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Abstract 
Rapid population growth associated with climate change has a significant impact on both agricultural and 

human health, primarily due to water scarcity. According to UNICEF, nearly two-thirds population of the 

world is affected by severe water scarcity at least one month of every year. Water stress has an adverse 

impact on crop physiology predominantly in photosynthetic capacity. Thus, crop water optimization in 

farming systems requires advancement in the monitoring of water stress at different times of the season 

in order to prevent plant physiological damage and maximise crop water use. Precision agriculture 

enabled by technical enhancement is able to solve this problem. Precision technologies such as 

Geographical Information Systems (GIS), Remote Sensing (RS), UAV Imagery (UAV), Wireless Sensor 

Networks (WSN) and Machine Learning & Artificial Intelligence (ML & AI) can be used to efficiently 

detect crop water stress. This article addresses current advancements in crop water stress monitoring and 

how they could be enhanced further in the near future. 
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Introduction 

In context of climate change and its effects on plant physiology, maximising water use 

efficiency (WUE) is essential for better crop production. Among the different resources, 

irrigation water is recognised as a basic and necessary resource for agriculture which plays 

important role in food security. Insufficient irrigation water cause crop water stress at different 

stages of crop development. Specifically, water stress at reproductive stage of crop is very 

much critical. Only 20% of the world's arable land is used for irrigated agriculture, which 

supplies 40% of the world's food supply [5]. Due to water scarcity, irrigation is difficult to 

implement in many countries. Future food and water supplies are also jeopardised as a result 

of growing drought situations in a major part of the world and rapid population growth. 

Climate change, frequent droughts, rising global water scarcity and devastating flooding pose 

concerns to agricultural water supply security. Plants under water stress close their stomata to 

conserve water, which restricts the pathway for the exchange of oxygen and carbon dioxide 

thus reducing overall photosynthetic potential. Reduced photosynthesis is caused mostly by a 

loss in leaf area as well as a decrease in PSII activity. Thus, assessment of crop water stress is 

important [2]. Precision irrigation techniques are based on accurately detecting water stress in 

crops and understanding crop water stress. 

Using conventional ground-based sample techniques to measure crop water status is extremely 

challenging since it is a time-consuming, laborious process that is not feasible for agriculture 

on a larger scale. Along with it is also destructive for plants. Similarly, different 

evapotranspiration models assume that the reference crop in a field is a freely transpiring plant 

with homogeneous soil type and cover. These procedures are time-consuming and produce 

point data that is not representative of the state of the field as a whole. 

Effective scheduling of irrigation is essential for enhancing water use efficiency as well as 

agricultural sustainability. Recent research has focused on the use of precision technology as 

an alternative to traditional field measurements of plant stress indicators since it provides 

information on spatial and temporal variability [8]. Thus, in light of climate change these 

precision technologies such as wireless sensor networks, unmanned aircraft, remote sensing, 

machine learning & deep learning play a crucial role in development of sustainable goals. 

Spectral reflectance indices from high resolution sensors now been popular in recent years 

because they enable non-invasive and fast monitoring of plant water stress dynamics. This 

paper explored the current developments in crop water stress monitoring by precision  
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technologies, that could be applied to improve irrigation 

scheduling. 
 

Crop Water Stress Assessment 

Crop water stress monitoring in agriculture must be 

strengthened at distinct periods of the growing season in order 

to minimise crop physiological damage and yield loss by 

deficit of water. Timely detection of plant water status is 

important for implementing scheduling of irrigation and 

optimising crop water use.  
 

Crop Water Stress Mapping Through Remote Sensing 

The advent of hyperspectral remote sensing has enabled the 

determination of leaf chemistry in vegetation canopies. The 

three types of indices that are present predominantly are 

xanthophyll indices (Photochemical Reflectance Index, 

Normalized Photochemical Reflectance Index), structural 

indices (Normalized Difference Vegetation Index, 

Renormalized Difference Vegetation Index, Optimized Soil 

Adjusted Vegetation Index) and water indices (Normalized 

Difference Water Index, Simple Ratio Water Index). The leaf 

xanthophyll cycle is the basis for xanthophyll indices. 

