www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(12): 3096-3100 © 2023 TPI

www.thepharmajournal.com Received: 22-11-2023 Accepted: 26-12-2023

BD Deokar

PG Student, Department of Plant Pathology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

MS Dadke

Associate Professor, Department of Plant Pathology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

MS Mahajan

PG Student, Department of Plant Pathology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Gaikwad DS

PG Student, Department of Agricultural Entomology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

VP Shinde

PG Student, Department of Plant Pathology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Corresponding Author: BD Deokar PG Student, Department of Plant Pathology, College of Agriculture, Parbhani Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Influence of systemic and non-systemic fungicides on growth of *Beauveria bassiana*

BD Deokar, MS Dadke, MS Mahajan, Gaikwad DS and VP Shinde

Abstract

In Integrated Pest Management, entomopathogenic fungi are a promising biocontrol agent for managing insect populations. Understanding the detrimental impacts of agrochemicals and testing their compatibility are crucial to effective integrated pest management. The present *in vitro* study was carried out at the Department of Plant Pathology, College of Agriculture, Parbhani. Seven systemic (500, 1000 and 1500 ppm) and non-systemic fungicides (1500, 2000 and 2500 ppm) were evaluated by Poisoned Food Technique. The compatibility was inversely proportional with the concentrations of these fungicides. Among the systemic fungicides only Pyraclostrobin was found compatible at 500 and 1000 ppm and incompatible at 1500 ppm (38.50, 21.66 and 13.83 mm, respectively). Whereas Metalaxyl (08.00, 06.83 and 05.16 mm) and Thiophanate methyl (09.16, 07.66 and 07.00 mm) was incompatible at all concentrations followed by Triazole group and Carbendazim. All the non-systemic fungicides tested were found moderately compatible at 1500 ppm and sulphur and Chlorothalonil other fungicides were incompatible.

Keywords: Entomopathogenic fungi, Beauveria, in-vitro, Fungicides, Inhibition

Introduction

In agriculture use of agrochemicals is a common practice because of their immediate effects. It suppresses rapidly expanding insect populations and disease infection. Traditionally the agrochemicals are used to decrease the economic losses, but their indiscriminate use can cause serious problems (Golshan *et al.*, 2013) ^[16].

Biological control agents such as entomopathogenic fungi (EPF) (*Beauveria bassiana*, *Metarhizium anisopliae*, *Nomuraea rileyi*, *Verticillium lecanii*, *Acremonium* spp. and *Fusarium* spp.) can be used as a component of Integrated Pest Management (IPM) of many insect pests. Under natural conditions, these pathogens are a frequent and often cause of natural mortalities of insect populations. (Saranraj and Jayaprakash, 2017) ^[13]. The white muscardine disease caused by *Beauveria bassiana* in major insect pests like lepidopteron, coleopteron and arthopteron etc. (Sandhu *et al.*, 2017) ^[12].

Selective insecticides can significantly increase control efficiency in Entomopathogenic fungi, decreasing resistance and minimizing environmental contamination hazards. These methods also increases susceptibility to insecticides by suppressing enzyme activities (Ambethgar, 2009)^[1]. The agrochemicals may interfere with these fungi's normal epizootic process and have unfavorable impacts on their activity. Understanding how pesticides affect the beneficial organisms utilized in integrated pest management is crucial. Pesticides have been reported to affect entomopathogenic fungus adversely in terms of growth, sporulation, and pathogenicity (Faraji *et al.*, 2016)^[3].

Therefore, the knowledge of compatibility between *Beauveria bassiana* and fungicides (systemic and non-systemic fungicides) may facilitate the choice of proper products for Integrated Pest Management (IPM) program considering the fungus as an important pest control agent, the present study was undertaken.

Materials and Methods

The fungicides were evaluated for compatibility with entomopathogenic fungi in *in vitro* by using Poisoned Food Technique given by (Nene and Thapliyal, 1993) ^[10]. Three Petri plates / treatment along with untreated control plates were maintained.

