The Pharma Innovation

ISSN (E): 2277-7695
ISSN (P): 2349-8242
NAAS Rating: $\mathbf{5 . 2 3}$
TPI 2023; 12(12): 2691-2696 © 2023 TPI
www.thepharmajournal.com
Received: 13-10-2023
Accepted: 17-11-2023
R Amin
Department of Horticulture, College of Agriculture, Assam Agricultural University, Jorhat, Assam, India

S Mahanta

Department of Horticulture, College of Agriculture, Assam Agricultural University, Jorhat, Assam, India

B Sarma

Department of Horticulture, SCS College of Agriculture, Assam Agricultural University, Dhubri, Assam, India

RK Nath

Department of Entomology, SCS College of Agriculture, Assam Agricultural University, Dhubri, Assam, India

S Sharma

Department of Floriculture and Landscape Architecture, College of Horticulture and FSR, Assam Agricultural University, Nalbari, Assam, India

Corresponding Author:

B Sarma
Department of Horticulture, SCS College of Agriculture, Assam Agricultural University, Dhubri, Assam, India

Influence of growing media and pot size on roof top gardening of Petunia

R Amin, S Mahanta, B Sarma, RK Nath and S Sharma

Abstract

An experiment was carried out on the rooftop of the administrative building of Assam Agricultural University, Jorhat during the year 2021-22, with a view to standardization of the growing media and pot size for rooftop gardening of petunia (variety-Tritunia star mix). The crop was subjected to seven growing media at three different pot size to study their effect. The experiment was laid out in factorial completely randomised block design with three replications. The crop is grown in seven growing medias comprising of different components by volume in three different pots, viz., $S_{1}: 20 \mathrm{~cm}, S_{2}: 25 \mathrm{~cm}$ and S_{3} : 30 cm . The media compositions were G_{0} : Soil (as control), G_{1} : Soil + Sand +Vermicompost ($1: 1: 1$), G_{2} : Soil + Sand + Cocopeat + Vermicompost (1:1:2:2), G 3 : Sand + cocopeat +Vermicompost (2:5:5), G4: Sand + cocopeat + Vermicompost + Vermiculite $(1: 2: 2: 1)$, G5: Sand + cocopeat + Vermicompost + Perlite ($1: 2: 2: 1$), G_{6} : Sand + cocopeat + Vermicompost +Vermiculite + Perlite (1:2:2:0.25:0.25). The results revealed that the growth, flower and flowering attributing characters of Petunia were significantly increased in the media, G_{6} with the increase of pot size S3. It also observed that the self-life and the least days to full bloom was recorded 16.67 days and 76.847 days respectively. Among the pot size, S_{3} (30cm) gave the best results in vegetative and floral characters. The treatment combination $\mathrm{T}_{21}: \mathrm{S}_{3} \mathrm{G}_{6}$ gave the highest $\mathrm{B}: \mathrm{C}$ ratio (1.90). From the observation it can be concluded that the treatment combination T_{21} was considered to be farmer's friendly and best treatment combination in terms of better growth and flowering of petunia.

Keywords: Roof top, petunia, vermicompost, vermiculite, perlite

Introduction

Rooftop gardening is a special type of urban agriculture or urban horticulture. These roof spaces are generally unused. They often have good exposure to sunlight and rain, and they are always available, even in the densest urban areas. People living in cities or towns or in urban areas are much interested in rooftop gardens due to the aesthetic sense of the people and increased use of flowers for decorating home, offices, public building and use in social and religious functions. But there is limited research work carried out in rooftop ornamental gardens even though the concept is visualized to a great extent.
The concept of modem green roof originated at the turn of the $20^{\text {th }}$ century in Germany, where vegetation was installed on roofs to mitigate the damaging physical effects of solar radiation on the roof structure. Early green roofs were also employed as fire retardant structures (Kohler and Keeley, 2005) ${ }^{[7]}$. Green-roof technology was quickly embraced and gained popularity due to improved aesthetics, air quality, energy efficiency and variety of other benefits resulting from enhanced green spaces. Living roofs also reduce sound pollution by absorbing sound waves outside buildings and preventing inward transmission (Dunnet and Kingsbury, 2004) ${ }^{[4]}$. The present study is carried out to see the effect of growing media and pot size in growth and development of annual ornamental flower crop Petunia in rooftop garden with the following objectives:

