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Hormonal management of ovarian activity during early 

post-partum phase in dairy cows 

 
Popandeer Kour, Gurpreet Singh Preet and Sumit Kumar 

 
Abstract 
The synchronization of estrus in post-partum dairy cows involves various methods such as 

prostaglandins, progesterone-releasing devices like CIDR and PRID, and GnRH analogues. Incorporating 

a period of progesterone administration enhances the proportion of cows exhibiting estrus within a 

specific timeframe while maintaining a normal luteal phase. However, the effectiveness of 

synchronization is influenced by factors related to ovarian activity, including body condition score, age, 

parity, and negative energy balance. To optimize synchronization outcomes, it is essential to address 

these variables that may impede post-partum ovarian activity. Managing factors like negative energy 

balance through appropriate nutrition and tailoring protocols based on age and parity could potentially 

improve the success of estrus synchronization in these cows. 

 

Keywords: Management, ovarian, during early, dairy cows 

 

Introduction 

Reproductive efficiency is a measurement of the potential of a cow to become pregnant. It is a 

key limiting indicator to measure dairy cow productivity and profitability. The calving interval 

has an impact on a cow's productive life. Cows with shorter calving intervals produce more 

milk per day and have more progeny. By reducing the number of days open, the ideal calving 

interval may be attained. And to obtain the best conception rate and profitability, cows must 

have normal uterine involution, early resumption of ovarian periodicity, be observed in estrus, 

and be inseminated between 40 to 60 days post-partum. (Nayana 2019) [1]. Producers can 

improve the reproductive production of their herds and raise their profit levels by using 

reproductive technologies like estrus synchronization and artificial insemination (Bonacker 

2019) [14]. Estrus synchronization reduces or eliminates the necessity for estrus detection, 

increasing cow fertility and productivity (Larson et al. 2006) [47]. Furthermore, it enhances AI 

planning, reduces the calving interval in post-partum dairy cows, and aids in the maintenance 

of uniform calf crops (Larson et al. 2006) [47]. According to current reports, the first AI 

conception rate in dairy cows is between 20 and 40 percent (Lucy 2001; Washburn et al. 2002) 
[52, 93]. Progesterone comes in two forms: natural (progesterone) and synthetic (progestin) 

(Demeterco 2017) [27]. Progesterone prevents spontaneous estrus and prolongs the estrous 

cycle by delaying the onset of estrus after natural or artificial luteolysis (Lucy et al. 2001) [52]. 

P4 products are available in a variety of forms for cow estrus synchronization. Melengestrol 

acetate powder, injectable solution, ear implant, and vaginal implants are all available. PRID 

and CIDR are the most widely utilized vaginal inserts/devices in cattle (Demeterco 2017) [27]. 

Exogenous progestin administration for short period mimics the post-partum cow short luteal 

phase, efficiently reprogramming the reproductive axis to commence or resume normal estrus 

cycling (Bonacker 2019) [14]. Following the cessation of progesterone therapy results in a quick 

decline in progesterone levels in the bloodstream and encourages the release of GnRH, which 

is followed by the release of FSH and LH and leads to the restoration of ovarian cyclicity 

(Zerbe et al. 1999) [97]. 

 

Post-partum period 

The post-partum period is a transition phase meanwhile in which the reproductive axis 

recovers after parturition to successively come to the anatomical and functional status required 

to set up a new pregnancy (Murphy et al. 1990; Perea et al. 1998) [58, 69]. The post-partum 

period in cows is categorized into three phases, early puerperium, clinical puerperium, and 

whole puerperium. Duration of early puerperium lasts up to 9 days whereas clinical 

puerperium extends to 21 days during which the uterus returns to its standard size, but the  
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histologically normal structure is not attained. The entire 

period of post-partum lasts about 42 days during which the 

uterus retrieves its normal histological structure. Based on 

endocrine status, the post-partum period is divided into the 

puerperal period, intermediate period or pre-ovulatory period, 

and post-ovulatory period. The intermediate or pre-ovulatory 

period extends from the initiation of pituitary sensitivity to 

GnRH up to first ovulation at 20-30 days post-partum 

whereas the post-ovulatory period starts with first ovulation 

and lasts until completion of uterine involution at 40-45 days 

post-partum. The physiological changes that occur during the 

puerperium, include uterine and cervical involution, ovarian 

rebound, and return to cyclicity as well as the elimination of 

bacterial infection that sets up during calving (Elmetwally 

2018) [30]. 