- Details of the experiment
- **Design:** CRD

- Treatments: Eight
- **Replications:** Three

Systemic fungicides

Tr. No.	Treatment details	Trade Name	
T1	Propiconazole 25% EC	Tilt	
T ₂	Tebuconazole 5.4% FS	Folicur	
T3	Difenoconazole 25% EC	Score	
Τ4	Metalaxyl 75% WP	Rampart	
T5	Thiophanate methyl 70% WP	Roko	
Τ ₆	Pyraclostrobin 20% WG	Headline	
T7	Carbendazim 50% WP	Bavistin	
To	Untreated Control		

Non-Systemic fungicides

Tr. No.	Treatment details	Trade Neme	
T_1	Copper Oxychloride 50% WP	Blitox	
T ₂	Copper Hydroxide 77% WP Dupont Ko		
T ₃	Sulphur 80% WP	Sulphaboost	
T 4	Chlorothalonil 75% WP	Kavach	
T5	Propineb 70% WP	Antracol	
T ₆	Zineb 75% WP	Indofil Z-78	
T 7	Mancozeb 75% WP	Dithane M-45	
T ₀	Untreated Control		

Observations on radial mycelial growth / colony diameter of the *B. bassiana* was recorded at an interval of 24 hours and continued till untreated control plates were fully covered with mycelial growth. Per cent mycelial growth inhibition of the pathogen with the test fungicides over the untreated control were calculated by using the formula (Vincent, 1927)^[14].

41-60

 $2\overline{1-40}$

0-20

Percent inhibition =
$$\frac{C - T}{C} \times 100$$

Per

C = Growth of the test fungus in untreated control plates. T = Growth of the test fungus in treated plates

Evaluation scale for the direct application of insecticides on the insect pest through glass plate, leaf or sand (soil) was given by Hassan (1989)^[4]. To elucidate the precise results, sub categorization of Hassan's scale was done as follow.

31-50

51-70

71-90

cent inhibition (%)	Compatibility	Radial mycelial growth (mm)
81-100	Incompatible	0-15
61-80	Slightly compatible	16-30

Moderately compatible

Compatible

Highly compatible

Table 1: Scale of evaluation for compatibility of agrochemicals

Result and Discussion Systemic fungicides Radial mycelial growth

The results (Table 2) revealed that, at 500, 1000 and 1500 ppm concentration, the fungicide Pyraclostrobin (T_6) showed highest (38.50, 21.66 and 13.83 mm, respectively) mycelial growth of *B. bassiana* and found moderately compatible (500 ppm), slightly compatible (1000 ppm) and incompatible (1500 ppm). The other fungicides were found incompatible with B. bassiana at all the concentrations tested. The mycelial growth of B. bassiana recorded in treatment T₅ (Thiophanate methyl) was 09.16, 07.66 and 07.00 mm, respectively followed by treatment T₄ (Metalaxyl), which recorded 08.00, 06.83 and 05.16 mm mycelial growth, respectively. The other fungicides like Propiconazole $(T_1),$ Tebuconazole (T_2) and Difenoconazole (T_3) and Carbendazim (T_7) were found highly toxic to the fungus B. bassiana and not allowed mycelial growth (00.00 mm) and statistically at par with each other.

Percent inhibition: The results (Table 2 and Figure 1) revealed that, treatments (T_6) inhibited 57.21, 75.92 and 89.96% mycelial growth of B. bassiana at 500, 1000 and 1500 ppm concentrations, respectively. These fungicides were moderately compatible (500 ppm), slightly compatible (1000 ppm) and incompatible (1500 ppm) with *B. bassiana*. The other treatments were found incompatible and inhibited mycelial growth. The treatment T_5 inhibited mycelial growth up to 89.81, 91.47 and 92.26%, respectively and followed by T₄ which recorded 91.10, 91.45 and 94.25%, respectively. At 1000 ppm, T_4 and T_5 were statistically at par with each other. The treatments *viz*. T_1 , T_2 , T_3 and T_7 were found completely incompatible and inhibited cent per cent (100%) mycelial growth of B. bassiana and were found statistically at par with each other.

The similar results were earlier reported by, Faraji *et al.* (2016) ^[3] studied compatibility of two systemic fungicides *viz.*, Cabendazim 52.5% WP and Benomyl 50% WP against

Beauveria and they reported that, both Cabendazim and Benomyl showed complete inhibition on the conidial germination of *Beauveria bassiana* and incompatible to the fungus. Joshi *et al.* (2018)^[7] studied three systemic fungicides *viz.*, Carbendazim 50% WP, Propiconazole 25% EC and Hexaconazole 5% EC at different concentration for their effect on growth of *Beauveria bassiana* and *M. anisopliae* and they reported that, among all fungicides tested Carbendazim 50% WP, Hexaconazole 5% EC and Propiconazole 25% EC were completely inhibitory in its action at all the concentrations tested. Some other researchers also reported similar findings such as Reddy *et al.* (2018) ^[11] and Khun *et al.* (2020) ^[8].