1. To standardize the growing media for growth and flowering
2. To determine the suitable pot size

Materials and Methods

The experiment was conducted in the roof top of New Administrative Building, Assam Agricultural University, Jorhat during 2021-2022.

Details of the experiment
Design and layout

Location:	Rooftop of Administrative Building. AAU, Jorhat-13
Design:	Factorial CRD (Completely Randomized
Replication:	Design)
Number of Treatments:	3
Total number of pots:	63
Individual pot size:	$20 \mathrm{~cm}, 25 \mathrm{~cm}$ and 30 cm

Treatment details

Crops: Petunia (Petunia grandiflora) cv. Tritunia star mix There were three Different pot sizes along with seven different compositions of media comprising of components mixed in various proportions by volume.
They are as follows:

Growing Media Composition

$\mathbf{G}_{\mathbf{0}}=$ Soil
$\mathbf{G}_{1}=$ Soil+ Sand + Vermicompost (1:1:1)
$\mathbf{G}_{\mathbf{2}}=$ Soil + Sand + Cocopeat + Vermicompost (1:1:2:2)
$\mathbf{G}_{\mathbf{3}}=$ Sand + cocopeat + Vermicompost (2:5:5)
$\mathbf{G}_{4}=$ Sand + cocopeat + Vermicompost + Vermiculite (1:2:2:1)
$\mathbf{G}_{5}=$ Sand + cocopeat + Vermicompost + Perlite (1:2:2:1)
$\mathbf{G}_{6}=$ Sand + cocopeat + Vermicompost + Vermiculite + Perlite (1:2:2:0.25:0.25)

Treatment combinations

Notation Treatments

T1	$20 \mathrm{~cm}+\mathrm{G}_{0}$ (Soil)
T_{2}	$25 \mathrm{~cm}+\mathrm{G}_{0}$ (Soil)
T_{3}	$30 \mathrm{~cm}+\mathrm{G}_{0}$ (Soil)
T_{4}	$20 \mathrm{~cm}+\mathrm{G}_{1}$ (Soil+ Sand + Vermicompost)
T_{5}	$25 \mathrm{~cm}+\mathrm{G}_{1}$ (Soil+Sand + Vermicompost)
T_{6}	$30 \mathrm{~cm}+\mathrm{G}_{1}$ (Soil + Sand + Vermicompost)
T_{7}	$20 \mathrm{~cm}+\mathrm{G}_{2}($ Soil + Sand + Cocopeat + Vermicompost)
T_{8}	$25 \mathrm{~cm}+\mathrm{G}_{2}$ (Soil+ Sand + Cocopeat + Vermicompost)
T9	$30 \mathrm{~cm}+\mathrm{G}_{2}($ Soil + Sand + Cocopeat + Vermicompost)
T10	$20 \mathrm{~cm}+\mathrm{G}_{3}$ (Sand + cocopeat + Vermicompost)
T_{11}	$25 \mathrm{~cm}+\mathrm{G}_{3}$ (Sand + cocopeat + Vermicompost)
T12	$30 \mathrm{~cm}+\mathrm{G}_{3}$ (Sand + cocopeat + Vermicompost)
T13	$20 \mathrm{~cm}+\mathrm{G}_{4}$ (Sand + cocopeat + Vermicompost+Vermiculite)
T14	```25cm +G4 (Sand + cocopeat + Vermicompost +Vermiculite)```
T15	$\begin{aligned} & \text { 30cm+ G4 (Sand + cocopeat + Vermicompost } \\ & \text { +Vermiculite) } \end{aligned}$
T_{16}	$20 \mathrm{~cm}+\mathrm{G}_{5}$ (Sand + cocopeat + Vermicompost + Perlite)
T_{17}	$25 \mathrm{~cm}+\mathrm{G}_{5}($ Sand + cocopeat + Vermicompost + Perlite)
T18	$30 \mathrm{~cm}+\mathrm{G}_{5}$ (Sand+cocopeat+Vermicompost+Perlite)
T_{19}	$25 \mathrm{~cm}+\mathrm{G}_{6}$ (Sand + cocopeat + Vermicompost+Vermiculite Perlite)
T20	$\begin{aligned} & 25 \mathrm{~cm}+\mathrm{G}_{6}(\text { Sand }+ \text { cocopeat }+ \text { Vermicompost } \\ & + \text { Vermiculite }+ \text { Perlite }) \end{aligned}$
T21	$\begin{aligned} & \text { 30cm+ } \mathrm{G}_{6} \text { (Sand }+ \text { cocopeat }+ \text { Vermicompost }+ \text { Vermiculite } \\ & + \text { Perlite) } \end{aligned}$

