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Study of yield stability for rice (Oryza sativa L.) 

genotypes using AMMI model 
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Parmar 

 
Abstract 
The twenty two midlate rice genotypes having fine type were evaluated at four different locations of 

Gujrat in the years of 2021-22 in RCBD with three replications. The data on grain yield were subjected to 

statistical analysis with a view to fulfill the objective: (1) To study the G×E interaction using the 

multivariate technique (AMMI model) (2) To find the stable genotypes using AMMI model and AMMI 

based stability measures. The grain yield data were subjected to analysis of variance and pooled over 

locations. GxE interaction was found significant indicating genotypes performed differently in different 

locations. The results of the AMMI model indicated that GEI was further divided into two PCA axes 

IPCAI (65.22%) and IPCAII (22.49%) which together contributed 87.71 percent of the GEI. E1 

(Nawagam) and E3 (Navsari) were found high yielding environments whereas E2 (Dabhoi) and E4 

(Vyara) were found low yielding environments. Mean vs. IPCAI biplot found that genotypes G7, G19, 

G14 and G11 had general adaptability to the environments. Genotypes G3, G8, G17 and G18 were higher 

yielder and adapted to favorable environments. Where, genotypes G10, G12, G16 and G22 were lower 

yielders and adapted to poor environments. According to IPCA scores genotypes G3, G5, G7, G8, G11, 

G13, G17, G18 and G19 had positive GEI with environments E1 and E3. Which-won-where biplot 

indicated that genotypes G3 and G8 were vertex genotypes and they gave higher grain yield in 

environments E1 and E3. Genotypes G2 and G4 were vertex genotypes and high yielding in the E4 and 

E2 respectively. Genotypes G11, G7, G14 and G19 were the most stable genotypes as had low values of 

Wi (AMMI), ASV, ASTABi and simultaneous selection indices. Genotypes G15, G4, G21 and G18 were 

found unstable across the environments. 

 

Keywords: Rice, yield stability, AMMI Model, IPCA, genotypes, environments 

 

Introduction 

Rice (Oryza sativa L.) is a grass species that is the most widely consumed staple food crop for 

over 60% of the world's population. It is a member of the genus Oryza, which also includes 

wild rice and other species of cultivated rice. Rice is a versatile crop that can be grown in a 

variety of environments, from flooded fields to upland areas. It is also a low-input crop, 

requiring less water and fertilizer than other cereal crops. Rice is a major source of 

carbohydrates, fiber, vitamins and minerals. It is also a low-fat food, making it a healthy 

choice for people trying to lose or maintain a healthy weight. Rice is a common ingredient in 

many different meals around the world as well as ready-to-eat foods including popped and 

puffed rice, instant rice, and canned rice. In the cottage industry, rice straw is made into hats, 

mats, ropes, sound absorbing boards also used as litter material and as animal feed. In the 

current situation in 2020, China is the leading producer of paddy followed by India. The 

productivity of India is 2705 kg/ha (Anon., 2020a) [3]. In Gujarat, the area of rice cultivation is 

about 0.91 million hectares with a production of 2.14 million tons with 2367 kg/ha 

productivity (Anon., 2020b) [4]. As the world's population continues to grow the rice demand 

will likely increase. This will require the development of new stable varieties of rice that are 

more productive, resistant to pest and adapted to wide environments.  