 

Events occurring during the early post-partum period 

Uterine and cervical involution 

After parturition, the uterus returns to its normal non-pregnant 

size and function, which is termed uterine involution. The 

restoration of the uterus to its normal size depends on the rate 

of myometrial contractions, removal of bacterial infection, 

and revitalization of the endometrium (Elmetwally et al. 

2016) [29]. Smooth muscles play a chief role in the ejection of 

the uterine contents and the shrinkage in uterine size (Bajcsy 

et al. 2005) [5]. The contraction of the uterus also leads to a 

reduction in uterine and cervical diameters. The cervix 

reduces its size from roughly 30 cm immediately after 

parturition to around 2 cm by day 7 post-partum (Wehrend et 

al. 2003) [94]. Kasimanickam et al. (2004) [44] reported that 

larger the diameter of the cervix after parturition, the longer 

the time required for involution to occur. The pattern of 

remodelling of the structures starts at the cranial end of the 

cervix and progresses caudally (Wehrend et al. 2003) [94]. 

Cervical diameter is a better indicator of reproductive 

problems than uterine size as there is less fluctuation in the 

size and accessibility of the cervix during involution (Dobson-

Hill 2009) [28]. 

 

Regeneration of the endometrium 

The endometrial epithelium is often abraded during 

parturition, the caruncular tissue sheds as a part of the 

physiological form of the puerperium, and there is marked 

tissue recasting during the post-partum period (Tian and 

Noakes 1991) [101]. It is thought that the tissue architecture of 

the endometrium requires 3 to 4 weeks to regenerate fully, 

which is equally important for fertility (Sheldon and Owens 

2017) [83]. 

 

Post-partum ovarian activity (ovarian rebound) 

To achieve normal fertility and an acceptable calving interval, 

early resumption of post-partum ovarian activity is mandatory 

(Hafez 2000) [37]. Ovarian rebound after parturition relies 

upon the recovery rate of the hypothalamic-pituitary 

interaction that appears to occur in three distinct phases 

(Williams 1990). The phase first starts 2-4 weeks after 

parturition and is described by satiation of the anterior 

pituitary store of LH. The depletion/repletion cycle of anterior 

pituitary LH is surely a prime limiting factor for early post-

partum recovery (Nett et al. 1988) [62]. Phase second is allied 

to an upsurge in the activity of the hypothalamus to the 

positive feedback effect of estradiol (Short et al. 1974) [85]. 

The third phase of retrieval needs to flee from the outcome of 

suckling (Rexroad et al. 1975) [75]. The early onset of 

follicular growth within 7 to 10 days post-partum has been 

observed in both dairy and beef cows. The fate of the 

dominant follicle within the first follicular wave is reliant on 

LH pulse pattern (Crowe et al. 2014) [22]. The first dominant 

follicle of the post-partum period ovulates normally from 

wave 3.2 ± 0.2 (~30 days) (Murphy et al. 1990) [58]. In the 

case of dairy cattle, ovulation of the first dominant follicle 

after parturition usually occurs in 30 to 80 percent of cows, 

whereas it encounters atresia in 15 to 60 percent of cows or 1 

to 5 percent of cows observe the cystic conditions (Sartori et 

al. 2004; Sakaguchi et al. 2004) [81, 79]. First ovulation of 

dominant follicle in both dairy and beef cows is usually silent 

(Kyle et al. 1992) [46] and generally (>70 percent) 

accompanied by a short estrous cycle, typically involving just 

one follicular wave. The short time span of first luteal phase is 

mainly due to premature release of PGF2α (Peter et al. 1989) 
[70]. This second ovulation is usually cognate with the 

expression of estrus behaviour and succeeded by a luteal 

phase of normal duration producing normal quantities of 

progesterone (Crowe et al. 1998) [23]. The growth rate of the 

antral follicles is ceased because of the persistence of the 

corpus luteum of pregnancy even after calving. This 

inhibitory action persists for about 20 days post-partum and 

the frequency of ovulation decreases from the ovary 

ipsilateral to the previously gravid uterine horn. Ovarian 

activity is affected by the post-partum sub-clinical and clinical 

uterine infection. The permanence of pathogenic bacteria 

often causes clinical disease or sub-clinical endometritis. 