Observations recorded

Vegetative characters

- Plant height (cm)
- Number of branches per plant
- Number of Leaves per plant
- Plant spread (cm)
- Leaf area $\left(\mathrm{cm}^{2}\right)$
- Root volume (CC)
- Root length (cm)
- Root numbers

Flower characters

- Days to bud visibility (days)
- Days to bud opening (days)
- Days to full bloom
- Diameter of the flower
- Number of flowers per plant
- Fresh weight of the flower (g)
- Self-life of florets (days)

Results and Discussion

Vegetative Characters

From the experiment, the highest plant height $(19.13 \mathrm{~cm})$ (Table 1) was recorded in the growing media G_{6} (sand + cocopeat + vermicompost +vermiculite + perlite; 1:2:2:0.25:0.25) for Petunia which is at par with growing media G_{5} (sand + cocopeat + vermicompost + perlite;1:2:2:1). This might be due to the physicochemical properties of the media G_{6} and G_{5} which consisted of bulk density $0.824 \mathrm{~g} / \mathrm{c}^{3}$, pH of 6.27 and $8.23 \mathrm{~g} / \mathrm{c}^{3}, \mathrm{pH} 6.26$ respectively. The presence of perlite, vermiculite, vermicompost and cocopeat made the media well-drained and rich in organic matter. This findings are in conformity with the findings of Saha et al. (2018) ${ }^{[10]}$. Likewise, the highest plant height of 18.61 cm was recorded in pot size $S_{3}(30 \mathrm{~cm})$. Similar findings were also reported by A.S. Deogade et al. (2020) ${ }^{[1]}$ in Calendula.

