www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; SP-11(7): 1186-1189 © 2022 TPI www.thepharmajournal.com Received: 02-05-2022 Accepted: 05-06-2022

Dinesh Kumar Sunwasiya

Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, India

Study of non-linear growth curve models parameters in goat

Dinesh Kumar Sunwasiya

Abstract

"Understanding evolutionary changes and creating effective breeding strategies depend on the inheritance of growth curves. Determining the genetic and non-genetic components of development curves is crucial because it can be used to correct data irregularities based on by random environmental impacts. As a result, knowledge can be used to directly choose animals to improve growth traits".

Keywords: Breeding strategies, growth curves, growth traits

Introduction

Non-linear Growth curve models are important to assess to potential worth of growth parameters for selection criteria to make breeding strategies for animals. Animal growth models are used to calculate the daily food nutrient requirements for animals at different stages of development and to identify alternative techniques to increase the efficiency of livestock production (Schinckel and de Lange, 1996) ^[20]. Additionally, they have been applied to calculate adult weight and increases in live body weight (Nasholm and Danell, 1990; Jenkins and Leymaster, 1993) ^[14, 9].

Growth curve explains the changes in yield that occur as a result of this interaction over time (or as a function of age) (Kor *et al.*, 2006) ^[11]. The weight or size of any organ, the composition of tissues and cell size, as well as living weight, can all alter with age (Eisen, 1976) ^[4].

Growth curves are useful in the production of animals because they may be used to: (1) assess the response to various treatments throughout time; (2) examine the relationship between treatments and time; and (3) identify heavier animals within a population at younger ages (Bathaei and Leroy, 1996; Freitas, 2005; Malhado *et al.*, 2009)^[1,5,13].

Genetic parameters of growth curve parameters are necessary to examine the potential worth of the growth parameters as selection criteria for breeding strategies. The importance of this concept has been demonstrated (Kachman *et al.* (1988)^[10]; Daskiran *et al.*, (2010)^[3].

Three parameters were primarily evaluated using several non-linear growth curve models: asymptotic mature live body weight (A), folding point of growth (B), and growth rate (K). The parameters changed based on the species, breed, management practices, impact of the environment, flock size, clusters, nutritional status, and selection techniques. The coefficient of determination (\mathbb{R}^2) is parameter for goodness of fit which indicate higher value good indication for fitting of non-linear model.

In the Brody non-linear growth curve model for both sexes, parameter (A) varied from 29.13 (Waheed *et al.*, 2011)^[24] in the Beetal goat to 52.90 in the Kalahari red goat (Hifzan *et al.*, 2015), parameter (B) varies from 0.75 (Pire *et al.*, 2017)^[18] in Repartida goat to 0.91 by (Waheed *et al.*, 2011)^[24] in Beetal goat and parameter (K) value from 0.00 (Pire *et al.*, 2017)^[18] in Repartida goat to 0.10 (Waheed *et al.*, 2011)^[24] in Beetal goat.

In Gompertz non-linear growth curve model value ranged for both sexes parameter (A) reported from 16.5 (Gaddour *et al.*, 2012)^[7] in Alpine goat to 55.06 (Wahi *et al.*, 2004)^[25] in Jamunapari goat, parameter (B) from 0.02 (Gaddour and Najari 2008)^[6] in Alpine goat 2.52 (Wahi *et al.*, 2004)^[25] in Jamunapari goat and parameter (K) varies from -0.31 (Gaddour and Najari 2008)^[6] in Alpine goat to 52.34 (Cak *et al.*, 2017)^[2] in coloured mohair goat.

Value of parameter (A) extended from 14.35 (Cak *et al.*, 2017) ^[2] in coloured mohair goat to 32.53 (Paul *et al.*, 2016) ^[17] in non-descript goat, parameter (B) laying from 0.75 (Pire *et al.*, 2017) ^[18] in Repartida goat to 3.75 (Paul *et al.*, 2016) in non-descript goat and parameter (K) from 0.01 (Pire *et al.*, 2017) ^[18] in Repartida goat to 0.17 (Paul *et al.*, 2016) in non-descript

Corresponding Author

Dinesh Kumar Sunwasiya Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, India goat for Logistic non-linear growth curve model for both sexes.