Uterine disease curbs hypothalamic gonadotropin-releasing 

hormone (GnRH) and possibly pituitary luteinizing hormone 

(LH) secretion and has confined effects on ovarian function 

(Mateus et al. 2002) [54]. High circulating levels of PGF2α 

during the first 3 weeks post-partum due to sub-clinical 

infection serve as a uterine signal, hampering premature onset 

of ovarian cyclicity once the puerperal infection has been 

largely removed (Sheldon et al. 2002) [84]. 

 

Development of ovarian follicles after calving 
Around the fifth day after parturition, the emergence of the 

first ovarian follicle occurs in dairy cows. Follicular activity 

on the ovary ipsilateral to the previously gravid uterine horn 

was reported to be lesser than that of the contralateral ovary 

during the post-partum phase (Nation et al. 1999) [61]. Under 

physiological conditions, after day 12 post-partum, the first 

dominant follicle appears with a diameter of more than 9 mm 

(Schwarz and Zieba 1999; Huszczenicza et al. 2008) [82, 41]. 

Ovulation occurs after the second and more frequently after 

the third or fourth wave with the dominance of follicles 

(Adams et al. 2008) [2]. Based on the fate of the first dominant 

follicle- outlines three potential ways of post-parturition 

growth of ovarian follicles i.e., 1) the first follicle wave ended 

with the ovulation of dominant follicle; 2) development of the 

non-ovulating dominant follicle of the first wave taking place 

after various additional waves preceding the first ovulation; 

and 3) the development of the dominant follicle, being 

converted into a cyst. The fate of dominant follicles post-

partum is closely linked to the metabolic status of animals - 

for instance, pre-partum diet (Cavestany et al. 2009) [18], 

energy balance post-partum (Beam and Butler 1997) [8], and 

parity (Zhang et al. 2010) [98]. 

 

Short estrous cycle 

A large portion of cattle is generally sensitive to abnormal 

luteal function following first ovulation post-partum. In a 
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short estrous cycle, the lifespan of the corpus luteum (CL), 

known as the luteal phase, is normally less than 10 days. A 

typical luteal phase generally consists of 14-18 days of a 

normal 21-day estrous cycle. This phenomenon is referred to 

as a short estrous cycle and is usually observed in females 

overcoming post-partum anestrus (Bischoff et al. 2018) [10]. 

The first post-partum ovulation often takes place without 

visual signs of estrus and is followed by a short estrous cycle 

of 8 to 12 days in the major portion of cows (Stagg et al. 

1995; Yavas et al. 1999) [86, 96]. Incidence of short estrous 

cycle commonly appears during the first 30 to 40 days post-

partum in beef cows (Short et al. 1990). Premature secretion 

of PGF2α from the uterus on day 5 of a short estrous cycle is 

possibly the mechanism involved in the subnormal luteal 

activity in sheep and cattle (Zollers et al. 1991) [100].  

 

Days open (DO) and calving interval (CI)  

Calving interval is the timespan between successive calving 

and is an outcome of days open (duration from calving to next 

conception) and gestation length. Meanwhile, gestation length 

is more or less constant for a given breed, the number of days 

open to conception set off the sole variable of calving 

interval. The ideal amalgamation of better management and 

good physiological condition of the cow, reasonably decrease 

calving intervals of 12-13 months. Days open is the common 

variable regulating portion of calving interval and is usually 

affected by the timespan taken by the uterus to completely 

involutes, resumption of ovarian cyclicity, the incidence of 

silent ovulation, the correctness of heat detection, how soon to 

rebreed following parturition, fertility of a bull or semen and 

efficacy and/or skill of inseminator (Gebremichael 2015) [33]. 

 

Synchronization of estrus 

Synchronization of estrus entails the manipulation of the 

estrous cycle or induction of estrus to bring a large portion of 

a group of females into estrus at a short, predetermined 

period. Estrus synchronization aid in fixing the breeding time 

within a short predefined interval. Synchronization of estrus 

and fixed-time artificial insemination (FTAI) is an effective 

technique in breeding management, particularly in dairy cattle 

as it enhances heat detection efficiency (Jayaganthan et al. 

2016) [43]. The major constraint of estrus synchronization is 

their inadequacy to induce fertile estrus and ovulation in non-

cyclic cattle i.e., pre-pubertal heifers and anestrus suckling 

cattle (Graves 2009) [35]. 

