]. Earlier 

studies revolved around the use of kisspeptin as metastasis 

suppressor molecule for melanoma and breast cancer cell 

lines. Its role in reproductive endocrinology was hypothesized 

after its discovery in human placental extracts and subsequent 

identification of its expression in hypothalamus, pituitary and 

gonads (Bilban et al., 2004 and Seminara et al., 2008) [110]. 

Kp10 sequence is relatively similar among species with some 

variations suggesting a conserved physiological function 

(Oakley et al, 2009) [92]. Kp54 and Kp10 shows similar 

potency and biological activity in vitro, however 

susceptibility of Kp10 to enzymatic cleavage limits its 

potency in vivo. The half-life of Kp10 in healthy men and 

women was 3.8-4.1 min and for Kp54 it was 27.6 min (Dhillo 

WS et al, 2005 and George JT et al, 2011) [27, 39]. 

Human Kp-10 Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Phe-

NH2 (Albers-Wolthers et al. 2017) [2]. 

Canine Kp-10 Tyr-Asn-Trp-Asn-Val-Phe-Gly-Leu-Arg-Tyr-

NH2 (Albers-Wolthers et al. 2017) [2]. 

Bovine Kp-10 Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Tyr-

NH2 (Pottapenjera et al. 2018) [98]. 

 

4.1.1 Location of kisspeptin neurons 

The largest population of kisspeptin neurons in located in the 

arcuate nucleus of hypothalamus and especially in the more 
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caudal region of nucleus extending around pre-mammillary 

body. This is seen in sheep (Estrada et al. 2006, Franceschini 

et al. 2006, Goodman et al. 2007) [33, 37, 43], goat (Okamura et 

al. 2017), cattle (Hassaneen et al. 2016, Tanco et al. 2016) 
[50], pigs (Tomikawa et al. 2010) [122] and horses (Decourt et 

al. 2008, Magee et al. 2009) [26, 77]. Second largest population, 

being much smaller in number, is in medial pre-optic area of 

sheep, goats and cattle (Estrada et al. 2006, Franceschini et al. 

2006, Goodman et al. 2007, Matsuda et al. 2015, Hassaneen 

et al. 2016, Tanco et al. 2016) [33, 37, 43, 79, 50]. Pigs have 

kisspeptin neurons in the periventricular nucleus instead of 

pre-optic area (Tomikawa et al. 2010) [122]. Interestingly, 

horses do not contain any kisspeptin neuron in pre-optic area 

at all (McGrath 2015) [81]. 

 

4.1.2 KNDy neurons 

Neurokinin-B and Dynorphin receptors are co-expressed in 

nearly all the kisspeptin neurons located in arcuate nucleus 

(Goodman et al. 2007, Wakabayashi et al. 2010, Hassaneen et 

al. 2016) [43, 125, 50], therefore, commonly referred as KNDy 

neurons. KNDy neurons are not expressed in other locations 

of kisspeptin neurons. In goats, extensive communication has 

been shown between right and left-hand sides of nucleus by 

tract tracing studies (Wakabayashi et al. 2013) [126], mainly 

via Neurokinin-B. Majority of KNDy neurons express NK3 

receptors (receptor for Neurokinin-B) in sheep (Amstalden et 

al. 2010) [3] and goats (Wakabayashi et al. 2013) [126] while 

kappa opoid receptors are expressed in about 90% of KNDy 

neurons in sheep (Weems et al. 2016) [128]. But contrastingly, 

kisspeptin receptors are not expressed in these neurons (Smith 

et al., 2011) [117] indicating that communication among them 

is via Neurokinin-B and Dynorphin only not by the kisspeptin 

molecule. Recent studies have shown that Neurokinin-B 

transcripts are upregulated in the POA of buffaloes in 

follicular and mid-luteal stages while Dynorphin transcripts 

are downregulated in the POA in early luteal phases (Mishra 

et al. 2019) [38]. 

 

 
 

Fig 2: Diagrammatic representation of Kp (Kisspeptin) and KNDy (Kisspeptin, Neurokinin B, Dynorphin) neurons regulation in adult ewes 

 

Abbrevations: POA (Pre-Optic Area), ARC (Arcuate 

nucleus), ME (Median Eminence), GnRH (Gonadotropin 

Releasing Hormone), NKB (Neurokinin B), Dyn 

(Dynorphin), E2 (17 β Estradiol), P4 (progesterone), KISS1R 

(Kp Receptor), NK3R (NKB Receptor), KOR (Dyn 

Receptor), ERα (Estrogen Receptor α), PR (Progesteron 

Receptor). 

