www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(12): 2412-2430 © 2023 TPI www.thepharmajournal.com

Received: 15-09-2023 Accepted: 19-10-2023

Pooja S Patil

Horticulture section, College of Agriculture, Dhule 424 004. Maharashtra (India) Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

Dr. Sunil D Patil

Research guide & Associate Professor of Horticulture, College of Agriculture, Dhule 424 004. Maharashtra (India) Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

RM Bhusari

Department of Horticulture, Post graduate institute Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

SR Wale

Horticulture section, College of Agriculture, Dhule 424 004. Maharashtra (India) Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

MR More

Soil science and agricultural chemistry, College of Agriculture, Dhule 424 004. Maharashtra (India), Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

Corresponding Author: Pooja S Patil Horticulture section, College of Agriculture, Dhule 424 004. Maharashtra (India) Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India

Studies on coatings and packaging on shelf life and quality of custard apple cv. Balanagar

Pooja S Patil, Dr. Sunil D Patil, RM Bhusari, SR Wale and MR More

Abstract

Present study entitled, "Studies on coatings and packaging on shelf life and quality of custard apple cv. Balanagar" was conducted during the year 2022 by using different treatments combination of coatings and packaging which was replicated thrice in factorial randomized block design. Fresh and fully matured uniform sized custard apple fruits harvested at physiological stage of maturity were coated with different edible coating like bee wax (6%), sago concentration (5%, 10%), arrow root powder (5%, 10%), Aloe vera gel (50%, 75%), without coating (Control). Above treated fruits were packed in 50 µ low density polyethylene bags with 1% and 1.5% perforation along with control making the 24 treatment combinations. The results indicated that, significant impact of treatment combination of coating and packaging material on all parameters. The treatment combination of coating of bee wax (6%) and packed in 50 μ low density polyethylene bags with 1% perforation had shown significantly superior result than other treatments. In treatment combination of coating of bee wax (6%) and packed in 50 µ LDPE bags with 1% perforation it was observed that in physical parameters viz; maximum fruit weight (138.00 at 2nd day, 137.04 at 4th day, 134.28 at 6th day and 130.99 g at 8th day), peel weight (68.19 g, 67.47 g, 66.32 g and 64.39 g), pulp weight (60.05 g, 59.46 g, 58.31 g and 56.38 g) and fruit firmness (8.05, 7.00 and 6.18 kg/cm²), also in physico-chemical parameters viz; TSS (24.00, 25.33, 27.00 and 29.00 °Brix), total sugar (24.12, 26.00, 28.90 and 26.50%), reducing sugar (22.83, 23.93, 25.27, 21.56%), non-reducing sugar (3.04, 4.15, 6.20 and 9.50%) 2th, 4th, 6th and 8th day of storage moisture (77.47, 76.99 and 76.60%) at 4th, 6th and 8th day of storage.

Keywords: Custard apple, coatings, packaging, LDPE

Introduction

The custard apple well known as sugar-apple or sharifa is the fruit of *Annona squamosa* L. belonging to family Annonaceae. It is a semi deciduous, exotic subtropical fruit, consumed in many countries throughout the world. Custard apple, introduced in India from tropical South America, and is widely distributed throughout the tropical and subtropical regions.

The fruits of Custard apple are very delicate and highly perishable. Being climacteric in nature, the biochemical changes in the fruit after harvest occur at a faster rate. The mature fruits after harvest ripen quickly and become excessively soft within 2 to 3 days at ambient condition and become unfit for consumption. The increase in shelf life of custard apple fruit would, therefore, be an advantage to the growers. Fruit coatings are one such alternative as they not only improve external appearance, but also modify the internal atmosphere of fruits (Saftner, 1999) ^[19]. It is a comparatively newer technique of post-harvest treatment for fruits and vegetables to increase shelf-life which has virtually replaced old commercial methods of post-harvest treatments due to its obvious advantage. Use of coatings has gained importance in reducing the moisture loss and maintaining firmness (Farooqhi *et al.*, 1988; Patel *et al.*, 2011) ^[4, 17]. Coatings make good oxygen and lipid barriers at low to intermediate RH, because the polymers can effectively make hydrogen bonds.

Materials and Methods

The present investigation "Studies on coatings and packaging on shelf life and quality of custard apple cv. Balanagar" was be employed from October, 2022 using different types of coatings and packaging material carried out during the October-November, 2022 in the laboratory of Department of Horticulture, College of Agriculture, Dhule.

Experimental Material

Harvesting of custard apple fruits

Fresh and fully matured uniform sized custard apple fruits cv. Balanagar were harvested and washed thoroughly in running tap water to remove the adherent dirt material

Treatment with bee wax

For applying bee wax, fruits were dipped in aqueous solutions of bee wax 6% for 5 minutes and dried for 30 minutes at room temperature.

Treatment with sago emulsion

5% and 10% sago emulsion was prepared by dissolving 50 g and 100 g sago emulsion soaked overnight and each dissolving in 1000 ml of hot water. For applying sago emulsion, fruits were dipped in solutions of sago emulsion (5% and 10%) for 5 minutes and dried for 30 minutes at room temperature.

Treatment with arrow root powder

5% and 10% solution of arrow root powder was prepared by dissolving 50 g and 100 g in 1000 ml of water. Fruits were dipped in this solution for 5 minutes and dried for 30 minutes at room temperature.

Treatment with *aloe vera* gel

50% and 75% solution of *aloe vera* gel was prepared by dissolving 500g and 750 in 1000 ml of water. For applying *aloe vera* gel, fruits were dipped in aqueous solutions of aloe vera gel (50% and 75%) for 5 minutes and dried for 30 minutes at room temperature.

Packaging

After coating fruits were packed in 50 μ low density polyethylene bags with 1% and 1.5% perforation as well as without packaging.

Experimental details

The experiment was laid out in Factorial Randomized Block Design (FRBD) consisting of 24 treatments combinations comprising of coatings and packaging and were replicated thrice. Fifteen fruit were used as sample size for each treatment.

Results and discussion Physical Parameters Fruit weight (g)

Perusal of data presented in the Table 1, initial day of storage was determined to be non-significant for the interaction effect of coating and packaging materials on fruit weight of custard apples. Significant marked reduction in fruit weight across all treatment combinations at 2, 4, 6, and 8th days of storage. In C₁P₁ combination where fruits treated with 6% wax coating and packed in 50 μ LDPE bags with 1% perforation, the minimal fruit weight drop was recorded as 138.00, 137.04, 134.28 and 130.99 g on the 2, 4, 6 and 8th days of storage, respectively. In C₈P₃ combination without any coating and without packaging, maximum fruit weight reduction was measured as 131.43, 127.10, 121.31 and 111.71 g on the 2, 4, 6 and the 8th day, respectively. Lowest fruit weight percentage was recorded by treatment C₁P₁ (94.10%) compared to C₈P₃

(82.01%), which showed a greater reduction at 8th day of storage. These results in custard apple are in agreement with Patel *et al.* (2011) ^[17] and Masalkar and Garande (2005) ^[13]. Similar outcomes were also observed in result reported by Gholani and Bisen (2012) ^[1], Sahu (2003) ^[21] and Mahalle (2019) ^[14] in custard apple.

Peel weight (g)

Data depicted in Table 2 showed that, coating and packaging materials had no significant impact on the peel weight of custard apples during initial days of storage. However, the treatments had a significant impact on peel weight during day 2, day 4, day 6 and day 8th of storage. In all treatment combinations, a considerable reduction in peel weight was observed over the storage period. On days 2, 4, 6, and 8th of storage, maximum peel weights of 68.19, 67.47, 66.32, 64.39 g, respectively, were noted in C_1P_1 *i.e.* fruit treated with 6% wax coating and packaged in 50 µ LDPE bags with 1% perforation. In treatmentC₈P₃ (without coating and without packaging), the minimum peel weight was reported as 62.67, 62.41, 58.60, 54.72 g on the day 2, 4, 6 and 8th respectively. The results of experiment are in agreement with Mahalle (2019) ^[14], Dadzie and Orchard (1997) ^[3] in the study of custard apple.

Pulp weight (g)

From the data presented in the Table 3, it is observed that pulp weight of custard apple fruits were found to be significantly reduced during storage in all treatment combinations with exception of initial days of storage and eighth day of storage. Where the interaction effects of coating and packaging materials on pulp weight was found to be significant on 2, 4 and 6th days respectively. In treatment combination C₁P₁ (Fruit treated with 6% wax coating and packaged in 50 µ LDPE bags with 1% perforation) the maximum pulp weight was observed as 60.05, 59.46, 58.31 g on the 2, 4 and 6 days of storage, respectively. In C₈P₃ (without coating and no packaging) least amount of pulp weight was observed 56.70, 54.33, 51.30 g on the 2, 4,6 days respectively. Minimum pulp weight reduction in the form of percentage, C1P1 treatment combination was93.19% as compared C₈P₃ treatment combination there was 77.59% retention on 8th day of storage. These finding are in close conformity with Mahalle (2019)^[14] in custard apple.