The study of genotype × environment interaction (GEI) can be approached using three 

different methods: parametric, non-parametric, and multivariate. Parametric methods, such as 

the Eberhart and Russell model, use analysis of variance (ANOVA) to identify and test sources 

of variability in GEI. However, these methods do not provide insight into the underlying 

pattern of interaction. On the other hand, non-parametric techniques can be used to spot 

interaction patterns because they do not rely on any presumption about the distribution of data.  
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The AMMI model is a powerful multivariate technique for 

study GEI that fuses ANOVA and principal component 

analysis (PCA) to identify and interpret GEI. ANOVA is used 

to identify the main additive effects, while PCA is used to 

identify the non-additive interaction effects. The AMMI 

model provides a more comprehensive understanding of GEI 

than either parametric or non-parametric methods alone. The 

advantage of the AMMI model is, it can identify both additive 

and non-additive effects of GEI, it can be used to identify 

patterns of interaction and it is easy to interpret. This study 

investigated the genotype x environment interaction (GEI) for 

rice yield, with the aim of selecting stable genotypes and to 

compare the stability measures viz., Wi(AMMI) (Raju, 2002) [17], 

ASV (Purchase, J. L.,1997) [16]. and ASTA Bi (Rao, et al., 

2004) [18] were calculated based on AMMI analysis for 

stability of rice genotypes. 
 

Materials and Methods 
A set of twenty-two rice genotypes was evaluated for their 

yield stability at four different locations viz., Nawagam (E1), 

Dabhoi (E2), Navsari (E3) and Vyara (E4) Gujarat, India 

during kharif 2021-2022. The rice genotypes were grown in a 

randomized complete block design with three replications at 

each location. The yield data of multi-location were subjected 

to stability analysis using a multivariate method (AMMI). 
 

Statistical model 

ANOVA: 𝑌𝑖𝑗 =  𝜇 +  𝛼𝑔 +  𝛽𝑒 + 𝛼𝛽𝑔𝑒 + 𝜌𝑖𝑗 +  ɛ𝑖𝑗𝑘  

PCA: 𝑌𝑖𝑗 =  𝜇 + ∑𝑛𝜆𝑛𝛾𝑔𝑛𝛿𝑒𝑛 +  𝜌𝑖𝑗 +  휀𝑖𝑗𝑘  

AMMI: 𝑌𝑖𝑗 =  𝜇 + 𝛼𝑔 + 𝛽𝑒 + ∑ 𝜆𝑛𝛾𝑔𝑛𝛿𝑒𝑛𝑛 + ɛ𝑖𝑗𝑘  

 

Where, 

𝜇: grand mean 

𝛼𝑔: deviation of genotype g from grand mean 

𝛽𝑒: deviation from environment e 

𝜆𝑛: Singular value for Interaction Principal Component  

Analysis Axis n (IPCA) 

𝛾𝑔𝑛: genotype eigenvector for axis ‘n’ 

𝛿𝑒𝑛: environment eigenvector for axis ‘n’ 

𝜌𝑖𝑗: Residual 

ɛ𝑖𝑗𝑘: error term 

 

The result of AMMI analysis is graphically represented by the 

biplot. It is a useful tool to comprehend more intricate and 

specific patterns of genotypes and GEI or both genotypes and 

environments. The concept of biplot was first developed by 

Gabriel (1971) [8]. It is a scatter plot that visually illustrates 

the genotype and environments of two-way data and enables 

the visualisation of the relationships between genotypes, 

environments and GEI. The biplot is a useful tool for 

identifying genotypes that are well-adapted to perticular 

environments. It can also be used to identify genotypes that 

have high GEI, which means that they perform well in some 

environments but not others. The biplot can be used to 

visualize the overall pattern of GEI in a data set. This can help 

researchers to understand how genotypes and environments 

interact to produce different phenotypes (Yan et al., 2000) [22]. 
 

Wi(AMMI)  

Wi(AMMI) a measure of stability which is good as wrick’s 

ecovalence (Wi
2) was estimated as under (Raju, 2002) [17]. 

Lower values of the Wi(AMMI) score indicated the stable 

genotypes across the different environments. 