In Bertallanffy non-linear growth curve model parameter (A) incressing from 25.43 (Pire *et al.*, 2017)^[18] in Repartida goat to 37.62 (Paul *et al.*, 2016)^[17] in non-descript goat, parameter (B) valued from 0.37 (Pire *et al.*, 2017)^[18] in Repartida goat to 2.09 (Paul *et al.*, 2016)^[17] in non-descript goat and parameter (K) observed from 0.00 (Pire *et al.*, 2017)^[18] in Repartida goat to 0.40 (Tatar *et al.*, 2009)^[22] in young hair goat for both sexes.

The coefficient of determination (\mathbb{R}^2) was reported in goat for both sexes in Brody non-linear growth model from 87.53 per cent (Pires *et al.*, 2017)^[18] in Repartida goat to 99.80 per cent (Waheed *et al.*, 2011)^[24] in Beetal goat. The coefficient of determination (\mathbb{R}^2) was increaesd by Gompertz non-linear growth curve model from 71.00 per cent (Gaddour *et al.*, 2012) ^[7] in Alpine goat to 99.80 per cent (Waheed *et al.*, 2011) ^[24] in Beetal goat in goat for both sexes. The coefficient of determination (\mathbb{R}^2) was extended in Logistic non-linear growth curve model from 91.47 per cent (Pires *et al.*, 2017) ^[18] in Repartida goat to 99.76 per cent (Paul *et al.*, 2016) ^[17] in non-descript goat in goat for both sexes.

The coefficient of determination (\mathbb{R}^2) was oscillated in goat for both sexes by Bertalanffy non-linear growth curve model from 88.58 per cent (Pires *et al.*, 2017)^[18] in Repartida goat to 99.79 per cent (Paul *et al.*, 2016)^[17] in non-descript goat.

Table: Estimated non-linear	growth curve model	parameters for vario	us goat breeds
Table: Estimated non-inteal	growin curve moder	parameters for vario	us goat breeds