The maximum number of branches (17.52) was observed in growing media G_{6}, which was at par with the growing media G_{5} and minimum number of branches was recorded in control G_{0} (Table 2). This might be due to the potting mixture combination of sand, Vermicompost and cocopeat which has provided optimal conditions like proper aeration and drainage, water holding capacity and nutrients required for the better growth of plant resulting in more production of branches per plant. These results are in confirmation with the findings of Thakur et al. (2013) ${ }^{[13]}$ and Deogade (2020) ${ }^{[1]}$ in Calendula.
Significantly maximum number of branches 17.56 per plant was recorded in pot size $S_{3}(30 \mathrm{~cm})$ and lowest of 9.72 in the pot size $S_{1}(20 \mathrm{~cm})$.The present findings might be due the fact that the small pots could accommodate less substrate so failed to provide requisite growing conditions and hence in small size pots number of branches was less and on the contrary, more branches were produced in the larger size pots due to availability of more space and higher amount of potting media which provided superior physico- chemical and biological properties for the growth of salvia and petunia. Similar results were also observed by Dilta et al. (2019) ${ }^{[3]}$ in azaleas.
Similarly, maximum number of leaves per plant of 130.78 was recorded in growing media G_{6} (sand + cocopeat + vermicompost +vermiculite + perlite; 1:2:2:0.25:0.25) while minimum of 88.31 was recorded in growing media G_{0} (Soil) (Table 3). The present findings might be due to better aeration, water holding capacity, source of nutrient provide nitrogen in available form, which increase root spread and plant growth ultimately increase number of leaves per plant. The results are in confirmation with the findings of Gupta et al. (2016) ${ }^{[5]}$ and Saha et al. (2018) ${ }^{[10]}$. It was observed that with the increase in pot size, the leaf number also increased with a highest of 136.02 in pot size of $30 \mathrm{~cm}\left(\mathrm{~S}_{3}\right)$.
The interaction effect of growing media and pot size $\left(\mathrm{S}_{3} \mathrm{G}_{6}\right)$
recorded the highest leaves per plant of 151.35 . The probable cause of higher number of leaves under this treatment combination might be related to the depth of the pot size and suitable growing media which enhance the crop growth. The highest leaf area of $32.64 \mathrm{~cm}^{2}$ was recorded in growing media G_{6} which was at par with growing media G_{5}. This might be due to the favourable physiochemical characteristics and high nutritional content of growing media which encouraged healthy plant growth. This is most likely as a result of the plant's robust and healthy growth in the substrates. Similar results were observed by Panj (2012) ${ }^{[9]}$ in gerbera.
Moreover, highest leaf area $31.46 \mathrm{~cm}^{2}$ were recorded in pot size $S_{3}(30 \mathrm{~cm})$ and lowest leaf area of $27.80 \mathrm{~cm}^{2}$ were recorded in $S_{1}(20 \mathrm{~cm})$. The reason for lower leaf area is the production of less and smaller leaves in smaller pots (Table 4).

The lowest leaf area in combination $\mathrm{S}_{1} \mathrm{G}_{0}$ could be attributed to less volume of growing media which restricted the nutrient supply. Similar result was reported by Van Iersel (1997) ${ }^{[14]}$ in salvia. The growing media G_{6} recorded highest plant spread of 28.25 cm , and this was at par with the growing media G_{5}. This could be as a result of the high amount of nitrogen that is readily available in G_{6} and G_{5} as nitrogen encourages cell division and cell enlargement, which improves the vegetative growth of the plant. Similar results were also reported by Saha et al. (2018) ${ }^{[10]}$.
The highest root volume of 31.64 cc (Table 6) was observed for growing media G_{6}. This might be due to superior physicochemical and biological properties of the growing media for better root growth and root proliferation. Similar results were reported by Saha et al. (2018) ${ }^{[10]}$. Similarly, Pot size $S_{3}(30 \mathrm{~cm})$ recorded the highest root volume 30.82 cc . This might be as a result of more number of feeding roots and growing depth of the roots in bigger pot size.
The combination of $S_{3} \mathrm{G}_{6}$ exhibited the highest root volume of 34.51 cc among the interactions. The probable cause for higher root volume for this treatment could be the proper pot size as well as the better growing media i.e. Perlite and vermiculite, with low bulk density, made it simpler for the roots to spread out.
The highest root length (14.88 cm) was observed in growing media G_{6} and lowest (9.26) in control (G_{0}) (Table 7). This might be due to the fact that the bulk density of the growing media G_{0} was high which restricted the growth of roots. The pot size $S_{3}(30 \mathrm{~cm})$ and the interaction of $S_{3} G_{6}$ recorded the highest root length of 13.86 cm and 16.31 cm , respectively. This might be due to media volume, which offered enough
space for root growth.
Similarly, root number of 183.88 was recorded in as highest in growing media G_{6} (Table 8). This might be due to the porosity of the media that helps for better root development in plants (Dewayne et al., 2003) ${ }^{[2]}$.