𝑊𝑖(𝐴𝑀𝑀𝐼) = ∑ 𝜆𝑚
2 𝛾𝑚𝑖

2

𝑀

𝑚=1

 

 

𝜆𝑚 = singular value for interaction Principal Components 

Axis m(IPCA) 

 

𝛾𝑚𝑖  = genotype eigenvector for axis m 

 

AMMI stability value (ASV) 

The AMMI model does not provide a quantitative measure of 

stability, which is required for quantifying and ranking 

genotypes based on their yield stability, the following 

measure proposed by Purchase (1997) [16]. The ASV score is a 

measure of the genotypic stability of a genotypes. A higher 

ASV score implies that the genotype is specifically adapted to 

certain environments, while a lower ASV score indicates that 

the genotype is more genetically stable across different 

environments. It can be calculated by the following formula. 

 

𝐴𝑆𝑉 = √[(
𝐼𝑃𝐶𝐴1 𝑆𝑆

𝐼𝑃𝐶𝐴2 𝑆𝑆
) × (𝐼𝑃𝐶𝐴 𝑠𝑐𝑜𝑟𝑒)]

2

+ (𝐼𝑃𝐶𝐴2 𝑠𝑐𝑜𝑟𝑒)2 

 

AMMI based selection indices 

A new stability measure and incorporated as a stability 

component (Rao, et al., 2004) [18] When more than two axes 

are retained in AMMI model, the biplot formulation of 

interaction is failed. When n’ of N axis are retained in the 

AMMI model to explain GEI, then the stability measure of ith 

variety can be determined as the end point of its vector α*
1i, 

α*
2i, …, α*

n’i from the origin 0’n’xl. This can also be taken as the 

squared Euclidean distance between the vector γ = (α*
1i, α*

2i, …, 

α*
n’i) ΄from the origin, in the n′- Dimensional and was 

calculated as under.  
 

𝐴𝑆𝑇𝐴𝐵𝑖 = 𝑑𝑖(𝛾, 0) =  𝛼1𝑖 
2∗ + 𝛼2𝑖

2∗ + ⋯ + 𝛼𝑛𝑖
2∗ = ∑ 𝛼𝑛𝑖

2∗

𝑛′

𝑛=1

= ∑ 𝜆𝑛𝛼𝑛𝑖
2

𝑛′

𝑛=1

 

 

A genotype is considered as highly stable when the values of 

ASTABi is small or near to zero. 

 

Results and Discussion 
Table 1 shows the combined analysis of variance (ANOVA) 

of twenty two genotypes over 4 locations using AMMI model. 

The table clearly demonstrated that mean squares for 

genotype and location (environment) were found significant. 

This implied that there was a wide range of variability among 

genotypes and locations and that genotype performance 

varied depending on the location as the G×E interaction was 

significant. The largest portion of the total treatment variation 

(trial SS) was attributable to in location (42.12%) followed by 

genotype-related variance (39.03%) and G × E interaction 

related variance (18.86%). Mostafavi et al. (2011) [11], 

Farshadfar et al. (2012) [7], Pande et al. (2013) [13], Das et al. 

(2018) [6]. 

A significant portion of the GEI was further divided into two 

PCA axes (IPCAI and IPCAII) which together contributed 

87.71 percent of the GEI. The variance of total GEI was made 

up of 65.22 and 22.49 percent by the first two PCAs, 

respectively. Abeytilkaratna (2010) [1], Kesh et al. (2022) [10], 

Yan (2002) [21] and Gauch and Zobel (1997) [9]. found similar 

kind of result in rice. 
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Table 1: Analysis of Variance (ANOVA) for AMMI analysis of rice genotypes over environments 

 

Source of Variations df Sum of Squares Mean Squares F Ratio % SS 

Trials 87 16.2494 0.1867 3.84* -- 

Genotypes 21 6.3419 0.3020 6.21* 39.03 

Env 3 6.8434 2.2811 46.90* 42.12 

G*E 63 3.0639 0.0486 2.53* 18.86 

PCA I 23 1.9982 0.0868 4.38* 65.22 

PCA II 21 0.6891 0.0328 1.65 22.49 

Residual 19 0.3765 0.0198 
 

12.29 

P. error 168 3.2052 0.0191   

*Significant at 0.05 percent level of probability 
  

The result of AMMI analysis can also be easily 

comprehended using the AMMI 1 biplot as shown in Fig. 1. 