The kisspeptin fibres located in median eminence seems to be 

of KNDy origin indicating their origin in arcuate nucleus 

(Smith et al., 2011) [117]. Similarly, most inputs to kisspeptin 

neurons of preoptic area are also from KNDy neurons (Smith 

et al., 2011; Merkley et al., 2015) [117, 83]. Sex differences in 

terms of kisspeptin neurons have been observed in sheep and 

was firstly observed for Neurokinin-B (Goubillon et al., 2000) 
[46], long before the discovery of KNDy neurons where rams 

showed fewer immunoreactivity than the ewes. Later, it was 

confirmed for KNDy neurons where rams showed nearly half

the neurons in arcuate nucleus than the ewes (Cheng et al., 

2010) [22]. This difference is manifest primarily in the most 

caudal parts of the arcuate nucleus (Goubillon et al. 2000, 

Cheng et al. 2010) [46, 22], with little difference in cell numbers 

in the rostral arcuate. Similarly, significantly higher numbers 

of kisspeptin-ir neurons were found in the preoptic area of 

ewes compared with rams (Cheng et al. 2010) [22]. Sex 

difference in neuronal population is most probably due to the 

organizational action of testosterone (Cernea et al. 2015) [20]. 

Prenatal treatment of ewe lambs with testosterone results in 

smaller KNDy cells and number of synaptic inputs are also 

reduced especially KNDy to KNDy cells along with number 

of inputs to GnRH neurons. However, number of KNDy cells 

remained same showing testosterone action during embryonic 

development in not the sole reason for sex difference in the 

population of KNDy cells (Cheng et al., 2010) [22]. 

https://www.thepharmajournal.com/
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4.2 Factors regulating Kisspeptin neurons 

 

 
 

Fig 3: Model for the integration of factors from the internal and external environment in the brain control of reproduction in domestic animals 

 

4.2.1 Role of steroid hormone in GnRH regulation 

Nearly half of preotic kisspeptin neurons express Estrogen 

receptor-α and almost all of the arcuate kisspeptin neurons 

express Estrogen receptor-α in ewes (Goubillon et al. 2000, 

Franceschini et al. 2006) [46, 37], progesterone receptors 

(Foradori et al. 2002, Dufourny et al. 2005, Smith et al. 2007) 
[35, 29, 115] and androgen receptors (Rose 2017) [104]. 

Studiesusing sex steroids as intracranial implants in sheep 

(Blache et al. 1997, Scott et al. 1997, Caraty et al. 1998) [13, 

107, 16] indicate that in males and females, the arcuate nucleus, 

and to a lesser extent the preoptic area are key sites for the 

actions of sex steroids in the hypothalamus. Thus, the sex 

steroids may act directly on kisspeptin neurons. 

 

Estradiol 

Estrogen treatment in ovariectomized ewes results in 

reduction in neurokinin B mRNA levels (Pillon et al. 2003) 
[97]. Later studies in sheep showed regulation of kisspeptin 

neurons by estrogen in an inhibitory manner at lower doses 

while higher doses stimulate them. 

Negative feedback: Increased mRNA expression of KISS1 

gene in the arcuate nucleus (but not preoptic) (Smith et al. 

2007) [115] and higher levels of Fos expression in KNDy 

neurons are observed in ovariectomized ewes than intact ones. 

These changes are blocked by chronic administration of 

estrogen (Merkley et al. 2012) [84] indicating negative 

feedback action of estrogen on arcuate nucleus neurons. 

Within KNDy neurons, ovariectomy stimulates kisspeptin and 

Neurokinin B (Smith et al. 2007, Nestor et al. 2012) [115, 90] 

along-with inhibiting dynorphin (Foradori et al. 2006) [34] 

expression. Based on this evidence, it would seem likely that 

sex steroids must change the degree of co-localisation of 

kisspeptin, neurokinin B and dynorphin (and glutamate) 

within KNDy neurons (Goodman et al. 2013) [41], but direct 

testing of this hypothesis has not been done. 