Flower characters

From the experiment, minimum days to flower bud visibility, bud opening and full bloom (4.26, 4.27 and 4.28) were recorded for growing media G_{6}. (Table 9, 10 and 11). This could be ascribed to the fact that plants grown in this medium might have utilized the available nutrients more efficiently and results in higher accumulation of carbohydrate that ultimately resulted in early flowering. Similar findings have been reported by Sekar and Sujata (2001) ${ }^{[11]}$ in gerbera and in geranium by Singh (2010) ${ }^{[12]}$. The interactions effect of growing media and pot size $S_{3} \mathrm{G}_{6}$ recorded the minimum days for full bloom, which is at par with the combinationS $\mathrm{S}_{3} \mathrm{G}_{5}$. The reason for this character could be due to better growth of the plant.
The number of flowers per plant, diameter of flower, fresh weight of flower for petunia was recorded in growing media G_{6} which was at par with growing media G_{5}, which consisted of coco peat, vermiculite and perlite among the media components. (Table 12, 13 and 14). The physico-chemical properties of G_{6} and G_{5}, in which the presence of organic matter in addition to inorganic matter like perlite improved the property of the media, may be the cause of these characters' higher performance. Similar results were also observed by Kumar et al. (2007) ${ }^{[8]}$ in gerbera.
Likewise, the highest number of flowers per plant, diameter of flower, and fresh weight of flower was recorded in 30 cm pot size S_{3}. This could be as a result of increased media volume, which increased nutrient availability to the plants
Self-life of flower was found to be longest (14.12 days) in growing media G_{6} (Table 15) which is at par with growing media G_{5}. This could be due to the better availability of P and Kand also due to higher amount of reserve food material content in the flower. Similar results were observed by Haokip et al. (2005) ${ }^{[6]}$ in gladiolus.
Likewise, the longest self-life observed in pot size $S_{3}(30 \mathrm{~cm})$, could be attributed to the more amount of available N, P and K with greater volume of the media.
The combination $\mathrm{S}_{3} \mathrm{G}_{6}$ recorded the longest self-life, which was at par with the combination $\mathrm{S}_{3} \mathrm{G}_{5}$. This character might be due to the larger amount of N, P and K made available by the presence of vermiculite in the rhizosphere of the plant.

Table 1: Plant height of petunia (cm)

Table 2: Number of branches/plants

Media depth				Growing Media				Mean S
	G0	G1	G2	G3	G4	G5	G6	
S_{1}	6.45	7.60	9.00	10.00	10.66	12.34	12.00	9.72
S_{2}	11.76	13.21	14.13	15.12	15.67	18.66	19.34	15.41
S_{3}	12.95	14.34	17.00	18.11	18.60	20.72	21.20	17.56
Mean G	10.38	11.67	13.33	14.33	14.98	17.24	17.52	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.55	0.27	
	Growing media (G)					0.78	0.38	
	Interaction (S X G)					1.35	0.66	

Table 3: Number of leaves/plants

Media depth	Growing Media							Mean S
	G_{0}	G_{1}	G_{2}	G_{3}	G_{4}	G5	G_{6}	
\mathbf{S}_{1}	79.23	84.67	89.00	98.00	100.33	113.00	113.34	98.74
S_{2}	88.92	94.65	107.00	116.67	119.00	127.65	127.68	114.45
S_{3}	96.78	117.34	129.34	134.41	139.65	150.00	151.35	136.02
Mean G	88.31	98.34	108.20	116.34	119.67	130.23	130.78	
		Factors				C.D.(5\%)	S.Ed (\pm)	
		Pot size (S)				2.04	1.00	
	Growing media (G)					2.88	1.41	
	Interaction (S X G)					4.99	2.45	