Fruit firmness (kg/cm²)

Perusal of data presented in the Table 4, initial day and second day of storage fruit firmness had non-significant effect. However, on 4, 6, 8th day it had significant differences. Fruit treated with 6% wax coating and packed in 50 µ LDPE bags with 1% perforation (C₁P₁) had a minimal loss in fruit firmness of 8.05, 7.00 and 6.18 kg/cm²on 4, 6 and 8thdays of storage respectively. On the fourth day, C_1P_1 (Beeswax 6% + 50 μ LDPE with 1% perforation) and C₁P₂ (Bees wax 6% + 50 μ LDPE with 1.5% perforation) were both at par.C₁P₁was superior than the other treatments on the sixth day. On 8th day of treatment combination C_1P_1 found to be superior as compared to rest of the treatments. The highest firmness reduction was 3.48, 2.24, 1.80 kg/cm² on 4, 6 day and 8th day for C_8P_3 *i.e.* without wax coating and without packaging, respectively. Less percentage of fruit firmness was

reduced (59.00%) in the C₁P₁ treatment combination and more (17.47%) in the C₈P₃ treatment combination up to 8th day. Similar result regarding fruits firmness by with Mahalle (2019) ^[14] and Venkatram and Bhagwan (2013) ^[24] in custard apple. Similar results regarding packaging were reported by Gill *et al.* (2015) ^[5] in mango and Jitareerat *et al.* (2016) ^[10] in mangosteen fruit.

Physico-chemical parameters

Total Soluble Solids (⁰**Brix)**

From Table 5, data pertaining to TSS reflected that, total soluble solids of custard apples gradually increased as a result of the interaction between the coating and packaging materials. It was observed that, total soluble solids of custard apples on initial day, 2, 4, 6, 8th day showed significant differences. Treatment C1P1 (fruit treated with 6% wax coating and packed in 50 µ LDPE bags with 1% perforation) having 24.00, 25.33, 27.00 and 29.00 ⁰Brix, had highest TSS, while in treatment combination C8P3 without treated fruit with coated and without packaging as 21.18, 22.33, 24.00 and 26.80 ⁰Brix on 2, 4, 6 and 8 days of storage respectively had lowest TSS. In terms of storage study of custard apple fruits, present findings are similar with those of Ingawale et al., (2005) ^[8], Kad (2014) ^[11], Mahalle (2019) ^[14], Bisen et al., (2021)^[2] and Jholgiker and Reddy (2007)^[9]. Similar results observed by Meena et al., (2009)^[15] in ber.

Total sugar (%):

The database determining changes in total sugars is given in Table 6. The significant impact of coating and packaging material observed on the total sugar content in custard apple fruits. On initial day and second day total sugar was found to be non-significant but after that 4, 6, 8th day showed significant result during storage. Fruit treated with 6% wax coating and packed in 50 µ LDPE bags with 1% perforation (C1P1) had maximum total sugar values of 26.00, 28.90 and 26.50%. The effectiveness on 4th day was revealed in treatments C₁P₁, C₁P₂, C₁P₃, C₂P₁, C₂P₂, C₃P₁, C₃P₂, C₃P₃ and C_4P_1 are at par to each other and comparable to those of the other treatment combination. On day 6th and on day 8th, C1P1, C_1P_2 and C_3P_1 were at par with one another. In C_8P_3 treatment combination fruits without a coating and without packaged, the minimum total sugar was observed as 23.50, 24.52 and 21.02% on 4, 6 and 8th days, respectively. In terms of storage study of custard apple fruits, present findings are similar with those of Sahu (2016)^[20], Gohlani and Bisen (2012)^[6], Mahalle (2019) ^[14], Bisen (2021) ^[2] et al., Patil et al. (2015) ^[18] and kad (2014) ^[11].

Reducing sugar (%)

Changing reducing sugar in custard apple showed in Table 7. Custard apple fruits lowering down sugar content gradually increased during the course of all storage periods up to six days before gradually declining for the remaining eight storage days. Maximum reducing sugar was observed in C1P1 that was treated with 6% wax coating and packed in 50 µ LDPE hags with 1% perforation as 22.83, 23.93, 25.27, 21.56% on the 2, 4, 6 and 8th days of storage. The lowest reducing sugar in C_8P_3 which were fruits treated without coating and without packaging was recorded as 21.24, 22.19, 22.66 and 18.00% on the 2, 4, 6, and 8th day, respectively. These experimental findings are agreement with Patel et al. (2011)^[17], Singh and Sharma (2007)^[23], Mahalle (2019)^[14], Gohlani and Bisen (2012)^[6] and Vyas et al. (2015)^[25] in custard apple. Similar results were observed by Hynniewta et *al.* (2017) ^[7] in mango.

Non reducing Sugar (%)

The data clearly showed that, in Table 8. as storage time increased from two to eight days, non reducing sugar in gradually custard apple fruits increasing trend under all treatments. The maximum non reducing sugar was found in $C_1P_1(6\%)$ bees wax coating and packed in 50 μ LDPE bags with 1% perforation) as 3.04, 4.15, 6.20 and 9.50% on the 2, 4, 6 and 8th day of storage, respectively. On 2, 4 6 and 8^{th} and eight days, respectively, the minimum reducing sugar was observed C_8P_3 (without coating and without packaging) treatment combination 2.22, 2.50, 3.56 and 6.18%. Results of experiment are conformity with, Gohlani and Bisen (2012)^[6], Mahalle (2019)^[14] and Vyas et al. (2015)^[25] obtained results of a similar nature increment of non- reducing sugar custard apple storage study.

Moistrure

Perusal of data presented in the Table 9., The fruit treated with was 6% wax coating and packed in 50 μ LDPE with 1% perforation (C₁P₁) recorded 77.47%, 76.99% and 76.60% reduction of moisture on the 4th, 6th and 8th day of storage, respectively. On 4th, 6th and 8th days, respectively, the maximum reduction moisture was measured in (C₈P₃) without coating and without packaging as 74.80%, 74.39%, 73.68%.Similar results were reported by Kad (2014) ^[11] who noted a decrease in moisture percentage in fruits of custard apples. Similar finding was revealed by Sahu (2016) ^[20] in custard apple and Salvador *et al.*, (2003) ^[22], Kamthe, (2001) ^[12] and Mahalle (2019) ^[14] in related apple which supports to these findings in custard apple.

Table 1: Effect of coating and packaging material on fruit weight (g) of custard apple along with their interaction during storage

Treatments			Day Packas							
Coating	P ₁		P ₂	sing		P ₃				
C_1	139.20 (100)	13	3.54 (100)		138	5.10 (10	0)	Mean 138.6		
C_1	135.88 (100)		8.70 (100)			5.55 (10		137.0		
$\frac{C_2}{C_3}$	138.85 (100)		$\overline{9.10(100)}$.50 (10	,	138.8		
C_4	135.80 (100)		5.17 (100)			5.70 (10	,	135.5		
C ₄ C ₅	138.50 (100)		8.00 (100)			5.90 (10	,	135.5		
C ₅ C ₆	136.80 (100)		<u>8.00 (100)</u> 8.00 (100)			5.50 (10	,	137.8		
	· /		. ,			1	,			
C ₇	135.00 (100)		5.10 (100)			<u>5.85 (10</u>	,	135.6		
C ₈	136.00 (100)	15.	5.55 (100) 137.51			<u>5.20 (10</u>)))	135.9		
Mean	136.90			.1		136.66				
	Coating(C)		Pa	ckagin	g(P)			(CxP		
SE(m)±	0.996			0.61				1.720		
CD at 5%	NS			NS				NS		
Treatments			Day							
C	D	r	Packag	ging				M		
Coating	$\frac{\mathbf{P}_1}{128,00,(00,12)}$	127	P_2	\ \	126	P_3	02)	Mea		
C_1	138.00 (99.13)		.54 (99.05			75 (99.	,	137.4		
C ₂	137.03 (99)		.30 (98.26	/		<u>59 (98.</u>	,	135.9		
C ₃	137.58 (98.97)		.93 (98.43	,		23 (98.	,	136.9		
C_4	134.33 (98.91)		.78 (98.24	<i>,</i>		07 (98.	,	133.7		
C ₅	135.30 (97.68)		.20 (98.24	<i>,</i>		40 (98.		134.6		
C ₆	133.70 (97.68)		3.40 (97.97)				132.73 (97.44)		/	133.2
C ₇	134.17 (97.73)		133.33 (97.96)		· · · · · · · · · · · · · · · · · · ·		133.23 (98.07)		,	133.6
C_8	132.90 (97.72)	131	.60 (97.08)	131.43 (96.49)		49)	131.9		
Mean	135.38		134.19			133.93				
	Coating(C)		Packa	ging(P))			CxP)		
SE(m)±	0.24			.15			C).41		
CD at 5%	0.67		0.	.41			1	.17		
Treatments			Day							
			Packag	ging						
Coating	P1	P			P			Mean		
<u>C</u> 1	137.04 (98.44)	135.38			134.31 (135.8		
C_2	132.92 (97.82)	132.40			130.33 (131.8		
C ₃ C ₄	<u>135.57 (97.63)</u> 130.00 (96.43)	134.37 130.40			132.00 (128.18 (133.9 129.5		
C ₄ C ₅	132.33 (95.54)		(95.76)		128.18 (129.5		
C ₅ C ₆	130.67 (95.54)	131.83			130.00 (130.3		
C ₆	132.33 (95.51)	130.33	()		131.39 (131.9		
C ₈	127.40 (93.67)	127.33			127.10 (127.2		
Mean	132.28	131			130.					
	Coating(C)		Pack	aging(F			(CxP))		
SE(m)±	0.50			0.30			0.86			
CD at 5%	1.41			0.86			2.44			
Treatments			DAY							
			Packag	ging						
Coating	P ₁	P			P 3			Mean		
C1	134.28 (96.46)	132.25	· /		130.51 (132.3		
$\frac{C_2}{C_2}$	130.00 (95.67)	129.04			125.55 (128.0		
C ₃	132.28 (95.26)	129.70			128.74 (122.93 (130.9 123.6		
C ₄ C ₅	<u>123.54 (91.64)</u> 127.16 (91.81)	124.51 126.64			122.93 (125.0		
C ₅ C ₆	124.67 (91.81)	120.04			124.80 (120.2		
C ₆ C ₇	124.67 (91.81)	124.40			124.01 (124.3		
C ₇ C ₈	122.71 (90.22)	124.55			124.10 (124.5		
Mean	127.35	122.00			121.51 (122.0		
wicali	Coating (C)	120	.o7 Packaging	ν(P)	123.	20	(CxP))		
SE(m)±	0.39		0.24	5x* /			0.68	,		
CD at 5%	1.12	1	0.69				1.94			