Positive feedback: An elevation in the expression of KISS1 

mRNA in arcuate nucleus is noticed during the late follicular 

phases at times when higher levels of estrogen in circulation 

are there. Similar increase in neurokinin B mRNA levels in 

mid arcuate area was noticed (Li et al. 2015) [70]. 

Administration of estradiol benzoate in higher doses (i.e. 

sufficient to induce LH surge) to ovariectomized ewes 

resulted in increased expression of Fos in arcuate nucleus 

indicating neuronal activation at that time (Smith et al., 

2009a) [116]. In addition, the number of synaptic inputs to 

kisspeptin neurons in the arcuate nucleus was higher in 

estrous ewes in comparison with ewes in the luteal phase 

(Merkley et al. 2015) [83]. Increased Fos and KISS1 mRNA 

expression are noticed in the kisspeptin neurons of preoptic 

area at the onset of preovulatory LH surge in ewes (Hoffman 

et al. 2011, Smith et al. 2009a) [52, 116]. Interestingly, in pigs, 

there is reduction in number of kisspeptin-ir cells in arcuate 

nucleus after a high dose of estrogen/estrogen peak while an 

increase in kisspeptin cells in noticed in periventricular region 

(Tomikawa et al., 2010) [122]. In goats, there is increase in 

expression of Fos in preoptic area but no change in arcuate 

nucleus (Matsuda et al., 2015) [79]. This suggests that the 

regulation of kisspeptin by estrogen in the pig and goat is 

more similar to that of the rat and mouse than in the sheep. 

Presence of activated progesterone receptors is necessary for 

the positive feedback action of increasing concentrations of 

estradiol at the time of preovulatory surge (Mishra et al. 

2019) [38]. 

 

Progesterone 

Progesterone treated ovariectomized ewes show moderately 

lower levels of KISS1 mRNA but effect was much smaller 

w.r.t estrogen treatment (Smith et al., 2007) [115]. Progesterone 
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treatment showed no effect in the expression of 

preprodynorphin mRNA levels in ovariectomized ewes 

(Foradori et al., 2005) [36]. Estrogen is needed to upregulate 

progesterone receptors (to allow P4 to have much of an effect) 

in arcuate nucleus (Scott et al., 2000a) [108]. Cows shows 

differences in kisspeptin cell numbers in the late follicular 

phase and luteal phase in preoptic area (Hassaneen et al. 

2016) [50] and in arcuate area (Tanco et al. 2016). Study by 

Hassaneen et al. 2016 [50] involved differences in both 

circulating estrogen and progesterone levels led to 

consideration by authors as differences most likely due to 

varied estrogen levels. But in the study by Tanco et al. 2016 

circulating estrogen levels were similar in both groups and 

significant differences in P4 levels indicating the major role 

of progesterone in inhibiting kisspeptin expression in arcuate 

nucleus. 

 

Testosterone 

Very few kisspeptin-ir cells could be detected in intact rams 

(Nestor et al. 2012, Rose 2017) [90, 104] or bucks (Matsuyama 

et al. 2011) [80], but large numbers of kisspeptin-ir cells were 

observed in the caudal arcuate nucleus in males that had been 

castrated (Matsuyama et al. 2011, Nestor et al. 2012, Rose 

2017) [80, 90, 104] indicating testosterone exerting a very strong 

inhibitory action on kisspeptin neurons in male sheep. 

 

4.2.2 Season/Photoperiod 

Kisspeptin neurons are regulated by season/photoperiod when 

they observed higher number of KISS1 mRNA containing 

cells in arcuate nucleus of sheep during breeding season than 

the non-breeding season while no such difference was 

observed in preoptic area (Smith et al. 2007) [115]. Similar 

result was also observed in Abadeh goat does (Jafarzadeh 

Shirazi et al. 2014) [56] and mare (McGrath 2015) [81]. These 

changes in kisspeptin cell numbers coincide with chances in 

Neurokinin-B cell numbers but not dynorphin in estrogen 

implanted ovariectomized ewes (Weems et al. 2017) [127] 

indicating a seasonal change in the degree of co-localization 

in KNDy neurons. 

Transfer of ewes from long day photoperiod to artificial short-

day photoperiod result in higher number of kisspeptin neurons 

in the arcuate nucleus (Chalivoix et al. 2010) [21]. Melatonin is 

said to act indirectly on kisspeptin neurons as melatonin 

receptors are not expressed on kisspeptin neurons (Li et al. 