Structural Indices are calculated based on how well leaves 

reflect visible and near-infrared light. The 970 nm trough of 

the reflectance spectrum tends to disappear and move to lower 

wavelengths when plants are under water stress, and this idea 

was used to construct a reflectance water index [6]. Table 1 

summarizes these subsequent indices. With the emergence of 

high-resolution and high-frequency remote sensing (e.g., 

MODIS) technology that can monitor spatial changes in crop 

water use variability and evapotranspiration, crop water use 

variability and evapotranspiration could be stimulated from 

the whole plant to the whole field or crop scale. 

 

Table 1: Spectral vegetation indices that has been correlated to plant water stress 
 

Reflectance indices Major features Formula 
Plant water stress 

indicators 

Photochemical Reflectance Index 

(PRI) These are Xanthophyll indices that are 

sensitive to the epoxidation state of the 

pigments in the xanthophyll cycle 

R570 − R531

R570 + R531
 

Chlorophyll 

fluorescence and 

Stomatal conductance 

Normalized Photochemical 

Reflectance Index (NPRI) 

PRI

[RDVI ∗ (
R700
R670)]

 
Chlorophyll 

fluorescence and 

Stomatal conductance 

Normalized Difference Vegetation 

Index (NDVI) These are structural indices that quantify 

water stress by measuring reflectance 

indices in the VIS and NIR spectral 

ranges. 

R800 − R670

R800 + R670
 

Stomatal Conductance, 

Leaf water potential 

Renormalized Difference 

Vegetation Index (RDVI) 

R800 − R670

√R800 + R670
 

Stomatal Conductance, 

Leaf water potential 

Optimized Soil Adjusted 

Vegetation Index (OSAVI) 

(1 + 0.16)R800 − R670

(R800 + R670) + 0.16
 

Stomatal Conductance, 

Leaf water potential 

Normalized Difference Water Index 

(NDWI) 
These are water indices which measures 

the reflectance trough in the near-infrared 

region to assess the water stress 

R860 − R1240

R860 + R1240
 Leaf water potential 

Simple Ratio Water Index (SRWI) 
R860

R1240
 Leaf water potential 

 

Crop Water Stress Mapping Through UAV Imagery 

Recent advancements in Unmanned Aerial Vehicles (UAVs) 

have expanded the use of remote sensing in precision 

agriculture research. As demonstrated in Figure 1, unmanned 

aerial vehicles (UAVs) can monitor crop water stress using 

imagery. Multispectral UAV remote-sensing systems are 

more cost-effective, accessible and efficient crop water stress 

trackers because they incorporate high-resolution pixel 

sensors that can precisely analyse crop water stress [1]. The 

use of multispectral UAV remote sensing also aids in the 

estimation of crop water stress index (CWSI) models, which 

are used to detect crop water stress. However, the Water 

Deficit Index (WDI) based on imaging from Unmanned 

Aerial Vehicles (UAVs) is increasingly being utilized as the 

soil background is a key issue in establishing CWSI data, 

particularly during early development stage canopy 

temperature data. Therefore, the WDI is a better index 

compared with the CWSI for exact estimations of crop water 

status, and the WDI maps thus give accurate irrigation maps. 

WDI index has the unique feature to be applicable both when 

the land surface is partly composed of bare soil and crops on 

the land surface are senescing. WDI can be computed by- 

 

𝑊𝐷𝐼 = 1 −
λEac𝑡

λEpo𝑡
 

 

where λEact is the actual latent heat flux density, λEpot is the 

potential latent heat flux density 

 

Thermal infrared systems detect crop water stress by 

assessing canopy temperature and field air temperature. 

Thermal imaging systems use both cooled and uncooled 

cameras. Cooled infrared cameras detect minor temperature 

differences via highly sensitive data. These systems detect 

crop water levels and monitor crop water stress. In contrast, 

uncooled cameras are employed to collect infrared thermal 

and microwave images from crop and canopy sources. The 

camera is based on the focal plane array (FPA) detector, 

which generates high-resolution images using a single sensor 

camera. Thermal sensors in combination with near-infrared 

(NIR) and visible sensors are used to filter non-leaf products 

from all samples and determine canopy temperature [1].  