 

Methods of estrus synchronization 

For the selection and successful execution of the 

synchronization of estrus, information on the hormonal profile 

and functional structures present on the ovaries during 

different phases of the estrous cycle is very much crucial 

(Patterson et al. 2002) [68]. The various ways for modulating 

cycle length are the administration of prostaglandin to regress 

the corpus luteum (CL) present on the ovary before the time 

of natural luteolysis, or progesterone administration, or more 

often synthetic progestin administration to halt the ovarian 

activity for a while, or a recent way of framing estrus 

synchrony by including use of Gonadotropin-releasing 

hormone (GnRH) or an analogue, which motivates ovulation 

of a large follicle (Ozill et al. 2011) [64]. Various estrus 

synchronization protocols can induce 75 to 90 percent of the 

cyclic cows to express estrus within a period of 5-days 

(Dejarnette et al. 2004) [25].  

 

Prostaglandins based protocol approach 

commercially available PGF2α have the potential to 

concurrently eliminate the CL from all cyclic animals at a 

predefined period that is favourable for detection of estrus and 

breeding (Patterson et al. 2003) [67]. Throughout the normal 

estrous cycle of a non-pregnant animal, PGF2α is secreted 

from the uterus at 16-18 days. The administration of PGF2α 

once only amidst days 14 and 18 post-calving ensued in a 

decline in days open (Benmard and Stevenson 1986; Lopez-

Gatius 2003) [9, 50]. Estrus synchrony and fertility with PGF2α 

is more fit with cyclic females, such as virgin heifers, but not 

in non-cyclic cows (Bader 2003) [4]. 

1. One-shot prostaglandin: In this method, cyclic females 

are injected with a single dose of prostaglandin, and bred 

during estrus (Pal and Dar 2020) [65]. 

2. Two-shot prostaglandin: if the stage of the estrous cycle 

in the cows is not known, then, prostaglandin is 

administered twice at an interval of 10 to 14 days 

(Sahatpure and Patil 2008) and observation of estrus is 

not needed before or between administration of 

prostaglandins (Pal and Dar 2020) [65]. 

 

GnRH-based protocol 

Manipulation of estrus by administration of GnRH during the 

bovine estrous cycle causes regression or ovulation after 

treatment (Pursley et al. 2005) [72]. Artesia or ovulation of the 

dominant follicle commences the emergence of a new 

follicular wave. Ovulation of a follicle relies upon the status 

(growing, static, or regressing) of the dominant follicle at the 

time of GnRH injection (Twagiramungu et al. 1994) [91]. 

Ovulation of a growing dominant follicle comes about 100 

percent after GnRH administration, however, ovulation of 

dominant follicles in the static or regressing phase resulted in 

33 and 0 percent, respectively (Helmer and Britt 2005) [38]. 

 

GnRH-PGF2α system  

The six systems for synchrony of estrus with GnRH-PGF2α 

combinations are; ovulation synchronization (Ovsynch), 

combination synchronization (Cosynch), pre-synchronization 

(Presynch), select synchronization (Select synch), heat 

synchronization (Heat synch) and hybrid synchronization 

(Hybrid synch) (Patterson et al. 2003) [67].  

 

Ovsynch protocol 

Ovsynch protocol is one of the synchronization systems that 

help in minimizing the days open and successful insemination 

of a large portion of cows up to the 100th day post-partum 

(Opsomer et al. 2000; Mejia and Lacau-Mengido 2005) [63, 56]. 

The Ovsynch protocols composed of injection of GnRH on 

day 0 followed by administration of PGF2α 7 days later, and 

the second injection of GnRH 48 to 56 h following PGF2α 

treatment with fixed-time AI 16 h later (Bo et al. 2012) [12]. 

The first GnRH injection results in ovulation/luteinization of 

any viable dominant follicle present on the ovary and induces 

the subsequent emergence of a new follicular wave roughly 

around 1.5 to 2 days later (Pursley et al. 1995) [71]. During the 

following 7 days, there is the emergence of a new follicular 

wave which undergoes selection and dominance of follicle. 

On day 7, PGF2α induces luteolysis, thus promotes further 

growth and maturation of the dominant follicle. In the end, the 

second injection of GnRH administered 48 hours following 

PGF2α induces a pre-ovulatory LH surge that initiates 

ovulation within 8 hours (Pursley et al. 1995) [71]. 
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Cows enlisted in the Ovsynch protocol between days 5 and 12 

following ovulation have an appreciable pregnancy rate than 

cows enlisted in other stages of the estrous cycle 

(Vasconcelos et al. 1999; Moreira et al. 2000) [92, 57]. 