	Growth curve Sex		Growth curve model		Goodness of		
Animal		Sex	parameters		fit	References	
	mouer		Α	В	K	R ²	
Jamunanari goat	Gompertz	Both savas	55.06	2.52	0.08	96.02	
Jamunapari goat	Logistic	Dour sexes	-	-	-	95.93	
Destal seat	Gompertz	Dette serve	28.54	1.86	0.16	98.51	
Beetal goat	Logistic	Dour sexes	-	-	-	97.86	
Darbari agat	Gompertz	D d	32.96	2.48	0.11	99.14	
Barbari goai	Logistic	Bour sexes	-	-	-	98.81	
Dalah Dangal agat	Gompertz	Both sexes	20.20	2.43	0.15	99.46	
Balck Bangal goat	Logistic					99.23	
Is many series Destal as at	Gompertz	Both sexes	33.75	2.15	0.13	99.35	
Jamunapari x Beetai goat	Logistic					99.09	Wabi at $al (2004)$ [25]
Ismunononi y Donhoni cost	Gompertz	D (1	36.84	2.35	0.10	98.70	wall $et al., (2004)$
Jamunapari x Barbari goat	Logistic	Bour sexes				98.34	
Jamunapari x Black Bangal	Gompertz	Deth serves	26.29	2.32	0.14	99.23	
goat	Logistic	Both sexes				99.38	
Destal - Desta	Gompertz	Deth serves	31.64	2.17	0.13	98.98	
Beetal x Barbari	Logistic	Both sexes				98.59	
Destal a Disala Demarkant	Gompertz	D (1	34.56	2.49	0.12	99.23	
Beetal x Black Bangal goat	Logistic	Both sexes				98.90	
Deviler and Display Deviced and	Gompertz	Deth serves	23.42	2.30	0.14	99.17	
Barbari x Black Bangal goat	Logistic	Both sexes				98.78	
Akkeci goat	Gompertz	Female	48.4	-0.00	103.27	97.85	Kor <i>et al.</i> , (2006) ^[11]
	Brody	Both sexes	31.8	0.91	0.01	93.90	Tsukahara <i>et al.</i> , (2008)
KambingKatjang goat	Bertalanffy		28.8	0.49	0.022	93.70	
	Gompertz		28.1	1.90	0.026	93.60	
	Logistic		27.0	4.38	0.037	93.00	
	Brody	Both sexes	33.7	0.94	0.021	92.40	
KambingKatjang goat x	Bertalanffy		32.2	0.52	0.032	92.30	
German Fawn goat (F1)	Gompertz		31.8	2.06	0.037	92.10	
	Logistic		31.2	5.15	0.053	91.40	
	Brody	Both sexes	35.5	0.93	0.027	92.90	
Back cross with 75per cent GF	Bertalanffy		34.2	0.50	0.038	92.70	
genes (BC)	Gompertz		33.9	1.94	0.044	92.50	
	Logistic		33.2	4.50	0.062	91.80	
F2 (F1 X F1)	Brody		34.9	0.89	0.021	91.40	
	Bertalanffy	Both sexes	33.3	0.46	0.029	91.00	
	Gompertz		32.9	1.76	0.033	90.70	
	Logistic		32.3	3.76	0.045	89.70	
Alpine goat	Gompertz	Both sexes	16.53	0.02	-0.31	-	
Damascus goat	Gompertz	Both sexes	15.04	0.05	-0.33	-	
Local	Gompertz	Both sexes	12.47	0.04	-0.32	-	
F ₁ Alpine X Local	Gompertz	Both sexes	17.1	0.03	-0.39	-	Gaddour and Najari
F ₂ Alpine X Local	Gompertz	Both sexes	15.73	0.05	-0.42	-	(2008) [8]
F1 Damascus X Local	Gompertz	Both sexes	17	0.02	-0.21	-	
F2 Damascus X Local	Gompertz	Both sexes	16.67	0.03	-0.25	-	
Young Hair Goat	Gompertz		32.70	1.83	0.46	97.70	
	Logistic	Both sexes	32.03	4.04	0.66	96.40	Tatar <i>et al.</i> , (2009) ^[22]
	Brody		34.35	0.89	0.28	98.90	
	Bertalanffy		33.07	0.47	0.40	98.20	