The biplot was constructed using the mean performance and 

IPCA I score for both the genotypes and environments, as 

presented in Table 2. The effects (genotypes and 

environments means) were shown on the abscissa (X-axis) 

and ordinate (Y-axis) represents the first IPCA score. The 

conventional interpretation of such biplot assay is that if 

genotype or an environment has a PCA score close to ‘0’, it 

has very small interaction effects and when the genotypes and 

environment have the same sign on the PCA axis their 

interaction is positive but if different then their interaction is 

negative. The AMMI model considers genotypes with a mean 

higher than the grand mean and IPCAI scores nearly zero to 

be as generally adapted to all environments. However, the 

genotypes with high mean performance and with large values 

of IPCA scores considered to have certain adaptability to the 

environments. Biplot assay shown in Fig. 1 identify five high 

yielding genotypes viz., G7, G19, G14, G11 and G2 having 

general adaptability as they were situated at right hand side of 

grand mean level (2.298 kg/plot) and close to IPCA I = 0 line. 

Genotypes G3, G8, G17, G18, G15 and G1 were higher 

yielding and specially adapted to favorable environments. 

Genotypes G10, G12, G16 and G22 had low mean yield 

indicated that they were adapted to poor environments 

Padmavathi et al. (2020) [12] and Kesh et al. (2022)) [10]. 

 
Table 2: Mean grain yield, IPCA1 and IPCA2 scores of different rice genotypes and environments 

 

Genotypes Mean Yield (kg/plot) Rank PC1 PC2 

G1 2.475 6 -0.288 -0.2452 

G2 2.723 1 -0.0191 0.4549 

G3 2.573 2 0.2804 -0.0988 

G4 1.943 20 -0.4266 -0.0436 

G5 2.325 14 0.2406 0.1104 

G6 2.270 15 0.3552 0.031 

G7 2.371 13 0.02202 -0.1547 

G8 2.500 4 0.2921 -0.1177 

G9 1.664 22 -0.2889 -0.207 

G10 2.263 16 0.1316 0.1412 

G11 2.443 8 0.05942 -0.1022 

G12 2.225 17 -0.2336 0.01969 

G13 2.443 9 0.1564 -0.2307 

G14 2.415 10 0.00468 -0.2169 

G15 2.373 12 -0.4197 0.1666 

G16 1.961 19 -0.2176 -0.1599 

G17 2.475 5 0.2697 0.249 

G18 2.475 7 0.3515 0.1033 

G19 2.389 11 0.07197 0.1916 

G20 2.505 3 -0.1765 0.1635 

G21 1.697 21 -0.3535 0.2332 

G22 2.041 18 0.188 -0.2876 

Average 2.298  

Environments 

E1 2.554 1 0.5336 -0.3025 

E2 1.882 4 -0.9729 -0.2563 

E3 2.550 2 0.4269 -0.2289 

E4 2.204 3 0.01240 0.7877 

 

IPCA scores of genotypes G3, G5, G7, G8, G11, G13, G17, 

G18 and G19 and IPCA scores of Nawagam (E1) and Navsari 

(E3) locations were positive, which revealed that these 

genotypes were associated with higher yield at these locations 

with positive GEI. E4 had a relatively small IPCA1 score, 

indicating that E4 had little interaction with genotypes 

(Anandan et al., 2009) [2]. 

Environments were widely spread over scatter diagram. It 

showed that there was a high degree of variability among the 

locations. Environment E1 (Nawagam) and E3 (Navsari) were 

highly yielding potential locations, whereas, E4 and E2 were 

found low yielding environments (Fig. 1) (Campbell and 

Jones, 2005) [5]. 