2011) [71] but express dopamine D2 receptors (Goodman et al. 

2012) [44]. In sheep, dopamine neurons present in the 

retrochiasmatic area of the hypothalamus exert inhibitory 

action on GnRH secretion during anestrus but not during 

breeding season (Goodman et al. 2010) [42]. D2 receptor 

expression on kisspeptin neurons is seasonally regulated i.e. 

twice the KNDy neurons expressing this receptor in non-

breeding season (80%) than the breeding season (40%) 

(Goodman et al. 2012) [44].  

 

4.2.3 Nutrition 

Neuronal systems, associated with metabolic status of the 

individual like Neuropeptide Y, orexin and 

proopiomelanocortin (Norgren & Lehman 1989) [91] gives 

direct inputs to GnRH neuronsallows direct control over 

GnRH release and influence over reproduction. Lean sheep 

showed lower levels of KISS1 mRNA in both preoptic and 

arcuate nucleus W.R.T. control fed ewes and 

intracerebroventricular injection of leptin reverses its effect 

(Backholer et al. 2010) [7]. Leptin receptors are expressed in 

virtually all preoptic and arcuate kisspeptin neurons 

suggesting direct effect of leptin on kisspeptin (Backholer et 

al. 2010) [7]. In ewe, arcuate kisspeptin neurons receive direct 

inputs from NPY and POMC (Backholer et al. 2010) [7]. High 

food intake in heifers increased kisspeptin neuronal 

population receiving apposition from fibres that were 

immunoreactive for αMSH (POMC product) (Cardoso et al. 

2015) [18].  

 

4.2.4 Stress 

Some stressors like transport, heat, isolation/restraint, 

hypoglycaemia, LPS injection and barking dog can exert 

significant inhibitory action on reproduction while some acute 

stresses can stimulate, especially in pigs (Einarsson et al. 

2008) [30]. Part of the inhibitory action is mediated by cortisol 

acting via type 2 glucocorticoid receptors (expressed by 

KNDy neurons) increase levels of pre-prodynorphin mRNA 

in arcuate nucleus of ewes (Ralph et al. 2016) [100].  

 

4.2.5 Pheromones 

In ewes and does (especially late anestrus), the ram effect 

resulted in elevation in KISS1 mRNA levels and fos activity 

in rostral and mid-arcuate regions (but not in caudal arcuate) 

inducing a rapid increase in GnRH/LH pulse frequency and 

therefore ovulation (De Bond et al. 2013) [24]. Hair from 

bucks (having high levels of pheromones) induced an increase 

in bursts of electrical activity in KNDy neurons and were 

suppressed by NK3 receptor antagonist (SB22200) (Sakamoto 

et al. 2013) [126]. “Male effect” is seen in pigs (Kirkwood et al. 

1981) [61] but no published data about role of kisspeptin in its 

action. 

 

4.3 Role of kisspeptin in reproductive physiology 

4.3.1 Pituitary 

Kisspeptins are identified in the ovine hypophyseal portal 

blood (Smith et al. 2008) [114] leading to hypothesis that 

kisspeptin may act at the level of pituitary to directly induce 

LH secretion from the gonadotroph cells. GnRH antagonist 

inhibits the typical kisspeptin-induced increase in LH (Irwig, 

2004) [54], indicating that the primary actions of kisspeptin on 

gonadotropin secretion occur upstream of the pituitary. 

 

4.3.2 Gender differentiation 

Kisspeptin system is apparently critical for brain gender 

differentiation, acting via regulation of postnatal testosterone 

secretion. Anatomical differences have been reported as 

females having greater kisspeptin neuronal population in 

some species like mice, ewe and doe (Nestor et al. 2012, Rose 

2017 and Matsuyama et al. 2011) [90, 104, 80]. 

 

4.3.3 Onset of puberty 

Four major components that are likely to participate in 

Hypothalamic KISS1 system control over puberty onset are:- 

(Bhalakiya et al. 2019) [8] 

1. Increase in endogenous kisspeptin tone driving HPO axis 

to its full activation. 

2. Increased sensitivity of GnRH/LH responses to stimulation 

by kisspeptin. 

3. Increased efficiency of GPR54 signalling. 

4. Increased number of kisspeptin neurons at 

AVPV/POA/PVN and/or arcuate nuclei as per the species 

as well as increase in number of projections to GnRH 

neurons. 
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4.4 Kisspeptin agonists 

Kp10 

KP-10 shows promising results in the in vitro tests but effect 

is of very shorter duration in vivo due to its shorter half-life 

and requiring multiple injections to get the desired effect. 