Table 4: Leaf area $\left(\mathrm{cm}^{2}\right)$

Media depth			Growing Media				G6	Mean S
	G00	G1	G2	G3	G4	G5		
S_{1}	23.68	26.16	26.96	27.22	29.74	30.65	31.20	27.84
S_{2}	26.14	28.42	28.85	29.55	31.68	32.73	33.04	29.74
S_{3}	28.73	29.76	29.90	30.69	32.73	33.74	33.89	31.46
Mean G	26.18	28.13	28.64	29.17	31.40	32.40	32.64	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.38	0.18	
	Growing media (G)					0.54	0.26	
	Interaction (S X G)					0.94	0.46	

Table 5: Plant spread (cm)

Media depth	Growing media							Mean S
	$\mathbf{G}_{\mathbf{0}}$	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{3}}$	$\mathbf{G}_{\mathbf{4}}$	$\mathbf{G}_{\mathbf{5}}$	$\mathbf{G}_{\mathbf{6}}$	
S_{1}	9.98	14.833	19.20	21.14	23.46	25.90	26.56	20.31
$\mathrm{~S}_{2}$	14.76	21.04	23.03	24.96	25.16	27.93	28.45	24.65
$\mathrm{~S}_{3}$	17.87	23.967	25.06	26.34	28.03	29.60	30.20	26.46
Mean G	14.20	19.95	22.44	24.15	25.55	28.15	28.25	
Factors							C.D. (5%)	S.Ed (\pm)
Growing media (G)						0.34	0.17	
Interaction (S X G)						0.48	0.24	

Table 6: Root volume (cc)

Media depth				Growing Media				Mean S
	G_{0}	G1	G_{2}	G3	G4	G5	G6	
S_{1}	11.23	14.71	16.43	19.96	21.82	24.66	28.42	19.43
S_{2}	16.98	18.92	21.44	24.77	28.41	30.46	32.04	25.32
S_{3}	24.78	27.89	30.64	31.93	32.03	33.93	34.51	30.82
Mean G	17.66	20.53	22.83	25.56	27.42	29.68	31.64	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.99	0.98	
	Growing media (G)					1.40	0.69	
	Interaction (S X G)					2.43	1.19	

Table 7: Root length (cm)

Media depth				Growing Media				Mean S
	G0	G1	G2	G3	G4	G5	G6	
S1	6.74	8.91	9.84	10.26	10.93	12.44	13.14	10.21
\mathbf{S}_{2}	9.98	11.52	12.22	12.90	13.32	15.06	15.22	12.78
S3	11.08	12.06	12.86	13.36	14.04	15.46	16.31	13.86
Mean G	9.26	10.84	11.63	12.17	12.74	14.33	14.88	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.32	0.15	
	Growing media (G)					0.45	0.22	
	Interaction (S X G)					0.78	0.38	

Table 8: Root number

	Growing Media							Mean S
Media depth	$\mathbf{G}_{\mathbf{0}}$	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{3}}$	$\mathbf{G}_{\mathbf{4}}$	$\mathbf{G}_{\mathbf{5}}$	$\mathbf{G}_{\mathbf{6}}$	
S_{1}	110.89	116.28	123.21	134.36	135.67	136.34	140.04	128.10
$\mathrm{~S}_{2}$	131.78	143.32	150.10	161.28	168.58	175.60	181.24	161.38
$\mathrm{~S}_{3}$	145.95	169.29	180.52	191.30	201.21	218.35	230.23	193.52
Mean G	129.54	143.23	151.23	162.34	168.45	176.77	183.88	
Factors								C.D. (5\%)
Pot size (S)							S.Ed (\pm)	
Interaction (S X G)								4.15
1.44								

Table 9: Days to bud visibility

Media depth				Growing Media				Mean S
	$\mathrm{G}_{\mathbf{0}}$	G_{1}	G_{2}	G3	G4	G5	G_{6}	
S_{1}	73.87	72.04	69.34	71.06	70.30	67.66	67.36	60.27
S_{2}	73.21	72.28	70.60	69.20	67.28	66.05	65.28	69.55
S_{3}	71.12	70.58	69.23	68.18	66.35	64.68	63.60	68.05
Mean G	72.7	71.23	69.67	69.38	68.04	66.02	65.45	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.57	0.28	
	Growing media (G)					0.80	0.39	
	Interaction (S X G)					1.39	0.68	