The Visualization of the polygon (“Which-won-where”) 

pattern of MLT data is crucial for studying the presence of 

different mega-environments. The GGE biplot view Fig. 2 
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made up of an irregular polygon and a set of lines drawn from 

the biplot origin to intersect the sides of the polygon at right 

angles. The vertices of the polygon were the genotype 

markers away from the biplot origin in various directions in 

such a manner to accommodate all genotype markers. The 

biplot is divided into sectors by perpendicular lines to the 

polygon sides, each having its own winning cultivar, (Yan 

and Tinker, 2006) [20]. The vertex cultivar at the intersection 

of the two polygon side was the winning cultivar for a sector 

and it is positioned usually within its wining sector. The ten 

rays divide the biplot into ten sectors. Out of four locations, 

two locations E1 and E3 were fall in the third sector. 

Whereas, environments E4 and E2 occupy in seventh and 

tenth sectors, respectively. 

The third sector had locations E1 (Nawagam) and E3 

(Navsari) with higher yielding genotypes G3 and G8 while 

seventh sector showed E4 (Vyara) with higher yielding 

genotypes G2 and G19. The sector ten with environment E2 

(Dabhoi) showed advantage for genotype G4. The other 

genotypes G1, G22, G6, G18, G17, G21 and G15 lying on 

vertices did not respond at any locations. The first principal 

component (PC1) in this graphic presentation shows cultivar 

productivity and the second principal component (PC2) 

represents cultivar stability. A genotype with high PC1 value 

(high productivity) and a low PC2 value near to zero (more 

stable) would be considered an ideal genotype. The present 

study indicated that Genotypes G6 and G18 had largest PC1 

scores and had the higher grain yield than overall mean grain 

yield. In contrast, genotype G12 yielded poorly at all sites but 

was relatively stable, as indicated by its small PC1 scores 

(low yielding) and relatively small PC2 score (stable). 

Genotypes with PC1 scores more than zero were identified as 

higher yielding, while those with PC1 scores < 0 were 

identified as lower yielders. Accordingly, the average yield of 

G15 and G21 were below average and highly unstable (largest 

absolute PC2 scores), genotype G2 had highest yield across 

four environments but also had largest PC2 scores which 

indicate that G2 is highly unstable genotype. In contrast, 

genotypes G3, G6, G5, G8, G13, G17, G18 and G22 had 

positive PC1 scores and were identified as high yielder 

genotypes. Genotypes located near the plot of origin were less 

responsive than vertex genotypes. In this study, genotypes 

G11 and G10 were close to the origin and hence, they were 

non-responsive to environmental interactive forces therefore 

they have general adaptation with different mean grain yield, 

meaning that they were able to produce a similar yield in 

variety of environments. Similarly, the environment close 

together i.e., E1 and E3 were found to have similar interaction 

pattern in genotypes (Kesh et al., 2022) [10]. 

 

Wi(AMMI) measure 

The various Wi (AMMI) values were calculated and are shown 

in Table 3 The Wi (AMMI) results showed that Wi (AMMI) ranks 

were superimposed on ASV measures. The genotypes G11, 

G7, G14, and G19 were the most stable as Wi (AMMI) values 

were found small while G15, G4, G21, and G18 were the 

most unstable as Wi (AMMI) values were found large (Parmar, 

2009) [14]. 

 

AMMI stability value (ASV) 

In the AMMI model the ASV is distance between the 

coordinate point and the origin in the dimension of IPCA 1 

scores and IPCA 2 scores. The genotype G11 was most stable 

genotype followed by genotypes G7, G14, and G19 while 

genotypes G15, G4, G21 and genotype G18 were unfavorable 

in terms of stability (Table 3). The mean grain yield of all 

stable genotypes were higher than the overall mean grain 

yield. Among unstable genotypes G18, G15, and G4 has 

higher grain yield while G21 had lower grain yield than mean 

grain yield (Singh et al., 2019) [19]. 