~ 1187 ~

	Growth curve model		Growth curve model		Goodness of		
Animal		Sex	parameters			fit	References
			Α	B	K	R ²	
Angora goat	Gompertz	Both sexes	23.39	0.91	0.00	95.60	Ozdemir and Dellal
	Logistic	Dour sexes	20.70	4.96	0.01	95.70	(2009) [16]
Alpine goat	Gompertz	Male	31.90	-	-	-	Kume and Hanjo (2010)
	Gompenz	Female	27.8	-	-	-	[12]
	Brody	Both sexes	29.13	0.91	0.10	99.80	
		Male	28.91	0.91	0.12	99.60	
		Female	30.21	0.91	0.09	99.90	Waheed et al., (2011) ^[24]
Beetal goat	Gompertz	Both sexes	23.45	1.98	0.25	99.80	
		Male	24.02	1.98	0.27	99.70	
		Female	22.94	1.99	0.23	99.80	
Alpine goat	Gompertz	Both sexes	16.5	-	-	71.00	Goddour at al. (2012) [7]
Indigenous goat	Gompertz	Both sexes	12.47	-	-	71.00	Gaudour <i>et al.</i> , (2012)
	Commente	Male	27.62	2.54	0.10	-	
Destal seat	Gompertz	Female	29.33	2.53	0.09	-	Nouman and Abrar
Beetal goat	T	Male	7.67	0.17	24.74	-	(2013) [15]
	Logistic	Female	8.29	0.16	25.90	-	
	G (Male	8.40	0.15	0.07	94.31	
	Gompertz	Female	6.42	0.15	0.09	94.60	D
Non-descript goat of Nigeria	Logistic	Male	7.66	0.61	0.10	93.70	Raji <i>et al.</i> , (2015) ^[19]
		Female	6.22	0.20	0.12	94.14	
	Brody	Both sexes	52.90	0.89	0.08	97.70	Hifzan <i>et al.</i> , (2015) ^[8]
Kalahari red goat	Gompertz	Both sexes	48.90	1.84	0.15	97.9	
	Logistic		32.53	3.75	0.17	98.66	Paul <i>et al.</i> , (2016) ^[17]
Non-descript goat (master	Gompertz	Both sexes	42.96	1.88	0.08	98.97	
sample)	Bertallanffy		37.62	2.09	0.12	98.96	
	Logistic	Both sexes	32.53	3.75	0.17	99.76	
Non-descript goat (Bootstrap	Gompertz		42.96	1.88	0.08	99.79	
sample)	Bertallanffy		37.62	2.09	0.12	99.79	
Coloured mohair	Logistic		17.19	5 31	0.03	99.53	
goat(singleton)	Gompertz	Both sexes	18.86	0.01	38.99	99.70	Cak et al., (2017) ^[2]
gout(shigicton)	Logistic		14.35	6.16	0.02	99.53	
Coloured mohair goat(twin)	Gompertz	Both sexes	16.60	0.10	52.34	99.53	
	Brody		20.68	0.01	0.00	87.53	
Repartida goat	Bertalanffy	-	25.08	0.75	0.00	88.58	Pires et al., (2017) ^[18]
	Logistic	Both sexes	22.43	0.57	0.00	91.47	
	Gompertz		22.51	1 44	0.01	90.97	
	Brody		25.38	0.80	0.01	00.30	
Sirohi goat	Compertz	Both sexes Male	23.30	1.80	0.14	08.47	Sunwasiya <i>et al.</i> , (2020) [21]
	Logistic		22.39	3.80	0.29	07.37	
	Dortalanffy		21.40	0.47	0.42	09.97	
	Dentalality		22.91	0.47	0.24	90.02	
	Carron a refer		20.00	0.00	0.14	99.40	
	Janietia		25.48	1.79	0.28	98.02	
	Logistic Dortol-refer		24.49	3.84	0.41	97.38	
	Dr. 1		24.10	0.40	0.24	98.95	
	Brody	ody npertz gistic alanffy	24.81	0.89	0.14	99.35	
	Gompertz		21.90	1.80	0.28	98.39	
	Logistic		20.99	3.87	0.41	97.28	
	Bertalanffy		22.47	0.47	0.24	98.76	1

References

- 1. Bathaei SS, Leroy PL. Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research. 1996;22:155-162.
- Cak B, Yilmaz O, Keskin S, Bayril T, Tariq MM. Determination of Appropriate Growth Models for Early Selection Possibilities in Goats. Pakistan Journal of Zoology. 2017;49(2):543-547.
- 3. Deskiran I, Koncagul S, Bingol M. Growth characteristics of indigenous Nordus female and male lambs. Journal of Agricultural Science. 2010;16:62-69.
- 4. Eisen EJ. Result of growth curve analysis in mice and rate. Journal of Animal Science. 1976;42:1008-1023.
- 5. Freitas AR. Curvas de crescimento na produc ao animal. R Bras Zootec. 2005;34:786-795.