Similarly, it was reported that the pregnancy rate was better 

i.e. 45 percent when TAI has carried out 16 hrs after the 

second GnRH injection in comparison with the 41 percent 

rate which was reported on AI after 8 hours of GnRH 

administration (Pursley et al. 1998) [73]. A key modification in 

the Ovsynch protocol involves the insertion of a CIDR or 

PRID for the interval between the first GnRH injection and 

the PGF2α injection (Stevenson 2011; Bisinotto et al. 2015) [89, 

11]. However, the constraints of Ovsynch protocol application 

are often associated with selection of acyclic animals, 

implementation of the protocol at random the stage of the 

cycle, the season of the year, poor ovulatory response to the 

first GnRH, atresia of the dominant follicle before PGF2α and 

premature luteolysis between the first GnRH and PGF2α 

(Vasconcelos et al. 1999; Hoque et al. 2014) [92, 40].  

 

Cosynch 

In the Cosynch method, the second injection of GnRH i.e., 48 

hours after PGF2α, is given at the same time when fixed-time 

insemination is performed (Pursley et al. 1998; Geary et al. 

2001) [73, 32]. Cosynch protocol can be carried out as a 

treatment for cows that are unable to show signs of estrus and 

it also permits the treatment of cows with subestrus or 

ovulation problems (Barolia et al. 2016) [6]. 

 

Presynch 

In this program, two PGF2α injections are administered 14 

days apart and 12 days after the second injection of PGF2α, the 

Ovsynch protocol starts. The aim is to have maximum 

animals between days 5 and 12 of the estrous cycle after the 

commencement of the Ovsynch program (Colazo and 

Ambrose 2013) [21]. This protocol has been successful in 

synchronization of the ovulation for first post-partum TAI; 

therefore, the Presynch + Ovsynch protocol has been widely 

accepted by the dairy industries (Caraviello et al. 2006) [17]. 

Higher conception rates were recorded in cows instigating the 

12-day presynch-ovsynch protocol with serum progesterone 

values ≥1 ng/mL (Ribeiro et al. 2011) [17]. However, the 

protocol has moderate effects in anovulatory cows (those 

without CL), which narrows the effectiveness of pre-

synchronization (Galvao et al. 2007a) [31]. Therefore, a 

combination of GnRH and PGF2α for pre-synchronization 

might helpful for anovulatory cows by inducing estrus 

cyclicity before starting the timed AI program (Ribeiro et al. 

2011) [77]. 

 

Heat synch 

Heat synch is a recent synchronization protocol (Dejarnette et 

al. 2001) [24] that uses the cost-effective hormone estradiol 

cypionate (ECP) in place of the second GnRH injection of the 

Ovsynch protocol. It is well known that GnRH has a direct 

and almost prompt effect on the secretion of LH, while ECP 

has an impeded effect (Dejarnette et al. 2004) [25]. A recent 

survey reported that cows administered with GnRH have an 

LH surge within an hour, while the LH surge was not detected 

for 41 h in ECP-treated cows (Steveson et al. 2002) [88]. This 

variance in time to LH surge means the hormonal injection 

intervals must also be modified when ECP switches for 

GnRH. Both Ovsynch and heat synch entails a GnRH 

injection followed by an injection of PGF2α seven days later 

(Bartolome et al. 2002) [7]. Heat synch cows detected in estrus 

should be bred mostly at 72 h after PGF2α injection 

(Dejarnette et al. 2004) [25]. 

 

Hybrid synch 

Hybrid synch is a combination of select synch and co-synch 

systems (Stevenson et al. 2000) [87]. Estrus detection and AI 

are carried out until 72 hours after the PGF2α injection 

(Dejarnette et al. 2004; Larson et al. 2004) [25, 49]. Pregnancy 

rates in cows administered the hybrid synch protocol was 34 

(Stevenson et al. 2000) [87], 46 (Dejarnette et al. 2001) [24], 53 

(Larson et al. 2004) [49], and 52 percent (Dejarnette et al. 

2004) [25]. 