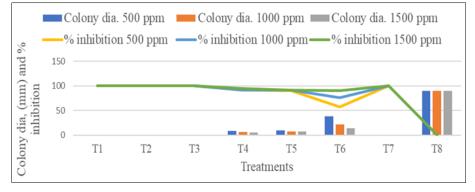


Fig 1: Compatibility of systemic fungicides with Beauveria bassiana

Tr. No.	Treatments	Radial mycelial growth (mm)			Per cent inhibition (%)		
1 f. NO.		Conc. (ppm)					
		500	1000	1500	500	1000	1500
T1	Propiconazole	00.00	00.00	00.00	100.00 (90.00)*	100.00 (90.00)*	100.00 (90.00)*
T ₂	Tebuconazole	00.00	00.00	00.00	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)
T ₃	Difenoconazole	00.00	00.00	00.00	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)
T_4	Metalaxyl	08.00	06.83	05.16	91.10 (72.62)	91.45 (73.00)	94.25 (76.10)
T ₅	Thiophanate methyl	09.16	07.66	07.00	89.81 (71.36)	91.47 (73.00)	92.26 (72.80)
T ₆	Pyraclostrobin	38.50	21.66	13.83	57.21 (49.13)	75.92 (60.59)	89.96 (66.88)
T ₇	Carbendazim	00.00	00.00	00.00	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)
T8	Control (Untreated)	90.00	90.00	90.00	00.00 (00.00)	00.00 (00.00)	00.00 (00.00)
S.E. (m) ±		0.186	0.177	0.132	0.207	0.329	0.273
	C.D. at 1%	0.563	0.535	0.398	0.626	0.994	0.827

Table 2: Effect of systemic fungicides on radial mycelial growth of entomopathogenic fungi

Non-systemic fungicides Radial mycelial growth

The results (Table 3) revealed that, the fungicide Sulphur (T_3) at 1500, 2000 and 2500 ppm showed 36.16, 27.66 and 24.66 mm mycelial growth of B. bassiana, respectively and found moderately compatible at 1500 ppm and slightly compatible at 2000 and 2500 ppm. Chlorothalonil (T₄) was found slightly compatible at all three concentrations and recorded 23.33, 22.83 and 21.33 mm radial mycelial growth, respectively of B. bassiana. Copper hydroxide (T₂), Zineb (T₆) and Mancozeb (T₇) were found slightly compatible at 1500 and 2000 ppm and incompatible at 2500 ppm with B. bassiana. Copper hydroxide (T₂) recorded 27.16, 20.33 and 14.83 mm radial mycelial growth of *B. bassiana*, respectively followed by Zineb (T_6) (24.00, 18.50 and 14.00 mm) and Mancozeb (T₇) (22.66, 19.00 and 12.66 mm). Zineb (T_6) was found statistically at par with Mancozeb (T₇) 1500 ppm and 2000 ppm and with Chlorothalonil (T₄) (1500 ppm), Copper hydroxide (T₂) (2000 ppm) and Propineb (T₅) (2500 ppm). Propineb (T₅) and Copper oxychloride (T_1) were found slightly compatible with *B*. bassiana at 1500 ppm (21.50 and 19.50 mm, respectively) and incompatible at higher concentrations i.e., 2000 ppm (15.50 and 16.66 mm, respectively) and 2500 ppm (14.16 and 15.33 mm, respectively). Copper hydroxide (T₂) was statistically at par with Copper oxychloride (T_1) .