- Gaddour A, Najari S. Adjustment of the kids growth curve in pure goat breeds and crosses under Southern Tunisian conditions. Journal of Applied Research. 2008;34:117-120.
- 7. Gaddour A., Ouni M, Najari S. Growth Curve Estimation in Pure Goat Breeds and Crosses of First and Second Generation in Tunisian oases. Journal of Cell and Animal Biology. 2012;6(6):99-103,15.
- Hifzan RM, Idris I, Yaakub H. Growth pattern for body weight, height at withers and body length of Kalahari red goat. Pakisthan Journal of Biological sciences. 2015;18(4):200-203.
- 9. Jenkins TG, Leymaster KA. Estimation of maturing rates and masses at maturity for body components of sheep. Journal Animal Science. 1993;71:2952-2957.

- Kachman SD, Baker RL, Gianola D. Phenotypic and genetic variability of estimated growth curve parameters in mice. Theoretical and Applied Genetics. 1988;76:148-156.
- Kor A, Baspinar E, Keskin S. The Determination of Growth in Akkeci (White Goat) Female Kids by various Growth Models. Czech Journal Animal Sciences. 2006;51(3):110-116.
- 12. Kume K, Hanjo L. Study of growth curve variations foer kids 0-6 months old of Alpine goat breed in Albania. Archiva Zootechnica, 2010;13(2):54-62.
- Malhado CHM, Carneiro PLS, Affonso PRAM, Souza AAO Jr., Sarmento JLR. Growth curve in Dorper sheep crossed with local Brazilian breeds, Morada Nova, Rabo Largo and Santa Ines. Small Ruminant Research. 2009;84:16-21.
- Nasholm A, Danell O. Growth and mature weight of Swedish Fine Wool Landrace ewes. I. Growth curves and estimation of individual mature weight. Acta Agric. Scan. 1990;40:71-81.
- 15. Nouman S, Abrar Y. Non-linear growth models for Beetal goat. African Journal of Water Conservation and Sustainability. 2013;1(2):30-32.
- Ozdemir H, Dellal G. Determination of growth curve in young Angora Goats. Tarim Bilimleri Dergisi, 2009;15(4):358-362.
- Paul AK, Singh RK, Das NM, Wahi SD, Singh NO. Genetic Variability of Growth Curve Parameters in Goats: Application of Bootstrap Techniques. Journal of the Indian Society of Agricultural Statistics. 2016;70(3):211-218.
- Pires LC, Machado TMM, Carneiro PLS, Silva JBL, Barbosa ADHB, Torres RA. Growth curve of Repartida goat reared in the Caatinga region, Brazil. *Semina Ciencias Agrarias*, Londrina. 2017;38(2):1041-1050.
- 19. Raji AO, Asheikh LG, Mahammed ID. Comparison of Growth of Male and Female Kids of Nondescript Goats in a Semi Arid Region of Nigeria. Iranian Journal of Applied Animal Science. 2015;5(1):115-120.
- 20. Schinckel AP, De Lange CF. Characterization of growth parameters needed as inputs for pig growth models. Journal of Animal Science. 1996;74:2021-2036.
- Sunwasiya DK, Gautam L, Kumar V, Garhwal P. Comparison of non-linear growth curve models in Sirohi goat. Ruminant Science. 2020;1(9):145-150.
- 22. Tatar MA, Tekel N, Ozkan M, Bartci I, Dellal G. The determination of growth function in young hair goat. Journal of Animal and Veterinary Advances. 2009;8(2):213-216.
- 23. Tsukahara Y, Chomei Y, Oishi K, Panandam JM, Mukherjee TK, Hirooka H. Analysis of growth patterns in purebred Kambing Katjang goat and its crosses with the German Fawn. Small Ruminant Research. 2008;80:8-15.
- 24. Waheed A, Khan MS, Ali S, Sarwar M. Estimation of Growth Curve Parameters in Beetal Goats. Leibniz Institute of Farm Animal Biology, Dummerstorf, Germany Archiv Tierzucht, 2011;54(3):287-296.
- 25. Wahi SD, Chand L, Bhatia VK. A Growth Pattern Study in Crosses and Pure Indian Breeds of Goats. Indian Journal of Animal Science. 2004;74(9):955-958.