Treatments			Day 8			
Treatments			Packaging			
Coating	P 1	P	2	P	3	Mean
C1	130.99 (94.10)	128.07	(92.44)	125.04	(90.54)	128.03
C_2	122.00 (89.78)	123.17	(88.80)	118.41	(86.71)	121.20
C3	128.23 (92.25)	127.13	(91.39)	122.29	(88.29)	125.88
C_4	117.20 (86.94)	118.14 (86.75)		116.18 (85.61)		117.17
C5	121.60 (87.79)	121.02	(86.75)	118.14	(85.61)	120.26
C6	117.03 (87.79)	116.70	(87.69)	115.65 (86.29)		116.46
C7	117.63 (85.54)	116.87	(85.56)	116.32 (85.62)		116.94
C_8	114.36 (84.08)	112.59	(83.06)	111.71	(82.01)	112.89
Mean	121.13	120).46	117	.97	
	Coating(C)	Coating(C)		ging(P)	(CxP)	
SE(m)±	0.22	0.22		0.13		37
CD at 5%	0.61		0.	38	1.0	06

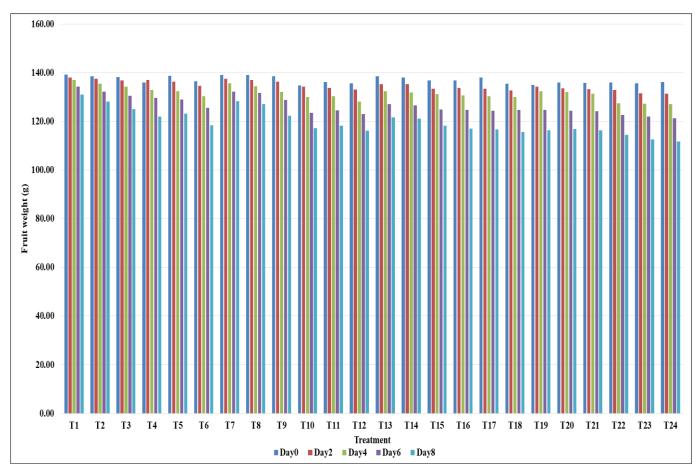


Fig 1: Effect of coating and packaging on fruit weight of custard apple along with their interaction during storage

Table 2: Effect of coating and packaging material or	a peel weight (g) of custard apple along with their in	teraction during storage
	- F	

Treatments			Da	y 0		
Treatments			Packa	aging		
Coating	P 1	P2 P3				Mean
C_1	68.92 (100)	68.24	(100)	68.71 (10)0)	69.00
C_2	66.75 (100)	68.29	(100)	67.11 (10)0)	67.38
C3	68.90 (100)	68.35	68.35 (100) 68.15 (100))()(68.81
C_4	66.43 (100)	67.04 (100)		66.80 (100)		66.76
C5	67.63 (100)	67.78	(100)	66.75 (10)()(67.39
C_6	67.35 (100)	67.75	(100)	67.65 (100)		67.58
C7	66.75 (100)	67.05	(100)	66.88 (10)()(66.81
C_8	66.75 (100)	66.72	(100)	67.04 (10)()(66.84
Mean	67.40	67	.77	67.32		
	Coating(C)	Coating(C)		Packaging(P)		(CxP)
SE(m)±	0.582		0).356		1.007
CD at 5%	NS			NS		NS

Treatments		Day 2 Packaging						
Coating	P 1		P2	P3		N	Iean	
C1	68.19		67.71	66.3			7.43	
<u>C2</u>	66.70		66.38	65.8		66.30		
<u>C3</u>	67.90		67.29	66.0			7.40	
<u>C4</u>	64.99		64.23	65.0			4.74	
C5	66.57		66.40	65.7			6.24	
<u>C6</u>	65.73		65.13	65.2			5.38	
C7	65.94		65.84	64.8			5.53	
C ₈	63.83		64.33	62.6			3.61	
Mean	66.36		65.93	65.3				
	Coat	ting(C)	Pa	ckaging(P)		((CxP)	
SE(m)±		.31		0.19		().53	
CD at 5%	C	.88		0.54		1	.52	
			Day	6				
Treatments			Packag					
Coating	P1		P ₂		P ₃		Mea	
<u>C1</u>	66.32		65.27		64.04	$ \rightarrow $	65.2	
<u>C2</u>	62.47		<u>53.38</u>		61.11		62.3	
C ₃	65.80		54.21		62.96		64.6	
<u>C4</u>	60.81		61.16		60.37	\rightarrow	60.7	
<u>C5</u>	62.54		61.97		60.89 59.96		61.8 60.6	
<u>C₆</u>	61.10		50.96		59.96 60.30			
<u>C7</u>	60.89 59.77		50.33		58.60	<u>60.5</u> 59.0		
C ₈ Mean	62.46		58.65 62.11		58.60 61.02			
wieall	Coating(kaging(P)	01.02		CxP)	
SE(m)±	0.436	_)		0.267).656	
CD at 5%	1.208			0.601			1.803	
			Day		I			
Treatments			Packag					
Coating	P 1	P ₂		P3			Mean	
C1	67.47	66.7	9	65.99			66.75	
C_2	65.58	64.5	4	63.71			64.64	
C3	67.00	66.7	9	65.12			66.30	
C_4	63.53	62.9	0	62.88			63.10	
C5	64.78	64.2		63.30			64.10	
C_6	63.71	63.5		62.78			63.33	
C7	63.56	63.0		62.70			63.10	
C ₈	62.70	62.3		62.41			62.50	
Mean	64.66	64.4		63.61				
07/	Coating(C)		Packaging			(Cxl		
SE(m)±	0.037		0.022			0.06		
CD at 5%	0.111		0.066			0.19	2	
Treatments			DAY 8					
Coating	P ₁		Packagin P2	g	P ₃		Mea	
Coating C1	64.39 (93.42)	62.99	<u>8 (92.29)</u>	61.4	7 (89.4	6)	62.9	
C ₁	60.53 (90.68)) (88.59)		7 (86.5		59.7	
C ₃	63.13 (91.70)		8 (91.41)		0 (88.4		61.9	
C4	57.81 (87.02)		1 (86.67)	-		/	57.7	
C5	59.80 (88.42)		1 (86.67)		57.23 (85.67) 57.81 (85.67)		59.0	
C ₆	57.70 (88.42)) (87.79)		8 (86.6		57.1	
C7	57.17 (85.67)		8 (84.42)		9 (85.0	-	57.0	
C ₈	55.68 (83.41)		8 (82.70)		2 (81.6		55.1	
Mean	59.52		59.13		<u>2 (81.8</u> 57.87	,		
	Coating(C)			aging(P)			(Cx	
SE(m)±	0.563).345			0.97	
CD at 5%	1.689	1		1.035			NS	

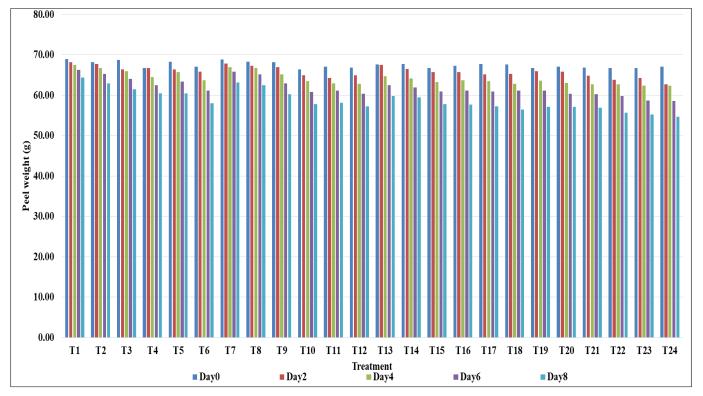


Fig 2: Effect of coating and packaging material on peel weight of custard apple along with their interaction during storage