Table 10 Days to bud opening

Media depth				Growing Media				Mean S
	G0	G_{1}	G2	G3	G4	G5	G6	
S_{1}	80.23	78.44	76.00	75.00	73.34	72.00	71.67	75.45
S_{2}	77.12	76.46	74.14	73.46	71.42	70.36	69.482	73.38
S_{3}	76.34	75.34	73.00	72.28	70.34	69.65	68.24	72.45
Mean G	77.89	76.75	74.38	73.48	71.67	70.57	69.70	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.65	0.32	
	Growing media (G)					0.92	0.45	
	Interaction (S X G)					1.60	0.78	

Table 11: Days to full bloom

Media depth				Growing Media				Mean S
	\mathbf{G}_{0}	\mathbf{G}_{1}	\mathbf{G}_{2}	G_{3}	G_{4}	G_{5}	G_{6}	
S_{1}	85.45	83.65	82.64	82.23	80.33	78.20	77.10	81.84
S_{2}	83.23	81.56	80.58	80.12	78.42	77.34	76.66	80.10
S_{3}	82.76	80.68	79.66	79.08	78.24	76.21	76.84	79.34
Mean G	83.81	81.98	81.27	80.17	79.30	77.25	76.83	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.51	0.25	
	Growing media (G)					0.73	0.35	
	Interaction (S X G)					1.26	0.61	

Table 12: Number of flowers/plants

Media depth				Growing Media				Mean S
	G0	G1	G2	G3	G4	G5	G6	
S_{1}	7.45	9.34	9.28	10.12	12.28	15.68	17.67	11.67
S_{2}	12.34	14.08	14.30	14.60	16.30	23.65	24.04	17.13
S_{3}	17.65	19.10	19.21	20.57	26.68	31.30	31.66	23.82
Mean G	12.42	14.12	14.24	15.12	18.50	23.66	24.45	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.72	0.35	
	Growing media (G)					1.01	0.49	
	Interaction (S X G)					1.75	0.86	

Table 13: Diameter of flower (cm)

Media depth	Growing Media							Mean S
	$\mathbf{G}_{\mathbf{0}}$	\mathbf{G}_{1}	G2	G3	G4	G5	G6	
S_{1}	4.87	5.53	5.92	6.13	6.42	7.16	7.13	6.16
S_{2}	5.68	6.82	7.20	7.40	7.74	8.18	8.34	7.13
S_{3}	7.89	8.23	8.61	8.82	9.15	9.76	9.76	8.85
Mean G	6.14	6.86	7.27	7.44	7.76	8.36	8.41	
Factors						C.D. (5\%)	S.Ed (\pm)	
Pot size (S)						0.19	0.09	
Growing media (G)						0.26	0.12	
Interaction (S X G)						0.45	0.22	

Table 14: Fresh weight of flower (g)

Media depth	Growing Media						Mean S	
	$\mathbf{G}_{\mathbf{0}}$	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{3}}$	$\mathbf{G}_{\mathbf{4}}$	$\mathbf{G}_{\mathbf{5}}$	$\mathbf{G}_{\mathbf{6}}$	
S_{1}	1.61	2.42	2.19	2.33	2.54	2.81	2.81	2.38
$\mathrm{~S}_{2}$	1.89	2.54	2.56	2.70	2.85	3.18	3.18	2.43
$\mathrm{~S}_{3}$	2.03	2.58	2.61	2.75	2.96	3.07	3.23	2.64
Mean G	1.84	2.51	2.46	2.60	2.78	3.02	3.07	
Factors							C.D. (5%)	S.Ed (\pm)

Table 15: Self life of flowers (days)