 

Progestogens in the hormonal manipulation of the estrous 

cycle 

Hormonal manipulation of the estrous cycle using 

progestogens is done to imitate the luteal phase progesterone 

secretion. Progesterone has potent negative feedback on the 

hypothalamus, thus, lessening the pulsation of the basal 

episodic secretion of GnRH. However, the amplitude of LH 

pulses (together with FSH secretion), induced by the tonic 

GnRH release, is intense enough to allow the growth of 

follicles during the luteal phase. These follicles do not attain 

the pre-ovulatory position until the progesterone block is 

eliminated. Blood progesterone concentration higher than 1 

ng/mL is needed to suppress the pre-ovulatory LH surge and 

estrus (Lucy 2004) [51]. Synchronization of estrus with 

progestogens regulates high levels of progesterone in the 

system of females, even after the regression of the corpus 

luteum. Synchrony of estrus attains 2 to 5 days following 

progestin withdrawal. Estrus was synchronized in only 48 

percent of the cows at the start of treatment on day 3, but the 

synchronization was 100 percent when treatment commenced 

on day 9 of the estrous cycle. The longer the progestin was 

administered to cattle, the higher the rate of estrus 

synchronization with lesser fertility (Moreira et al. 2000) [57]. 

The poor fertility of cows bred at the synchronized estrus 

following long-term progestin administration is due to the 

premature resumption of meiosis of ova or abnormal 

development of embryos raised from ova of persistent 

follicles (Revah and Butler 2006) [74].  

 

Melengesterol acetate (MGA) feeding 

MGA is added to feed such that females pick up 0.5 mg per 

head per day for 14 days. Upon withdrawal of MGA from the 

feed, cyclic females begin to display signs of estrus but this is 

sub-fertile and breeding is not advised (Imwalle et al. 2002) 
[42]. MGA does not hinder the pulsatile secretion of LH and 

the presence of high-frequency LH pulses along with the 

absence of ovulation at the time of MGA treatment which is 

indicative of MGA led prevention of the pre-ovulatory surge 

of LH, causing the ovum to age to a no activity state (Kojima 

et al. 1995; Imwalle et al. 2002) [45, 42]. Research has revealed 

that an amount of 0.25mg of MGA fed daily is ample at 

hindering estrus but 0.5mg/hd/d in a single feeding is needed 

to impede both 100 percent estrus and ovulation (Zimbelman 

and smith 1996a) [99]. Feeding melengestrol acetate (MGA) 

for 14 d followed by an injection of PGF2α 17 days after MGA 

feeding (14/17 d MGA/PG protocol) is an efficacious method 

for regulation of estrous cycle (Brown et al. 1988) [16]. Short-

term feeding of MGA (5 or 7 d) combined with an injection of 

PGF2α is effective in synchronizing estrus in a high 

percentage of cattle (Chenault et al. 1990) [20].  
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Controlled internal drug release (CIDR) based treatment 

for synchronization of estrus 

The CIDR was traded first in New Zealand in 1987 and 

contains 1.9 g of progesterone, whereas the CIDR sanctioned 

in the United States comprises only 1.38 g. The CIDR is a T-

shaped vaginal insert impregnated with natural progesterone 

(1.38g/insert) which is placed intravaginally for seven days, 

imitating luteal phase progesterone secretion. One day before 

the removal of CIDR cows are treated with the PGF2α for the 

elimination of the potential endogenous source of 

progesterone. The removal of progesterone (exogenous as 

well as endogenous) should create favourable conditions for 

the final stages of dominant follicle development and 

maturation (Gvozdic et al. 2013) [36]. The decrease in 

circulating concentrations of progesterone tended to increase 

LH pulse frequency and decrease the variance in follicle size 

at CIDR removal (Grant et al. 2011) [34]. The amount of P4 

liberated from the CIDR insert is ample to elevate and uphold 

the circulating level of P4 in the blood >2.0 ng/ ml in the 

absence of a CL (Chenault et al. 2003) [19]. The blood levels 

of P4 speedily reach a peak within 1 h after CIDR insertion; 

similarly, P4 levels quickly declined between 12 to 24 h 

following CIDR removal (Lamb et al. 2006) [47]. Most of the 

cows are likely to come in estrus over the next 3-5 days after 

CIDR removal (Gvozdic et al. 2013) [36]. 

 

Modified CIDR protocols 

Protocols modified to more accurately line up with follicular 

waves and hamper over maturation have been promoted. 