Treatments			DAY 0		
			ackaging		
Coating	P 1	P2	P 3	Mear	
C1	60.50 (100)	60.11 (100)		60.10	
C_2	58.83 (100)	60.09 (100)	59.04 (100)	59.32	
C3	59.72 (100)	56.35 (100)	60.15 (100)	58.74	
C4	58.43 (100)	59.03 (100)	58.85 (100)	58.77	
C5	59.62 (100)	59.77 (100)	58.75 (100)	59.38	
C ₆	56.35 (100)	59.55 (100)	58.75 (100)	59.22	
C ₇	58.50 (100)	59.05 (100)	58.87 (100)	58.81	
C_8	58.75 (100)	58.71 (100)	59.04 (100)	58.83	
Mean	59.21	59.08	59.14		
	Co	pating(C)	Packaging(P)	(CxP	
SE(m)±		0.553	0.339	0.958	
CD at 5%		1.986 0.985			
Turnet]	DAY 2	•	
Treatments		Pa	ackaging		
Coating	P 1	P2	P3	Mear	
C ₁	60.05	59.67	59.27	59.66	
C_2	59.00	58.01	57.78	58.26	
C ₃	59.10	58.53	57.88	58.50	
C4	57.04	57.64	57.09	57.26	
C5	58.50	58.20	57.50	58.13	
C ₆	57.45	57.25	56.85	57.18	
C ₇	57.55	57.30	56.95	57.27	
C ₈	57.10	57.01	56.70	56.93	
Mean	58.22	57.95	57.14		
	Coating(C)	Packaging(P)) (0	CxP)	
SE(m)±	0.497	0.205		.662	
CD at 5%	1.221	0.615	1	.886	
T			Day 4		
Treatments]	Packaging		
Coating	P1	P 2	P3	Mean	
C1	59.46	58.79	57	58.41	
C_2	57.68	56.40	55.70	56.59	
C3	58.79	57.06	56.30	57.38	
C4	54.90	55.42	54.88	55.07	

Table 3: Effect of coating and packaging material on pulp weight (g) of custard apple along with their interaction during storage

C5	56.76	56.	11		55	5.32		56.0)6	
C6	55.53	55.	30		54	1.77		55.2	20	
C7	55.74	55.	56		55	5.03		55.1	16	
C8	54.70	54.	59		54	1.33		54.4	14	
Mean	56.45	56.	03		55	5.67				
	Coa	ting(C)	P		aging(P)		(CxP)			
SE(m)±		0.49			0.30			0.849		
CD at 5%	1	.201		0).849			2.380		
Treatments					Day 6					
<u> </u>					Packagi	0				
Coating	P		P2			P3		Mea		
	58.		57.2			56.03		57.2		
C ₂ C ₃	54. 57.	-	<u>55.3</u> 53.1			<u>53.12</u> 55.94		<u> </u>		
C ₃	57.		53.1			52.36		52.7	-	
C4 C5	54.		53.9			52.88				
C ₆	52.		53.0						53.81 52.67	
C ₇	52.		52.9						52.58	
C ₈	51.		51.3				51.30 51			
Mean	54.		53.7				53.24		10	
		Coating(C)			Packaging					
SE(m)±		0.422			0.258			0.731		
CD at 5%		1.206			0.738			2.001		
					DAY 8					
Treatments				1	Packaging					
Coating	F	P ₁		P	0 0		Р	2	Mean	
Coating C1		(93.19)	55		91.78)	53		<u>,</u> 89.54)	55.00	
C ₁		(88.05)		_	87.46)			84.72)	51.46	
C ₃		(91.17)			96.69)			86.91)	53.74	
C4		(85.23)			84.88)		· · · ·	83.67)	49.72	
C ₅	51.77				85.37)		· · · ·	84.78)	50.87	
C ₆	49.69				82.68)		· · · ·	82.50)	49.13	
C ₇		(84.03)			82.98)		· · · ·	83.03)	49.01	
C8	47.79	(81.34)	47.	.33 (80.61)	45	.81 (77.59)	46.98	
Mean	51	.36		51.	12		49.	75		
		Coating(C)			Packa	ging(P)		(CxP)		
SE(m)±		0.495				.26		0.73		
CD at 5%		1.213			0.	743		NS	5	

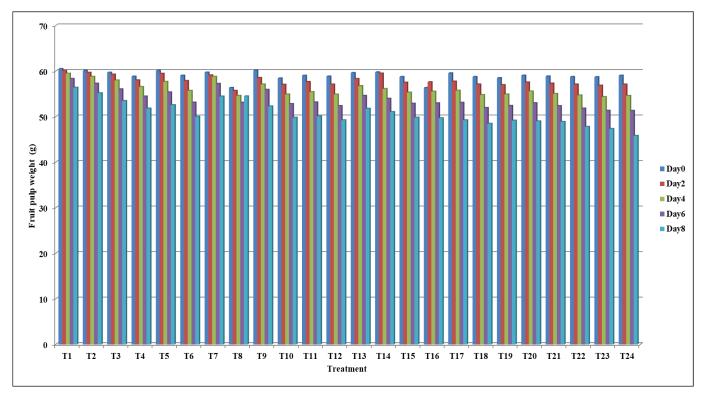


Fig 3: Effect of coating and packaging on pulp weight of custard apple along with their interaction during storage

https://www.thepharmajournal.com

Table 4: Effect of coating and packaging material on fruit firmness (kg/cm²) of custard apple along with their interaction during storage

Treatment	Day 2							
Treatment	Packaging							
Coating	P ₁	\mathbf{P}_2	P ₃	Mean				
C1	9.50	9.33	8.78	9.20				
C_2	8.66	8.50	8.41	8.52				
C3	9.18	8.90	8.48	8.85				
C_4	7.56	7.45	6.66	7.22				
C5	8.32	8.07	7.48	7.96				
C ₆	6.30	6.12	5.81	6.08				
C7	7.30	7.03	6.24	6.86				
C ₈	5.74	5.60	5.33	5.56				
Mean	7.82	7.63	7.15					
	Coating(C)	Packa	Packaging(P)					
SE(m)±	0.075	0.046		0.129				
CD at 5%	NS	1	NS NS					

Treatment	DAY 0									
					Pac	kaging				
Coating	P ₁			P ₂			P	-		ean
C_1	10.30 ().30 (1			10.30			0.30
C ₂	10.30 (100)	10.30				0.30
C3	10.30 (· · · · ·	100) 10.		100)		10.30	(100)	10	0.30
C_4	10.30 ().30 (1			10.30			0.30
C5	10.30 ().30 (1			10.30		10	0.30
C6	10.30 ().30 (1			10.30			0.30
C7	10.30 ().30 (1			10.30			0.30
C8	10.30 (10).30 (1	100)		10.30		10	0.30
Mean	10.3			10.30			10.	30		
		Coating(C	C)		Pa	ckaging(P)		(CxP)	
SE(m)±		0.00				0.00			0.00	
CD at 5%		NS				NS			NS	
Truestrues						Day	4			
Treatme	nı					Packa	ging			
Coating	g	P1			P 2		Р	3	Mea	an
C1		8.0	5		7.89		7.2	26	7.73	
C2		7.2	4		7.13		6.9	98	7.12	
C3		7.5	7		7.32		7.2	20	7.3	6
C4		6.1	3		6.02		5.2	28	5.8	31
C5		6.8	0		6.61		6.1	0	6.5	0
C ₆		4.7	1		4.01		3.8	32	4.18	
C7		5.8	5		5.50		4.2	20	5.1	8
C ₈		3.7	1		3.50		3.4	18	3.5	6
Mean		6.2	6		6.00		5.5	54		
		Coat	ing(C)			Packagi	ng(P)		(CxP	')
SE(m)	=		049			0.03	-		0.084	
CD at 59		0.	139			0.08	5		0.241	1
						Day	6		I	
Treatme	nt					Packa				
Coating	g	P1		I	P ₂	1	2 ₃		Mean	
C1	-	7.0	0	6.	.38		96		6.45	
C2		5.8		5.	.64		34		5.62	
C3		6.2			.00		70		5.99	
C4		4.5			.30		03		4.28	
C5		5.1			.00		46		4.87	
C ₆		3.8			.10	3.	01		3.31	
C7		4.2			.82		26		3.78	
C ₈		2.9			.86		24		2.70	
Mean		4.9			.64		25			
		Coatin			Packag		-	1	(CxP)	
SE(m)	<u></u>	0.03	0		0.0				0.066	
CD at 59		0.10			0.0				0.187	