Metabolic degradation and quick renal clearance limits the 

use of natural kisspeptins. Also, desired effects can only be 

achieved only by i/v or intracerebroventricular injections of 

endogenous peptides at hourly intervals which is unsuitable 

and cumbersome for both livestock and humans. Here, comes 

the need for synthetic molecules with similar or enhanced 

functionality but with extended life. Despite kisspeptin being 

major pharmacological target in reproduction, only few 

kisspeptin agonist have been disclosed so far. 

 

4.4.1 FTM080 

4-fluorobenzoyl-Phe-Gly-Leu-Arg-Trp-NH2 (Tomita et al. 

2008) [123]. This molecule showed increased resistance to 

degradation by matrix metalloproteinases but the effect 

produced was of lesser duration and even decreased potency 

than the endogenous KP10 molecule (Matsui and Asami, 

2014) [51]. 

 

4.4.2 TAK-448 and TAK-683 

Incorporation of D-amino acids or replacement of Gly with 

azaGly residue in the peptide sequence improves their 

biological potencies by altering their conformational 

properties and increases their resistance to metabolic 

degradation (Mosberg et al. 1983; Asami et al. 2012) [86, 5]. 

Substitution of Trp 47 with other amino acids such as serine, 

threonine, β-(3-pyridyl) alanine or D-tryptophan (D-Trp), 

produced several azaGly 51 analogs that were resistant to 

metabolic degradation and among these, the D-Trp 47 analog 

showed not only high metabolic stability but also excellent 

KISS1R agonistic activity, although other analogs showed 

decreased agonistic activities compared with Kp-10 (Asami et 

al. 2012) [5]. 

 

Acute effects: Stimulation of GnRH release from 

hypothalamus. 

 

Chronic effects: Suppression of release of GnRH due to 

desensitization of GnRH neurons. 

 

Both compounds were active after a single subcutaneous 

injection and capable of inducing a rapid and long-lasting 

increase of LH in healthy men. However, no clear dose-

response relationship was obtained with either compound 

(Scott G. et al. 2013) [106]. The azaGly6 modification used in 

the TAK compounds is less efficient in preventing 

degradation of the Phe5 Gly6 Leu7 sequence. Also, TAK-683 

injection unexpectedly led to the regression of ovarian 

follicles rather than their maturation and ovulation (Goto et al. 

2014) [45].  

 

 
 

Fig 4: Schematic illustration of hypothalamic GnRH neurons and effects of KISS1R agonists/ antagonists on pulsatile GnRH/LH release. 

Abbreviations: Dyn= Dynorphin; POA= preoptic area; ME= median eminence; (+)= tonic effect; (–) = inhibitory effect. 

 

4.4.3 Compound-1 to Compound-17 

Stepwise targeted modification approach focused on 

improving pharmacokinetics and pharmacodynamics of the 

endogenous peptide was used by Beltramo et al. 2015 [78]. N-

terminal acetylation of Tyr, triazole incorporation at Gly-Leu 

bond and incorporation of albumin binding motif or covalent 

linking with larger molecules led to higher proteolytic 

stability and slower rates of renal clearance as a result of 

which half-life and potency of molecule increased to a greater 

extent. Among all analogues, C-17 came out as outstanding 

candidate after in vitro and in vivo studies. Analogs 

(compounds 2, 3 and 17) designed in this experiment also 

showed selectivity for KISS1R over NPFF1R (>100 times) 

(receptor for RFRP3). 
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4.4.4 C2-C7 

All the kisspeptin analogs showed enhanced in-vitro and in-

vivo activity. Introduction of the albumin-binding motif (N-

palmitoylated-γ-glutamate) on the N-terminal amine of the 

triazolopeptide and ω-methylation of Arg9 has been shown to 

dramatically enhance proteolytic stability of Kp10 in blood 

serum by conferring resistance to trypsin-like proteases and 

increased the lipophilicity of molecule aiding in crossing 

blood brain barrier (Decourt et al.). Among all, C6 showed 

best results. 