Bridges et al. (2008) [15] assumed that lesser the duration 

between the initial GnRH and PGF2α as well as the span of 

CIDR insertion within the Co-synch plus CIDR protocol 

would improve estrogen production and elevate TAI 

pregnancy rates. Bridges et al. (2008) [15] reported an increase 

in pregnancy rates in 5-day co-synch by arranging TAI from 

60 to 72 h after PGF2α and CIDR removal. Nash et al. (2012) 
[60] recorded that outcome of pregnancy rates from FTAI were 

indistinguishable for cows allocated to long-term CIDR-based 

protocols correlated to short-term CIDR-based protocols. 

However, estrus response after PG and ahead of FTAI was 

turned down in cows assigned to the long-term (23 percent; 

14-d CIDR-PGF2α) collated with the short-term protocol (49 

percent; Co-Synch + CIDR) (Nash et al. 2012) [60]. Ahmed et 

al. (2017) [3] reported the conception rate to be higher in 

CIDR-based protocols than in GPG-ovsynch protocol. In the 

GPG group, the acyclic cows displayed lower conception 

rates than those of cyclic (33.3 vs. 44.4 percent) but the 

response was inverted in the CIDR-treated Ovsynch groups 

where the acyclic cows exhibited higher conception rates in 

comparison to cyclic in the CIDR-GPG (70.0 vs. 68.8 

percent) and G-CIDR-PG (55.6 vs. 50.0 percent). The 7 & 7 

Synch method comprises of a simple, one-step approach to 

elevate the percentage of cows introducing with a 

physiologically mature, LH-responsive follicle at the time of 

administration of GnRH (Bonacker et al. 2020) [13]. It is 

supposed that the presynchronization mechanism of the 7 & 7 

synch method (PGF2α administration and progesterone 

treatment seven days prior to the administration of GnRH) 

would activate cyclicity among cows that were anestrus due 

to shorter days post-partum, lower body condition score, or 

younger age. In addition to this, the 7 & 7 Synch protocol 

would add to estrus expression and lessen variation in 

synchrony among recipient females. On day 0, cow allocated 

to the 7 & 7 Synch protocol received an Eazi-Breed 

intravaginal controlled internal drug release insert with the 

administration of PGF2α. On day 7, cows were administered 

gonadotropin-releasing hormone whereas on day 14, all cows 

were administered PGF2α and CIDR inserts were removed 

(Bonacker et al. 2019) [14]. The follicle diameter was greater 

at the time of GnRH administration for the cows receiving 7 

& 7 Synch when compared to cows receiving the 7-day Co-

synch + CIDR method, with CL status and estrus expression 

indicating a high ovulatory response to GnRH (Bonacker et 

al. 2020) [13]. 

 
Table 1: Pregnancy per artificial insemination (AI) in dairy cows subjected to timed AI for the first post-partum insemination of the breeding 

season 
 

Timed AI protocol Pregnancy /AI (%) References 

MGA-PG 76 Patterson et al. (2001) [66] 

Ovsynch + CIDR 67.7 Sakase et al. (2005) [80] 

EB + CIDR + GnRH 73.2 Sakase et al. (2005) [80] 

Ovsynch 33.9 McDougall et al. (2010) [55] 

Ovsynch with progesterone 45.7 McDougall et al. (2010) [55] 

Cosynch 39.0 McDougall et al. (2010) [55] 

Ovsynch 47.0 Herlihy et al. (2011) [39] 

Ovsynch with progesterone 54.0 Herlihy et al. (2011) [39] 

Presynch-5-day timed AI 49.1 Ribeiro et al. (2011) [77] 

G6G-5-day timed AI 49.9 Ribeiro et al. (2011) [77] 

5-day timed AI with progesterone 34.3 Ribeiro et al. (2012a) [76] 

Double Ovsynch-5-day timed AI 56.8 Ribeiro et al. (2012b) [78] 

14-to-19-d CIDR-PGF2α 84.6 Martin et al. (2014) [53] 

14-to-16-d CIDR-PGF2α 83.9 Martin et al. (2014) [53] 

7-day CIDR 50.0 Naikoo et al. (2016) [59] 

 

Conclusion 

To sum up, the synchronization of estrus in post-partum dairy 

cows relies on various effective methods but is intricately 

linked to factors like body condition score, age, parity, and 

negative energy balance that influence ovarian activity.

Addressing these variables is pivotal to optimizing 

synchronization outcomes. Tailoring protocols, managing 

nutrition, and considering individual cow characteristics are 

key steps toward improving the success of estrus 

synchronization in this population. 
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