Treatment			DAY	8			
Treatment			Packagi	ng			
Coating	P1	P2				Mean	
C1	6.18 (59.00)	5.30 (5	1.45)	5.00 (48	.54)	5.49	
C_2	4.94 (47.96)	4.83 (4	6.89)	4.54 (44	.07)	4.77	
C3	5.18 (50.29)	5.04 (4	8.93)	4.88 (47	.37)	5.03	
C4	3.95 (38.34)	3.70 (35.92)		3.21 (31	.16)	3.62	
C5	4.15 (40.29)	4.04 (3	9.22)	3.98 (38	.64)	4.06	
C6	2.90 (28.15)	2.24 (2	1.74)	2.15 (20	.87)	2.43	
C7	3.50 (33.98)	3.21 (3	1.16)	2.60 (25	.42)	3.10	
C8	2.88 (27.96)	2.45 (2	3.78)	1.80 (17	.47)	2.38	
Mean	4.21	3.8	5	3.52			
	Coating(Coating(C)		aging(P)		(CxP)	
SE(m)±	0.037	0.037		0.022		0.064	
CD at 5%	0.105		0	.064	0.181		

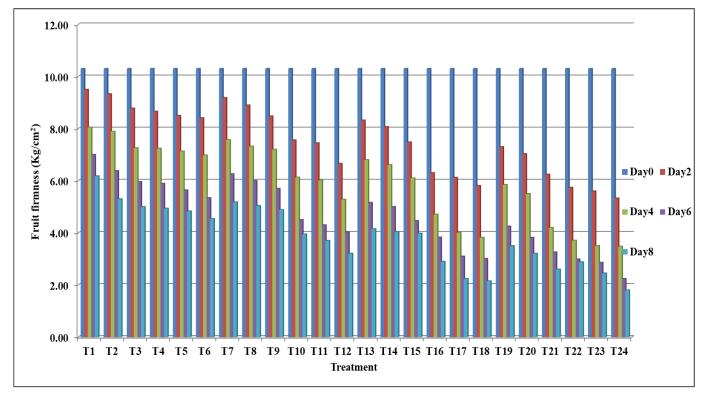


Fig 4: Effect of coating and packaging on fruit firmness of custard apple along with their interaction during storage

Table 5: Effect of coating and packaging material on total soluble solids (⁰ Brix) of custard apple alo	ng with their interaction during storage

Treatments		Da	y 0			
Treatments		Pack	aging			
Coating	P1	P_2	P ₂ P ₃			Mean
C1	21.25	21.25		21.25		21.25
C2	21.25	21.25		21.25		21.25
C3	21.25	21.25		21.25		21.25
C4	21.25	21.25		21.25		21.25
C5	21.25	21.25		21.25		21.25
C ₆	21.25	21.25		21.25		21.25
C7	21.25	21.25		21.25		21.25
C ₈	21.25	21.25		21.25		21.25
Mean	21.25	21.25		21.25		21.25
	Coating(C	E) F	ackaging(P)		(CxP)
SE(m)±	0.00		0.00			0.00
CD at 5%	NS		NS			NS
Trace dama and a		Da	y 2			
Treatments		Pack	aging			
Coating	P1	P2		P3		Mean
C1	24.00	23.40		22.68		23.36
C ₂	22.08	22.54		22.1	0	22.24

C ₃	23.74		22.73		22.40	22.95
C4	22.54		22.37		22.40	22.44
C5	23.33		22.76		22.16	22.75
C ₆	22.70		22.60		22.23	22.51
C7	22.74		22.08		22.29	22.37
C ₈	22.30		22.41		21.18	21.97
Mean	22.93		22.61		22.18	21.97
liteun	Coating(C)			aging(P)	22.10	(CxP)
SE(m)±	0.22).14		0.38
CD at 5%	0.63).39		1.10
CD at 5%	0.05					1.10
Treatments			Day 4			
			Packagi			
Coating	P 1		P ₂	P		Mean
C1	25.33		.50	23.		24.57
C_2	24.40	24	.19	23.	87	24.16
C3	25.13	24	.22	23.	81	24.39
C4	23.90	24	.03	23.	50	23.81
C5	24.33	23	5.50	23.	37	23.73
C ₆	23.57		.33	23.		23.35
C7	23.61		.27	23.		23.35
C ₈	22.67		.83	22.		22.61
Mean	25.33		.50	23.		
	Coating(C)			ackaging(P)		(CxP)
SE(m)±	0.24		-	0.15		0.41
CD at 5%	0.68			0.41		1.13
CD at 370	0.00		DAY			1.15
Treatments			Packagi			
Coating	P 1	P ₂	I ackagi			Mean
	27.00	25.97	,	P ₃ 25.33		26.10
C ₁ C ₂	25.86	25.79		25.14	25.59	
	26.53	25.81		25.14		25.84
<u>C</u> 3	25.51	25.81		25.17		
<u>C4</u>						25.36
<u>C5</u>	25.67	25.36		25.13		25.39
<u>C</u> ₆	25.33	25.25		25.00		25.19
C7	25.59	25.17		25.07		25.27
C ₈	24.70	24.81		24.00		24.50
Mean	25.77	25.45		24.99		
	Coating(C)		Packagin	g(P)		(CxP)
SE(m)±	0.20		0.12			0.34
CD at 5%	0.56		0.34			0.97
			Day	8		
Treatments			Packag			
Coating	P1	1	Тасказ Р ₂	P3	<u> </u>	Mean
	29.00		3.50	27.9	0	28.30
C_1	29.00		7.80	27.9		28.30
C ₂ C ₃	28.72		.80 3.10	27.3		27.93
<u>C4</u>	27.68		1.54	27.2		27.48
<u>C5</u>	27.65		1.53	27.4		27.55
<u>C</u> 6	27.45		.30	27.1		27.30
C7	27.65		.46	27.3		27.47
C ₈	27.08	-	.05	26.8		26.98
Mean	27.90		.66	27.4	4	
	Coating(C	C)	Pa	ackaging(P)		(CxP)
SE(m)±	0.206			0.126		0.356
CD at 5%	0.618			0.378	Т	1.068

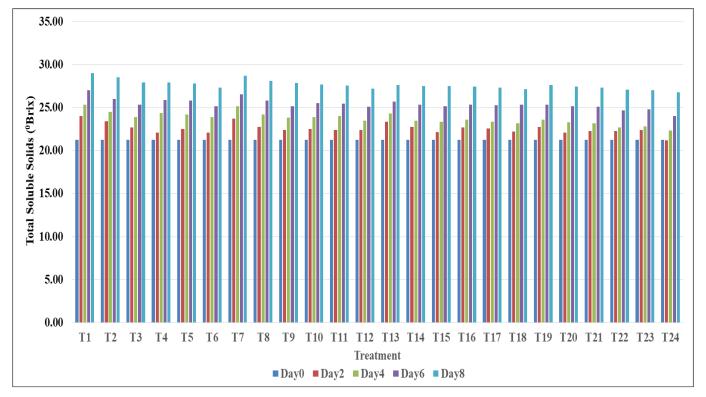


Fig 5: Effect of coating and packaging on total soluble solids of custard apple along with their interaction during storage

Treatments					ay O		
					kaging		
Coating	P1		Pa		P 3		Mean
C_1	21.8		21.8		21.		21.80
C ₂	21.8		21.8		21.		21.80
C3	21.8		21.8		21.		21.80
C4	21.8		21.8		21.		21.80
C5	21.8	30	21.8	30	21.	80	21.80
C6	21.8	80	21.8	30	21.	80	21.80
C7	21.8		21.8		21.		21.80
C8	21.8		21.8	30	21.		21.80
Mean	21.8	30	21.8	30	21.	80	
	C	oating(C)		Pac	kaging(P)		(CxP)
SE(m)±		00			00		00
CD at 5%		NS			NS		NS
Treatments		DAY 2					
Treatments	1				Packaging	5	
Coating		P1 P2		P 3		Mean	
C1		24.12		24.04	2	3.72	23.96
C_2		23.91		23.73		3.35	23.66
C3		23.95		23.90	2	3.54	23.79
C_4		23.38		23.28	2	3.07	23.24
C5		23.57		23.54	2	3.20	23.43
C6		22.78		22.70		2.50	22.66
C7		22.99		22.90	2	2.50	22.79
C_8		22.60		22.54	2	2.40	22.51
Mean		23.41		23.32	2	3.03	
		Coating	g(C)	Pac	kaging(P)		(CxP)
SE(m)±		0.18	7		0.114		0.324
CD at 5%		0.53	4		0.342		0.989
Treatments				I	DAY 6		
Treatments		Packaging					
Coating		P 1		P ₂		P 3	Mean
C1		28.90		28.3	6	27.03	28.10
C_2		27.76		27.4	4	27.00	27.40
C3		28.00		27.8	5	27.20	27.68
C_4		26.64		26.5		26.20	26.45

Table 6: Effect of coating and packaging material on total sugar (%) of custard apple along with their interaction during storage