 

AMMI based selection index (ASTABi)  

Stability measures for ASTABi (squared Euclidean distance) 

were computed and shown in Table 3. When ASTABi is close 

to zero or has a small value, a variety is considered highly 

stable. The ASTABi value for the genotype G11 was the 

lowest followed by genotypes G7, G14 and G19. All the four 

genotypes had higher mean grain yield than overall mean. 

Genotypes G15, G4, G21, and G18 had highest value of 

ASATBi indicating their environmental instability. (Rao et al., 

2004 and Parmar et al., 2022) [18, 15]. 

 

 
Table 3: Selection of genotypes based on different indices based on AMMI model for rice genotypes 

 

Genotypes Mean Yield Rank Wi (AMMI) Rank ASV Rank ASTABi Rank 

G1 2.475 6 0.2071 17 0.5483 17 0.2071 17 

G2 2.723 1 0.1433 12 0.4561 12 0.1433 12 

G3 2.573 2 0.1638 13 0.4876 13 0.1638 13 

G4 1.943 20 0.3649 21 0.7277 21 0.3649 21 

G5 2.325 14 0.1240 10 0.4243 10 0.1240 10 

G6 2.270 15 0.2527 18 0.6056 18 0.2527 18 

G7 2.371 13 0.0174 2 0.1592 2 0.0174 2 

G8 2.500 4 0.1800 14 0.5111 14 0.1800 14 

G9 1.664 22 0.1962 16 0.5337 16 0.1962 16 

G10 2.263 16 0.0483 5 0.2649 5 0.0483 5 

G11 2.443 8 0.0142 1 0.1438 1 0.0142 1 

G12 2.225 17 0.1093 8 0.3983 8 0.1093 8 

G13 2.443 9 0.0855 7 0.3523 7 0.0855 7 

G14 2.415 10 0.0324 3 0.2170 3 0.0324 3 

G15 2.373 12 0.3710 22 0.7338 22 0.3710 22 

G16 1.961 19 0.1122 9 0.4036 9 0.1122 9 

G17 2.475 5 0.1880 15 0.5224 15 0.1880 15 

G18 2.475 7 0.2542 19 0.6074 19 0.2542 19 
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G19 2.389 11 0.0356 4 0.2274 4 0.0356 4 

G20 2.505 3 0.0806 6 0.3421 6 0.0806 6 

G21 1.697 21 0.2871 20 0.6455 20 0.2871 20 

G22 2.041 18 0.1276 11 0.4303 11 0.1276 11 

Mean 2.298  

 

 
 

Fig 1: AMMI 1 biplot for rice genotypes (yield) and environments 

 

https://www.thepharmajournal.com/


 
 

~ 1102 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 

 
 

Fig 2: AMMI2 biplot for rice genotypes and environments 

 

Conclusion 

Yield is not a trait rather, it is the result of the culmination of 

all other quantitative traits, which are greatly influence by the 

environment. Multivariate technique AMMI model was 

considered as more informative technique. Environments, 

genotypes and G×E explained 42.11, 39.03 and 18.86% 

variation of trial variation. GEI variation was partitioned into 

two PCA which explained 65.22 and 22.49% of variation of 

GEI variation. Genotypes G7, G19, G1, G14 and G2 were 

identified as general adapter and high yielding genotypes. 

Genotypes G3, G8, G17, G18, G1 and G15 were specified 

adaptor to favorable environments. The winning genotypes 

were G3 and G8 for E1 and E3, genotype G2 for E4 and G4 

for E2. Environment E4 was most representative followed by 

E3 and E1, whereas E2 was least representative environment. 

Genotypes G11 was found most stable genotypes followed by 

G7, G14 as per AMMI based stability parameters. Whereas 

genotype G21 was found most unstable as high values of 

Wi(AMMI), ASV, ASTABi. 
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