 

 
 

Fig 1: Estimation of crop water stress using a multispectral UAV 

system [1] 

https://www.thepharmajournal.com/


 

~ 805 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 

Crop Water Stress Mapping Through LiDAR  

LiDAR system is a revolutionary technology for analysing 

field crop water stress. LiDAR provides accurate 3D data by 

delivering precise pulses at a target and measuring the pulse 

that bounces back in order to acquire data about the object 

(Figure 2) [3]. Furthermore, the recent development of 

accurate 3D LiDAR imagery together with natural colour, 

chlorophyll fluorescence, photochemical reflectance index 

and leaf temperature images is demonstrated which 

provide water stress information. Lidar can provide an 

accurate estimation of water stress through 3D modelling, as 

well as the exact location of water stress. The targeted short-

band laser light effectively penetrates the crop canopy and is 

less impacted by the infiltrated light, which makes it an 

excellent tool for estimating crop water stress in the field. 

Along with LiDAR, algorithms and geometric regulations can 

be used to precisely deliver crop water stress and its 

connection to crop characteristics. The LiDAR system used to 

detect leaf water stress in several crops and the results 

demonstrated a strong link between leaf water stress and the 

number of LiDAR points acquired [1].  

 

 
 

Fig 2: Application of LiDAR sensor in agriculture (source: gim-international.com) 

 

Crop and Soil Water Stress Mapping Through Wireless 

Sensor Networks 

A wireless sensor network (WSN) is a sensing system that 

consists of a group of spatially distributed sensors that 

monitor physical or environmental parameters such as 

weather, water status, soil status etc automatically and 

wirelessly. Deploying and maintaining ground-based sensors 

at field is a time-consuming task thus wireless sensor 

networks (WSN) are regarded as a trustworthy, efficient and 

cost-effective solution to this issue as they have the capacity 

to generate continuous, real-time, in-situ measurements under 

different operation situations. A WSN is made up of sensor 

nodes spread across a geographical area, with each sensor 

node capable of wireless communication [4]. A WSN, in 

conjunction with cellular communication infrastructure and 

internet technologies, provides significant capacity for remote 

measurement, transmission and access to information. The 

use of wireless sensor networks to assess soil parameters 

eliminates the requirement for sensors to be removed for field 

operations such as ploughing, allowing for long-term 

measurements without multiple disturbances to soil structure. 

Wireless sensors also eliminate the need for above-ground 

wiring, minimising the risk of equipment damage and data 

loss. Real-time communication between sensors, actuators 

and human users is simple using locally accessible 

telecommunications infrastructure and interfaces can be 

implemented on mobile hand-held devices [12]. Wireless 

underground sensor networks (WUSNs), on the other hand, 

are characterised as a system in which all sensors and 

communication components are buried underground. A single 

underground node and an above-ground hub comprise the 

most basic WUSN design (Figure 3). Advanced WUSNs can 

be made up of many subterranean nodes linked to a single 

above-ground hub or a wide-area network made up of 

multiple underground nodes linked to multiple above-ground 

hubs [10]. 
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Fig 3: WUSN field experimentation setup [10] 

 

Crop Water Stress Mapping Through Machine Learning 

and Deep Learning 

Machine learning (ML) algorithms can resolve complicated, 

nonlinear issues by combining several sensors and datasets 

from multiple sources. Traditional image processing involves 

a substantial amount of variability in image acquisition, which 

increases the complexity of image processing. In ML, 

however, the user extracts key features from the collected 

image using knowledge and domain expertise. The diagnosis 

of water stress is much easier when these features are 

integrated with image processing. Moshou et al. (2014) 

attempted to assess water stress utilizing optical multisensory 

fusion and a support vector machine (SVM) classifier with the 

linear model [11]. They designed a hybrid classification 

algorithm that detected water stress in wheat using a 

multisensory fusion system and a least squares support vector 

machine (LSSVM) with an accuracy of 98.9%. artificial 

neural machine (ANN) is a popular ML approach for 

detecting water stress. ANN can calculate water potential, ET 

requirements with high accuracy The system ultimately 

collects information from crop, soil and environmental 

elements, sends it to a computerised irrigation-controlled 

algorithm and generates crop, soil and environmental stress 

analysis. ANN collects data using a wireless sensory network 

and compute water levels using infrared thermometers (IRTs) 
[1]. On the other hand, a convolutional neural network (CNN) 

based on deep machine learning is applied to thermal images 

for recognition and classification of water status. Deep 

Convolutional Neural Network (DCNN) delivers accurate and 

rapid stress phenotyping in real time. Among the various 

DCNN, GoogLeNet is effective for monitoring water stressed 

conditions. These models can be used to create a real-time 

image-based system for detecting crop water stress as well as 

scheduling irrigation. 