C ₅	26.92		26.72	26.40	26.68
C6	25.49		25.35	25.00	25.28
C7	26.00		25.88	25.21	25.69
C ₈	24.90	2	24.74	24.52	24.72
Mean	26.77	2	26.58	26.16	
	Coating(C)	Packa	ging(P)	(CxP)
SE(m)±	0.221			135	0.382
CD at 5%	0.630		0.3	386	0.970
Treatments			DAY 4		
1 reatments			Packagir	ng	
Coating	P 1	P	2	P 3	Mean
C1	26.00	25.	80	25.65	25.81
C2	25.61	25		24.95	25.29
C3	25.82	25.7		25.14	25.55
C_4	25.70	24.7		24.75	25.11
C5	24.91	24.	80	24.77	24.82
C_6	24.11	24.0	02	23.90	24.01
C ₇	24.49	24.4		24.09	24.32
C ₈	23.78	23.65		23.50	23.64
Mean	25.06	24.		24.59	
	Coating(Packag		(CxP)
SE(m)±	0.215		0.1		0.373
CD at 5%	0.615		0.5	64	0.965
			DAY 8		
Treatments			Packagin	σ	
Coating	P 1	P ₂	1 acKagin	<u>P</u> 3	Mean
C1	26.50	25.9	6	25.30	29.25
C2	25.25	24.9		24.39	24.86
C ₃	25.72	25.3		24.66	25.24
C4	24.02	23.9		23.56	23.84
C ₅	24.42	24.2		23.93	24.18
C ₆	22.62	22.4	7	22.04	22.37
C ₇	23.20	23.0	4	22.27	22.83
C ₈	21.86	21.3	4	21.02	21.40
Mean	24.19	23.9	0	23.39	
	Coating(C	<u>(</u>)	Packagii	ng(P)	(CxP)
SE(m)±	0.211		0.12	-	0.366
CD at 5%	0.603		0.36	9	1.044

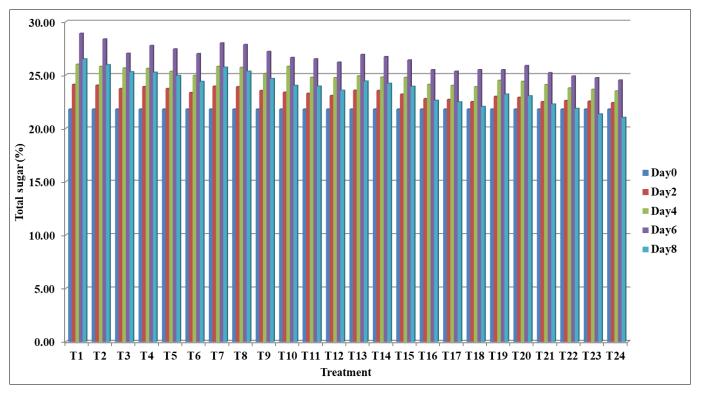


Fig 6: Effect of coating and packaging on total sugar of custard apple along with their interaction during storage

https://www.thepharmajournal.com

Table 7: Effect of coating and packaging material on reducing sugar (%) of custard apple along with their interaction during storage

Treatments	Day 0 Packaging						
Coating	P ₁	P ₂					
Coating C1	20.20	20.20		20.2		P ₁ 20.20	
C ₂	20.20	20.20		20.2		20.20	
C ₂ C ₃	20.20	20.20		20.2		20.20	
C4	20.20	20.20		20.2		20.20	
C5	20.20	20.20		20.2		20.20	
C6	20.20	20.20		20.2		20.20	
C ₆	20.20	20.20		20.2		20.20	
<u>C</u> 8	20.20	20.20		20.2		20.20	
Mean	20.20	20.20		20.2	20	20.20	
	Coating(C	.)	Pa	ackaging(P)		(CxP)	
SE(m)±	00			00		00	
CD at 5%	NS			NS		NS	
Treatments			Day 2				
			Packagir	ng			
Coating	P 1	P ₂		P ₃		Mean	
C_1	22.83	22.47		22.19		22.39	
C_2	22.41	22.28		21.94		22.21	
C ₃	22.42	22.38		22.11		22.30	
C_4	22.16	22.10		21.88		22.04	
C5	22.17	22.11		21.97		22.08	
C ₆	21.53	21.48		21.40		21.47	
C ₇	21.66	21.60		21.43		21.56	
C ₈	21.38	21.35		21.24		21.32	
Mean	22.03	21.97		21.77			
	Coating(C)		Packaging			(CxP)	
SE(m)±	0.199		0.122		1	0.344	
CD at 5%					0.887		
CD ut 570	0.507					0.007	
Treatments			DAY 4 Packagin	ıg			
				0			
Coating	P1	P ₂		P	3	Mean	
Coating C1	P ₁ 23.93	P ₂ 23.66		P 23.		Mean 23.69	
-					58		
C ₁ C ₂	23.93	23.66		23.	58 06	23.69	
$\begin{array}{c} C_1 \\ \hline C_2 \\ \hline C_3 \end{array}$	23.93 23.62 23.67	23.66 23.39 23.60		23. 23.	58 06 23	23.69 23.35 23.50	
$ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \end{array} $	23.93 23.62 23.67 23.13	23.66 23.39 23.60 23.08		23. 23. 23. 23.	58 06 23 00	23.69 23.35 23.50 23.07	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \end{array}$	23.93 23.62 23.67 23.13 23.10	23.66 23.39 23.60 23.08 23.08		23. 23. 23. 23. 23. 22.	58 06 23 00 90	23.69 23.35 23.50 23.07 23.02	
$ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \end{array} $	23.93 23.62 23.67 23.13 23.10 22.60	23.66 23.39 23.60 23.08 23.06 23.06 22.57		23. 23. 23. 23. 22. 22.	58 06 23 00 90 54	23.69 23.35 23.50 23.07 23.02 22.57	
C1 C2 C3 C4 C5 C6 C7	23.93 23.62 23.67 23.13 23.10 22.60 22.84	23.66 23.39 23.60 23.08 23.06 22.57 22.78		23. 23. 23. 23. 23. 22.	58 06 23 00 90 54 72	23.69 23.35 23.50 23.07 23.02 22.57 22.78	
$ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \end{array} $	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35		23. 23. 23. 23. 22. 22. 22. 22.	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78	
C1 C2 C3 C4 C5 C6 C7	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.78 22.35 23.06	Pack	23. 23. 23. 22. 22. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32	
C1 C2 C3 C4 C5 C6 C7 C8 Mean	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C)	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.78 22.35 23.06		23. 23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP)	
C1 C2 C3 C4 C5 C6 C7 C8 Mean SE(m)±	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.78 22.35 23.06	C	23. 23. 23. 22. 22. 22. 22. 22. aging(P)	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356	
$\begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{5} \\ C_{6} \\ C_{7} \\ C_{8} \\ Mean \\ \\ \hline SE(m) \pm \\ CD \text{ at } 5\% \\ \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C)	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.78 22.35 23.06	0 0	23. 23. 23. 22. 22. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP)	
C1 C2 C3 C4 C5 C6 C7 C8 Mean SE(m)±	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06	0 0 DAY 6	23. 23. 23. 22. 22. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356	
C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 Mean $SE(m)\pm$ $CD at 5\%$ Treatments	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06	0 0 DAY 6 Packagin	23. 23. 23. 22. 22. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850	
C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 Mean $SE(m)\pm$ $CD at 5\%$ Treatments $Coating$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 P2	0 0 DAY 6 Packagin	23. 23. 23. 22. 22. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean	
C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 Mean $SE(m)\pm$ $CD at 5\%$ Treatments $Coating$ C_1	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P ₂ 25.05	0 0 DAY 6 Packagin	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07	
$\begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{5} \\ C_{6} \\ C_{7} \\ C_{8} \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_{1} \\ C_{2} \\ \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P 2 25.05 24.41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 19 90 19 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42	
$\begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{5} \\ C_{6} \\ C_{7} \\ C_{8} \\ Mean \\ \hline \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ \hline \\ Treatments \\ \hline \\ \hline \\ Coating \\ C_{1} \\ C_{2} \\ C_{3} \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P ₂ 25.05 24.41 24.76	0 0 DAY 6 Packagin 2 2 2 2	23. 23. 23. 23. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 22 22 22 22 22 22 23 23 23 23	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64	
$\begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{5} \\ C_{6} \\ C_{7} \\ C_{8} \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ \hline \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82 24.14	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P ₂ 25.05 24.41 24.76 24.06	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 23. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ \hline \\ \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P ₁ 25.27 24.68 24.82 24.14 24.19	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P ₂ 25.05 24.41 24.76 24.06 24.15	00 07 07 07 07 07 07 07 07 07 07 07 07 0	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ \hline \\ \\ \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P ₁ 25.27 24.68 24.82 24.14 24.19 23.27	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 P ₂ 25.05 24.41 24.76 24.06 24.15 23.20	00 07 07 07 07 07 07 07 07 07 07 07 07 0	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15 23.16	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ \hline \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P ₁ 25.27 24.68 24.82 24.14 24.19 23.27 23.60	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 24.41 24.76 24.06 24.15 23.20 23.65	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15 23.16 23.45	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ \hline \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82 24.14 24.19 23.27 23.60 22.92	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 24.41 24.76 24.06 24.15 23.20 23.65 22.85	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15 23.16	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ \hline \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82 24.14 24.19 23.27 23.60 22.92 24.11	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 24.41 24.76 24.06 24.15 23.20 23.65 22.85 24.01	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15 23.16 23.45 22.81	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ \hline \\ CD at 5\% \\ \hline \\ \hline \\ \hline \\ Treatments \\ \hline \\ \hline \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82 24.14 24.19 23.27 23.60 22.92 24.11 Coating(C)	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 24.41 24.76 24.06 24.15 23.20 23.65 22.85 24.01	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.42 24.64 24.15 23.16 23.45 22.81 CxP)	
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ Mean \\ \hline \\ SE(m) \pm \\ CD at 5\% \\ \hline \\ Treatments \\ \hline \\ Coating \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \\ \hline \end{array}$	23.93 23.62 23.67 23.13 23.10 22.60 22.84 22.42 23.14 Coating(C) 0.206 0.587 P1 25.27 24.68 24.82 24.14 24.19 23.27 23.60 22.92 24.11	23.66 23.39 23.60 23.08 23.06 22.57 22.78 22.35 23.06 23.06 24.41 24.76 24.06 24.15 23.20 23.65 22.85 24.01	00 00 00 00 00 00 00 00 00 00 00 00 00	23. 23. 23. 22. 22. 22. 22. 22.	58 06 23 00 90 54 72 19 90 N N C 2 2 2 2 2 2 2 2 2 2 2 2 2	23.69 23.35 23.50 23.07 23.02 22.57 22.78 22.32 (CxP) 0.356 0.850 Mean 25.07 24.42 24.64 24.00 24.15 23.16 23.45 22.81	