Media depth				Growing Media				Mean S
	G0	G1	G2	G3	G4	G5	G6	
S_{1}	4.67	6.14	6.67	7.66	8.20	11.35	12.30	8.14
S_{2}	6.98	8.66	9.57	9.48	10.57	13.00	13.41	10.23
S_{3}	9.32	11.71	11.49	12.72	14.10	16.58	16.67	13.34
Mean G	6.99	8.78	9.34	10.12	10.80	13.66	14.12	
		Factors			C.D. (5\%)		S.Ed (\pm)	
		Pot size (S)				0.48	0.23	
	Growing media (G)					0.69	0.33	
	Interaction (S X G)					NS	0.58	

Conclusion

The Influence of growing media and pot size on roof top gardening of Petunia was studied in Assam Agricultural University, Jorhat. The study revealed that the treatment combination $\mathrm{T}_{21}: \mathrm{S}_{3} \mathrm{G}_{6}\left[30 \mathrm{~cm}+\mathrm{G}_{6}\right.$ (Sand + cocopeat + Vermicompost +Vermiculite + Perlite)] was found to be farmer's friendly and best treatment combination in terms of better growth and flowering of petunia.

References

1. Deogade AS, Ningot EP, Thakare AA, Ingole AR, Dahale MH. Effect of potting mixture and pot size on growth and flowering of calendula. J Pharmacogn Phytochem. 2020;9(6):1147-1151.
2. Dewayne LI, Richard WH, Thomas HY. Growth media for container-grown ornamental plants. The

Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 2003; BUL241.
3. Dilta BS, Thapa S, Gupta YC, Sharma BP. Growth, flowering and present ability of potted azaleas as influenced by pot size and cultivars. Indian J Agric Sci. 2019;89(2):199-205.
4. Dunnet N, Kircher W, Kingsbury N. Communicating naturalistic plantings: plans and specifications. The dynamic landscape. 2004;348-368.
5. Gupta J, Dilta BS, Gupta YC, Kaushal S. Evaluation of growing media and pot size for growth and flowering of Primula malacoides Franch. Int J Farm Sci. 2016;6(2):142-148.
6. Haokip NSUC. Response of nitrogen and phosphorus on
growth and flowering parameters in gladiolus. J Ornam Hortic. 2005;8:314-315.
7. Köhler M, Keeley M. The green roof tradition in Germany: The example of Berlin. In: Green Roofs: Ecological Design and Construction. New York: Schiffer; 2005. p. 108-112.
8. Kumar S, Kanwar JK. Plant regeneration from cell suspensions in Gerbera jamesonii Bolus. J Fruit Ornam Plant Res. 2007;15:157.
9. Panj FG, Sunila K, Parmar PB. Effect of growing media on growth, yield and quality of Gerbera (Gerbera jamesoni Bolus ex Hooker F.) under protected culture. Int J Agric Stat Sci. 2012;8(1):275-282.
10. Saha S, Talukdar MC, Saikia A, Kalita P. Standardisation of growing media and its depth for rooftop gardening of chrysanthemum (Dendranthema grandiflora Tzvelev) cv. Prof. Harris. Res Crop. 2018;19(2).
11. Sekar K, Sujata A. Effect of growing media and GA~3 on growth and flowering of gerbera (Gerbera jamesonii H . Bolus.) under naturally ventilated greenhouse. South Indian Hortic. 2001;49:338-341.
12. Singh. Studies on the effect of growing media and paclobutrazol on growth and flowering of Geranium (Pelargonium*hortorum LH bailey); c2010.
13. Thakur R, Dubey RK, Kukal SS, Singh S. Evaluation of different organic potting media on growth and flowering of Calendula (Calendula officinalis L.). J Orna Hort. 2013;6(1-2):57-63.
14. Van Iersel M. Root restriction effects on growth and development of salvia (Salvia splendens). Hort Science. 1997;32(7):1186-1190.