 

Variable Rate Irrigation 

Adapting to climate change can be accomplished through a 

variety of management options and technology 

improvements. Strategies like as variable rate irrigation (VRI) 

can assist producers in reducing the risks associated with 

climate change while also improving water-use efficiency. 

Due to natural variances in soil type or topography, most 

fields are not uniform. When water is applied consistently to a 

field, certain sections may become overwatered while others 

remain dry. VRI as illustrated in Figure 4, entails providing 

variable amounts of water to different zones of the field rather 

than applying a single uniform irrigation rate to the entire 

field based on the specific management zones within a field 
[7]. The VRI system integrates GPS positioning into a control 

system and may be installed into existing canter pivot 

systems. To achieve the required application rates within 

different management zones, the control system cycles 

through individual sprinklers or groups of sprinklers, turning 

them on and off and regulating travel speed. Variable rate 

irrigation techniques that rely on soil property characterisation 

for zoning result in the creation of prescription maps for 

precision irrigation applications. VRI management zones are 

created utilising the farmer's knowledge of the field, aerial 

images from online sources and maps of the land. The 

benefits of VRI are as follows: 

 Boost yields by applying precise irrigation to all regions 

of the field. 

 Reduce runoff, over-watering and under-watering, which 

benefits soil health and the environment; and  

 Improve water and chemical application efficiency 
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Fig 4: VRI installed in centre pivot system of irrigation (source: 

valleyirrigation.com) 

 

Micro Irrigation 

The changing climate situation exacerbated the pressure of 

water shortages and competition for water from other 

commercial and environmental users. In this scenario micro 

irrigation could become the saver. It is the process of slowly 

applying water by hydraulic emitters or applicators installed 

at specific locations along water delivery lines in the form of 

discrete, continuous drops, tiny stream, or micro sprays. 

Micro-irrigation systems provide extensive control over water 

applications. Drip irrigation is a common type of micro-

irrigation in which water is constantly given drop by drop 

directly to the root zone using drippers, resulting in a low 

volume of water, at low pressure and hence minimal energy 

costs [13]. Potential benefits and disadvantages of micro 

irrigation systems include: 

 Improved plant development and productivity  

 Improved plant growth and productivity by making better 

use of available water. 

 Reduced the risk of salinity to plants. 

 Improved fertiliser formulations and other chemical 

applications 

 Reduced operating labour.  

 

Decision Support System and Precision Irrigation  

Decision support systems (DSS) are ML applications that 

integrate human knowledge to learn irrigation schedule 

patterns and mimic human decision-making activities. It is 

also a software based interactive system that supports 

decision-makers in assembling useful information from a 

variety of raw data, papers and personal skills in order to 

identify the problems and make the best decision (Figure 5). 

DSS architecture is composed of database (or knowledge 

base), the model (i.e., the decision context and user criteria) 

and the user interface. The combination of several sensor 

arrays with a web-based decision support tool measures real-

time soil moisture data and direct transmission to a server 

allows farmers to monitor their fields in real time. Sensors put 

in the field collect data on crop features, soil type, irrigation 

network hydraulic properties, climate (historical and 

forecasted data) and information on water availability and 

crop production in order to produce an ideal weekly irrigation 

schedule [9]. Furthermore, DSS detects the amount of water 

used by crops in real time during the growing season to 

acquire an exact and employs many irrigation management 

indicators to assess irrigation water efficiency. Furthermore, 

the web-based decision support tool's smart programming 

enables the entire system to make quick irrigation 

recommendation calculations. 

 

 
 

Fig 5: Conceptual illustration of DSS [9] 
 

Conclusions and Future Scopes 

Implementing an appropriate irrigation scheduling approach is 

essential in order to meet the demand for increased global 

food production while dealing with limited water resources. 

Thus, technical advancement in the irrigation sector through 

remote sensing, machine learning, deep learning, wireless 

sensor network for assessing crop water stress undoubtedly 

increase water use efficiency. Future study on the merging of 
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thermal and narrow-band hyperspectral images to provide 

more precise plant water status information would be 

profitable. 
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