Treatments	DAY 8						
Treatments		Packaging					
Coating	P ₁	P ₂	P ₃	Mean			
C1	21.56	21.08	20.64	21.094			
C_2	20.68	20.42	20.00	20.36			
C3	20.91	20.65	20.14	20.56			
C_4	20.12	20.10	19.87	20.03			
C5	20.26	20.20	20.00	20.15			
C6	19.19	19.10	18.83	19.04			
C ₇	19.45	19.35	19.01	19.27			
C8	18.75	18.23	18.00	18.33			
Mean	20.11	19.89	19.56				
	Coating(C)	Packaging(P)		(CxP)			
SE(m)±	0.153	0.094		0.266			
CD at 5%	0.438	0.268		0.658			

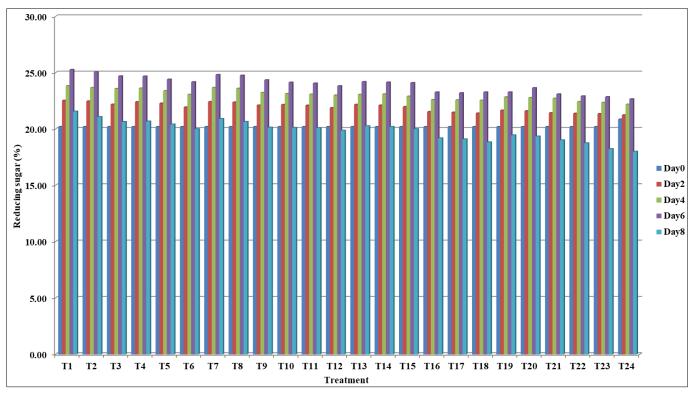


Fig 7: Effect of coating and packaging material on reducing sugar of custard apple along with their interaction during storage

Table 8: Effect of coating and packaging material	on non-reducing sugar (%) of custare	d apple along with their inter	action during Storage

Treatmonte				
Treatments				
Coating	P 1	P2	P 3	Mean
C1	3.04	3.00	2.93	2.99
C_2	2.87	2.78	2.70	2.78
C3	2.96	2.91	2.73	2.87
C4	2.34	2.25	2.20	2.26
C5	2.67	2.38	2.16	2.40
C_6	2.40	2.34	2.26	2.33
C ₇	2.55	2.45	2.33	2.44
C ₈	2.31	2.28	2.22	2.27
Mean	2.64	2.55	2.44	
	Coating(C)	Packag	Packaging(P)	
SE(m)±	0.022	0.0	0.013	
CD at 5%	0.062	0.0)38	0.107

Treatments		Da Da ala	•	
C	D	Pack		M
Coating	P ₁ 1.52	P2 1.52	P ₃ 2 1.52	Mean 1.52
$\frac{C_1}{C_2}$	1.52	1.52		1.52
C2 C3	1.52	1.52		1.52
C ₃ C ₄	1.52	1.52		1.52
C5	1.52	1.52		1.52
<u>C6</u>	1.52	1.52		1.52
C7	1.52	1.52		1.52
<u>C8</u>	1.52	1.52		1.52
Mean	1.52	1.52		1.52
moun	Coating(C)		Packaging(P)	(CxP)
SE(m)±	00		00	00
CD at 5%	NS		NS	NS
T		Da	v 4	
Treatments		Pack		
Coating	P ₁	P2	P3	Mean
C ₁	4.15	4.02		4.04
C_2	3.81	3.72		3.71
C ₃	4.08	3.90		3.88
C_4	3.20	3.15	3.06	3.14
C5	3.54	3.25	3.10	3.30
C_6	2.89	2.77	2.60	2.75
C7	3.16	2.98	2.63	2.92
C_8	2.60	2.55	2.50	2.55
Mean	3.43	3.29		
	Coating(C)	Р	ackaging(P)	(CxP)
SE(m)±	0.026		0.016	0.045
CD at 5%	0.073	0.127		
Treatments		Da		
	_	Packa	0 0	
Coating	P ₁	P ₂	P3	Mean
C ₁	6.20	6.00		6.05
C ₂	5.89	5.80		5.70
C ₃	6.10	5.93		5.83
C ₄	4.80	4.69		4.68
<u>C5</u>	5.24	4.89		4.74
<u>C6</u>	4.25	4.11		4.12
<u>C7</u>	4.60	4.28		4.31
<u>C₈</u>	3.80	3.61		3.66
Mean	5.11	4.91		
S E(ma)	Coating(C)	P	ackaging(P)	(CxP)
SE(m)± CD at 5%	0.047 0.134		0.029 0.082	0.081 0.233
CD at 370	0.134			0.233
Treatments		Day Packa		
Coating	P 1	P ₂	P3	Mean
C ₁	9.50	9.39	9.12	9.38
C ₂	8.98	8.79	8.38	8.80
C ₃	9.17	8.83	8.44	8.81
C_4	8.40	8.37	8.25	8.57
C ₅	7.50	7.40	7.25	7.38
C ₆	7.10	8.00	7.75	7.61
C ₇	7.36	7.29	6.60	7.08
C ₈	6.40	6.24	6.18	6.27
Mean	8.05	8.04	7.94	
	Coating(C)		ackaging(P)	(CxP)
	20unig(0)			(0/11)

0.04

0.109

0.112

0.321

0.065

0.185

SE(m)±

CD at 5%

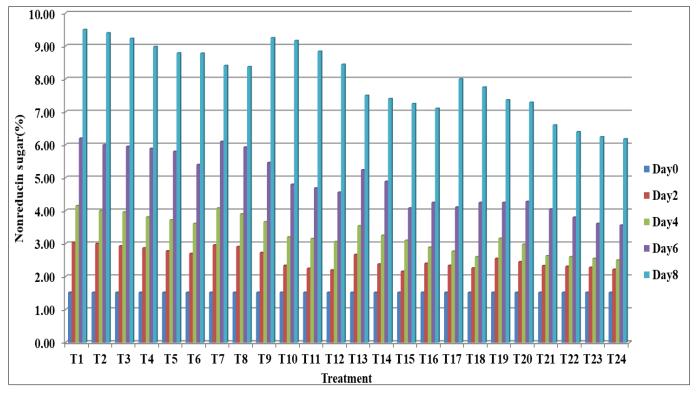


Fig 8: Effect of coating and packaging material on non-reducing sugar of custard apple along with their interaction during storage

Treatments		Day 0			
reatments	Packaging				
Coating	P 1	P ₂	P3	Mean	
C1	80.50	80.50	80.50	80.50	
C_2	80.50	80.50	80.50	80.50	
C ₃	80.50	80.50	80.50	80.50	
C_4	80.50	80.50	80.50	80.50	
C5	80.50	80.50	80.50	80.50	
C_6	80.50	80.50	80.50	80.50	
C7	80.50	80.50	80.50	80.50	
C_8	80.50	80.50	80.50	80.50	
Mean	80.50	80.50	80.50	80.50	
	Coating(C)	Packag	ging(P)	(CxP)	
SE(m)±	00	0	0	00	
CD at 5%	NS	N	IS	NS	
T	DAY 2				
Treatments	Packaging				
Coating	P 1	P2	P 3	Mean	
C_1	79.50	78.93	78.43	79.04	
C_2	78.10	77.96	77.80	77.95	
C3	79.19	78.90	77.84	78.56	
C4	77.21	77.15	77.05	77.14	
C5	77.80	77.40	77.15	77.45	
C_6	76.88	76.78	76.48	76.71	
C ₇	76.90	76.90	76.63	76.81	
C_8	76.43	76.05	75.80	76.09	
Mean	77.72	77.54	77.15		
	Coating(C)	Packag	ging(P)	(CxP)	
SE(m)±	0.663	0.4	106	1.148	
CD at 5%	NS	N	IS	NS	
Treatments		DAY 4			
reatments	Packaging				
Coating	P 1	P2	P 3	Mean	
C1	77.47	76.83	76.73	77.01	
C_2	76.87	76.40	76.35	76.54	
C3	77.34	76.80	76.59	76.91	
C_4	76.20	76.13	76.01	76.11	