 

4.5 Kisspeptin antagonists 

Kisspeptin agonists were being used in long term to suppress 

the HPG axis but the initial stimulation of axis by agonists 

was major problem. Therefore, need arose for development of 

kisspeptin antagonists. Kisspeptin antagonist analogues were 

reported by Rosevier et al. 2009. Critical amino acid residues 

were determined that are necessary for receptor binding and 

antagonistic properties avoiding any residual agonistic effect. 

Full length of 10 amino acids is necessary for efficient 

receptor binding and analogues of 5 amino acid length were 

showing ineffective binding. They noticed that the C-terminal 

RFamide structure as well as Asn46, Trp47 and Phe50 are 

critical for receptor binding. In-vitro antagonist assays 

demonstrated that substitution of Ser49 and Leu52 with either 

D-amino acids or Gly49 and D-Trp52 was the key for 

antagonistic property and the deletions in the positions of 

Asn46-Trp47 led to loss of antagonistic properties. The most 

effective analogues with these substitutions were peptide 230, 

232, 233, 234, 235 and 236. Among all these, peptide 234 

came forward as outstanding candidate. Substitution with D-

Ala1 achieved the most complete inhibition. 

 

4.5.1 Peptide 234 

 Inhibition of IP stimulation by 10 nM KP10 by 93% with 

an IC50 of 7nM without showing any intrinsic IP 

activation. 

 Inhibits stimulation of GnRH firing by kisspeptin-10. 

 Inhibits pulsatile release of GnRH in pubertal female 

rhesus macaques. 

 Inhibits KP10 LH release in intact male rats and increase 

in LH levels after castration. 

 Inhibits LH pulses in ovariectomized ewes. 

 Drawback-requires intracerebroventricular administration 

for its action. 

 

Sahin et al. 2015 [131] conducted experiment using RP-9 and 

peptide 234 analog in Sprague-Dawley prepubertal female 

rats as animal model with observations as follows:- 

 Central administration of p234 inhibits kisspeptininduced 

pubertal advancement and LH increase in the female rats. 

 Central administration of p234 inhibits RF9-induced 

pubertal advancement and increase in LH levels in female 

rats. 

 Central administration of p234 inhibits both kisspeptin 

and RF9-induced food intake and body weight 

reductions. 

 

4.6 Therapeutic uses of kisspeptin analogues 

 
Table 4: Summary of effects of Kisspeptin and its analogues on reproductive axis 

 

Molecule Animal model Dose and route of administration Effect on reproductive axis Reference 

Kp-10 Adult non-cyclic ewes 6 nmol, i/v Increase LH and FSH after each injection 
Caraty et al. 2007 

[17] 

Kp-10 
Adult ewes in follicular 

phase 
0.48µmol/h for 8 hours, i/v Induce LH surge and ovulation 

Caraty et al. 2007 
[17] 

Kp-10 Ewes-Adult non-cyclic 15.2 nmol/h for 24 hours, i/v Increase LH and E2 Ovulation induction 
Sébert et al. 2010 

[109] 

Kp-10 Ewes-Prepubertal 20 µg/h for 24 hours, i/v 
Increase LH pulsatility Induction of 

ovulation 

Redmond et al. 

2011 [103] 

Kp-10 Cattle- Prepubertal heifers 1mg, i/v 
Increase in LH and GH at 27±3 min. and 

75±9 min. respectively 

Kadokawa et al. 

2008 [48] 

bKp-53 Beef cattle- Adult cyclic 0.2 and 2 nmol/kg, i/v 
0.2 nmol/kg= enhanced follicular growth 

2 nmol/kg= follicular growth and ovulation 

Naniwa et al. 

2013 [88] 

Kp-10 
Buffaloes-Culture grade 

oocytes 
5, 10, 15 µg/ml in TCM-199 

Oocyte maturation (Cumulus cell expansion 

and 1st polar body extrusion) 

5 µg/ml- 65.32%; 11.70% 

10 µg/ml- 73.21%; 22.11% (best) 

15 µg/ml- 68.77%; 16.32% 

Rajesh et al. 2018 
[62] 

Kp-10 
Swamp buffaloes-mid-luteal 

phase 
1.3 µg/kg body wt. i/v No increase in LH up to 6 hours 

Chaikhun-Marcou 

et al. 2019 [119] 

Kp-10 
Mithun cows-Postpartum 

anestrus 

1.3 µg/kg body wt. at 3-day 

interval for 21 days, i/m 

Early resumption of cyclicity (24.64±10.43 

days vs 86.56±14.66 days in control group) 