Table 9: Effect of coating and packaging material on Moisture (%) of custard apple along with their interaction during storage

https://www.thepharmajournal.com

C ₅	75.95	75.97	75.77	75.89
C ₆	75.79	75.68	75.48	75.65
C7	76.10	75.71	75.46	75.76
C ₈	75.09	74.89	74.80	74.93
Mean	76.35	76.05	75.90	
	Coating(C)	Packaging(P)		(CxP)
SE(m)±	0.21	0.13		0.36
CD at 5%	0.59	0.36		1.02

Treatments						
Treatments	Packaging					
Coating	P 1	P2	P 3	Mean		
C1	76.99	76.52	76.43	76.65		
C_2	76.07	75.82	75.80	75.90		
C3	76.82	76.39	76.27	76.49		
C4	75.91	75.74	75.57	75.74		
C5	75.73	75.69	75.46	75.63		
C6	75.48	75.38	75.25	75.37		
C7	75.81	75.45	75.11	75.46		
C8	74.79	74.56	74.39	74.58		
Mean	75.95	75.69	75.53			
	Coating(C)	Packag	Packaging(P)			
SE(m)±	0.17	0.	0.11			
CD at 5%	1.49	0.	30	0.85		

Treatments	DAY 8					
Treatments						
Coating	P1	P2	P 3	Mean		
C_1	76.60	75.97	75.87	76.14		
C_2	75.60	75.21	75.07	75.29		
C3	76.29	75.92	75.84	76.02		
C_4	75.15	74.92	74.64	74.90		
C5	75.04	74.97	74.73	74.91		
C_6	74.53	74.42	74.27	74.41		
C7	74.90	74.55	74.29	74.58		
C_8	73.96	73.76	73.68	73.80		
Mean	59.58	59.45	58.81			
	Coating(C)	Packag	ging(P)	(CxP)		
SE(m)±	0.20	0.	0.12			
CD at 5%	0.56	0.	34	0.96		

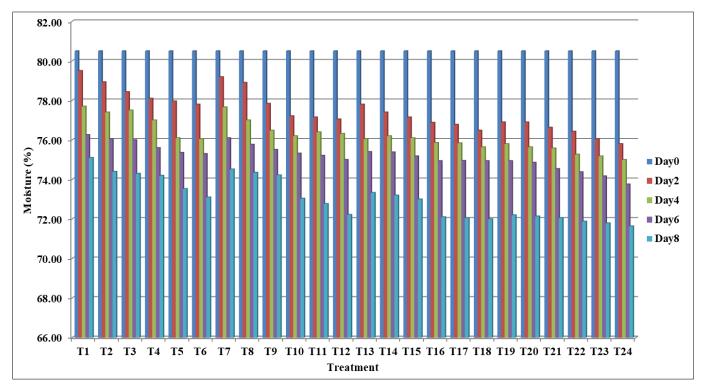


Fig 9: Effect of coating and packaging material on moisture of custard apple along with their interaction during storage

Conclusions

On the basis of findings of investigation, it can be concluded that fruits coated with 6% wax and packed in 50 µ LDPE bags with 1% perforation (C_1P_1) was found to be the most effective for extending shelf life and improving the quality of custard apple fruits in cv. Balanagar. These fruits also had the least physiological loss in fruit weight with highest fruit weight, as well as the highest peel weight, pulp weight, and total sugar, reducing sugar, and moisture per cent. Ripening of Custard apple fruits was postponed up to 8 days when treated with 6% wax coating and stored in 50 µ LDPE bags with 1% perforations, without negative impacting their physicochemical parameter values.

References

- Bisen A, Pandey SK, Patel N. Effect of skin coatings on prolonging shelf life of *Kagzi lime* fruits (*Citrus aurantifolia* Swingle). J Food Sci Technol. 2012;49(6):753-759.
- Bisen A, Pardhi S, Dongre R. Post-harvest effect of chemicals, hormones along with organic coatings on prolonging storability and biochemical constituents of sugar apple (*Annona squamosa* L.). Biol Forum Int J. 2021;13(4):857-865.
- 3. Dadzie BK, Orchard JE. Routin post-harvest screening of banana/plantain hybrids criteria and methods. Int Netw Banana Plantain (Inibap) Tech Guidel. 1997. Rome, Italy.
- Farooqhi WA, SalihAahmad M, Zain-Ul-Abdin. Effect of wax coatings on the physiological and bio-chemical aspects of *Kinnow* fruit. Pak J Sci Ind Res. 1988;31:142-145.
- 5. Gill PP, Jawandha SK, Kaur N, Singh S, Sangwan A. Influence of LDPE packaging on post-harvest quality of mango fruits during low temperature storage. Int Q J Life Sci Bioscan. 2015;10(3):1177-1180.
- 6. Gohlani S, Bisen BP. Effect of different coating material on the storage behavior of custard apple (*Annona squamosa* L.). Bioscan. 2012;7(4):637-640.
- Hynniewta LR, Banik AK, Singh LJ. Study on the effects of packaging and storage of Himsagar mango. Int J Curr Microbiol Appl Sci. 2017;6(10):1044-1048.
- 8. Ingawale MTM, Patgaunkar DR, Kadam DD, Jadhav YR. Effect of wrapping material on physico-chemical characters during storage of custard apple. South Indian Hort. 2005;53(1/6):250-262.
- Jholgiker P, Reddy BS. Effect of different surface coating material on post-harvest physiology of *Annona squamosa* L. fruits under ambient and zero energy cool chamber storage. Indian J Hort. 2007;64(1):41-44.
- 10. Jitareerat P, Vo TT, Uthairatanakij AK, Limmatvapirat S, Kato M. Effect of low density polyethylene bag and 1-MCP sachet for suppressing fruit rot disease and maintaining storage quality of mangosteen (*Garcinia mangosteen* L.). Int Food Res J. 2016;23(3):1040-1047.
- Kad VP. Design, Development and Testing of Custard Apple (Annona squamosa L.) Pulp-Flakes Extractor. Ph. D (Agril. Engg.) thesis submitted to Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India; 2014.
- Kamthe PV. Studies on extension of shelf-life of custard apple (*Annona squamosa* L). M.Sc. (Agri.) Thesis, Mahatma Phule Krishi Vidyapeeth, Rahuri, MS, India; 2001.
- 13. Masalkar SD, Garande VK. Post-harvest treatments and

packaging materials on shelf life and quality of custard apple fruits. Acta Hortic. 2005;682(2):1037-1040.

- 14. Mahalle. Studies on coatings and packaging on shelf life and quality of Custard Apple (*Annona squamosa* L.). Thesis submitted to Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India; 2019.
- 15. Meena HR, Kingsly ARP, Jain RK. Effect of postharvest treatments on shelf life of ber fruits. Indian J Hort. 2009;66(1):58-61.
- Panse VG, Sukhatme PV. Statistical methods for agricultural workers. 4th ed. New Delhi: ICAR; c1995. p. 58-152.
- 17. Patel N, Naik AG, Arbat SS. Response of post-harvest chemical treatments on shelf-life and quality of custard apple cv. Balanagar. Indian J Hort. 2011;68(4):547-550.
- Patil RA, Rao DV, Manasa B. Modified atmosphere packaging maintains physico-chemical properties of custard apple (*Annona squamosa* L.) fruits. Indian J Agric Res. 2015;49(6):489-495.
- 19. Saftner RA. The potential of fruit coating and film treatments for improving the storage and shelf-life qualities of 'Gala' and 'Golden Delicious' apples. J Amer Soc Hort Sci. 1999;124:682-689.
- Sahu B. Effect of different postharvest treatments on prolonging shelf life of sugar apple (*Annona squamosa* L.). M.Sc. (Horti.) Thesis, Indira Gandhi Krishi Vishwavidyalya, Raipur (C.G.); 2016.
- Sahu RK. Effect of various treatments on post-harvest life and quality of custard apple (*Annona squamosa* L.).
 M. Tech. (Agril. Engg.) Thesis, Indira Gandhi Krishi Vishwavidyalya, Raipur (C.G.); 2003.
- 22. Salvador ML, Jaime P, Oria R. Use of edible coatings to reduce water loss and maintain quality of Reinette apple. Acta Hortic. 2003;600:701-705.
- 23. Singh D, Sharma RR. Post Harvest Wax Coating of *Kinnow* Fruits to Retain Quality during Storage. Agric Eng Today. 2007;31(2):15-17.
- Venkatram A, Bhagwan A. Storage life improvement of custard apple (*Annona squamosa* L.) 'Balanagar' fruits by post-harvest application of antioxidants. J Appl Hort. 2013;15:1-5.
- 25. Vyas PB, Rao TVR, Thakkar VR. Combined effects of chemical and physical elicitors on postharvest quality of custard apple (*Annona squamosa* L. cv. Balanagar). Sci Hortic. 2015;187:50-57.
- 26. https://www.nhb.gov.in. (2021)
- 27. https://www.apeda.gov.in. (2021)