Khan et al. 2019 
[74] 

bKP-10 
Murrah buffaloes-Prepubertal 

and adult cyclic 

5, 10 and 15 µg/kg body wt. i/v, 

i/m 

Increased LH (2h) 

Enhanced follicular growth rate 

Pottapenjera et al, 

2018 [98] 

TAK683 Adult ovariectomized does 500 nmol/kg/ week, s/c LH pulses abolished 
Tanaka et al. 2013 

[120] 

TAK683 
Adult cyclic synchronized 

does 
35 nmol, i/v 

Inceased FSH and LH (6 h) 

Immediate suppression of gonadal steroids 

Induced ovulation 

Goto et al. 2014 
[45] 

TAK683 
Adult cyclic synchronized 

does 
5 µg; i/v, s/c 

Increased LH (10 h) 

Advanced ovulation 

Kanai et al. 2017 
[59] 

FTM080 Adult non-cyclic ewes 0.5, 2.5 and 5 nmol/kg, i/v Short lasting increase of LH (at all doses) 
Whitlock et al. 

2015 [129] 

C17 Adult non-cyclic ewes 15 nmol, i/v Increase FSH and LH during 5 and 9 hours Beltramo et al. 
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(approx.) respectively 2015 [78] 

C6 
Adult ewes in follicular 

phase 
15 nmol, i/m 

Increase FSH and LH during 12 hours 

(approx.) 

Induce ovulation 

Decourt et al. 

2016 [15] 

C6 Adult non-cyclic ewes 15 nmol, i/m 
Increase FSH and LH during 12 h Induce 

ovulation 

Decourt et al. 

2016 [15] 

C6 
Prepubertal gilts (after 

PG600) 
60 nmol, i/m 

Increased LH (>16 h) 

Induced ovulation 

Ralph et al. 2018 
[99] 

C6- 

Alpine does (nonbreeding, 

onset of breeding and 

breeding season) 

15 nmol/doe, i/m 

Increases LH and FSH levels 

Induce fertile ovulation (45% pregnancy 

rates) 

Decourt et al. 

2019 [25] 

p234 Female rats-prepubertal 

Kisspeptin= 50 pmol icv 

RF9= 10 nmol icv 

p234= 1 nmol icv 

Inhibits Kp and RF9 induced pubertal 

advancement, increase in LH levels and 

reduced food intake 

Sahin et al. 2015 
[131] 

p234 

Adult female cyclic rhesus 

monkeys 

hKp-10= 1nmol icv 

p234=10 nmol icv 
Inhibits pulsatile GnRH release Roseweir et al. 

2009 [4] 
Adult ovariectomized ewes p234= 40µg icv Inhibits LH pulses 

p234, p271, 

p354 and p356 
Anestrus beagle bitches 

ckp-10= 0.5 µg/kg body wt. 

Kp antagonist= 50 µg/kg/h 
No antagonistic effect 

Albers-Wolthers 

et al. 2017 [2] 

 

4.7 Other modulators of reproductive axis 

 
Table 5: Summary of molecules showing effect on reproductive axis 

 

Molecule Mechanism Effect 

RF9 GnIH-R antagonist Simulates the action of GnRH 

Phoenixin PNX-R Stimulates release of GnRH 

Senktide 
NK3R (neurokinin 

receptor) agonist 
Stimulates release of kisspeptin 

MLE54901 

SB22200 
NK3R antagonist 

Inhibitory effect on release of 

kisspeptin 

Opioids 
Opioid receptors of POA 

and MBH 

Inhibitory effect on GnRH/ LH 

secretion 

Naloxone Opioid-R antagonist 
Antagonizes stress induced 

inhibition of LH surge 

 

5. Conclusion and Future perspectives 

Although many GnRH modulators have been tried to control 

estrous cycle in farm animals but none of them met the 

desired levels. Kisspeptin analogues have come forward with 

encouraging results. Many kisspeptin agonists have been tried 

by various scientists and among them C6 and C17 compounds 

showed better results in sheep, goat and laboratory animal 

model. Although studies have been done on kisspeptin 

antagonists but only a few molecules are available and p234 

have good results in laboratory rodents and ewe model. A 

standard therapeutic protocol for the use of these novel 

compounds in farm animals at field level need to be devised. 
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