Percent inhibition: The result (Table 3 and Figure 2) revealed that, at 1500, 2000 and 2500 ppm, the treatment T_3 was found

moderately compatible at 1500 ppm and slightly compatible at 2000 and 2500 ppm with B. bassiana which showed 59.81, 69.25 and 72.29% inhibition of mycelial growth, respectively. Treatment T₄ was found slightly compatible at all three concentrations which showed 74.07, 74.62 and 76.93% inhibition of radial mycelial growth, respectively. Treatments T_2 , T_6 and T_7 were found slightly compatible at 1500 and 2000 ppm and incompatible at 2500 ppm. Treatment T₂ recorded 69.81, 77.40 and 83.33% inhibition of radial mycelial growth of B. bassiana, respectively followed by T₆ (73.33, 77.77 and 84.43%) and T_7 (74.81, 78.88 and 85.92%, respectively). Treatment T_6 was found statically at par with T_7 1500 and 2000 ppm concentrations and with T_4 at 1500 ppm whereas with T_2 at 2000 ppm and with T_5 at 2500 ppm. Treatments T_5 and T_1 were found slightly compatible at 1500 ppm (76.61 and respectively) incompatible 78.33%. and at higher concentrations i.e., 2000 ppm (82.77 and 81.47%, respectively) and 2500 ppm (84.25 and 82.95%, respectively) with B. bassiana. Treatment T_1 and T_2 were statistically at par at 2500 ppm.

The similar results were earlier reported by, Jaros-Su *et al.* (1999) ^[6] studied effects of selected fungicides on *Beauveria bassiana*. They reported that, fungicides Copper hydroxide was deleterious to the fungus than Mancozeb and Chlorothalonil at their field recommended dose in both laboratory and field conditions. Challa and Sanivada (2014) ^[2] studied the effect of two non systemic fungicides *viz.*, Copper oxychloride and

The Pharma Innovation Journal

Mancozeb on germination and mycelial growth of 30 isolates of *Beauveria bassiana* and they reported that, Copper oxychloride showed no significant inhibition of conidial germination except one isolate and Mancozeb completely inhibited the growth of the isolates. Some other researchers also reported similar findings such as Wari *et al.* (2020)^[15] and Hirapara *et al.* (2020)^[5].

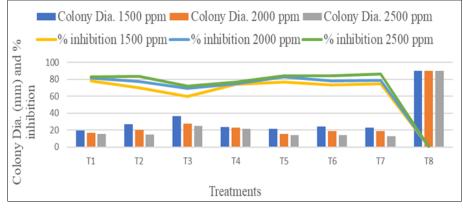


Fig 2: Compatibility of non-systemic fungicides with Beauveria bassiana

Tr. No.	Treatments	Radial mycelial growth (mm)		Per cent inhibition (%)			
		Conc. (ppm)					
		1500	2000	2500	1500	2000	2500
T ₁	Copper oxychloride	19.50	16.66	15.33	78.33 (62.33)*	81.47 (64.48)*	82.95 (65.59)*
T ₂	Copper hydroxide	27.16	20.33	14.83	69.81 (56.65)	77.40 (61.59)	83.33 (66.01)
T3	Sulphur	36.16	27.66	24.66	59.81 (50.64)	69.25 (56.30)	72.29(58.04)
T4	Chlorothalonil	23.33	22.83	21.33	74.07 (59.36)	74.62 (59.72)	76.93 (60.84)
T ₅	Propineb	21.50	15.50	14.16	76.61 (60.71)	82.77 (65.45)	84.25 (66.59)
T ₆	Zineb	24.00	18.50	14.00	73.33 (58.88)	77.77 (61.88)	84.43 (66.74)
T7	Mancozeb	22.66	19.00	12.66	74.81 (59.85)	78.88 (62.61)	85.92 (66.93)
T ₈	Control (Untreated)	90.00	90.00	90.00	00.00(00.00)	00.00 (00.00)	00.00 (00.00)
	S.E. (m) ±	0.471	0.276	0.306	0.524	0.739	0.315
	C.D. at 1%	1.425	0.836	0.926	1.583	2.234	0.915

Conclusion

Beauveria bassiana showed more compatibility with non-systemic fungicides than the systemic fungicides.

References

- Ambethgar V. Potential of entomopathogenic fungi in insecticide resistance management (IRM): A review. J Biopesticides. 2009;2(2):177-193.
- 2. Challa MM, Sanivada SK. Compatibility of *Beauveria bassiana* (Bals.) Vuill. isolates with selected insecticides and fungicides at agriculture spray tank dose. Innovare J Agric Sci. 2014;2(3):7-10.
- Faraji SA, Shadmehri D, Mehrvar A. Compatibility of entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* with some pesticides. J Entomol Soc Iran. 2016;36(2):137-146.
- Golshan, H., Saber, M., Majidi-Shilsar, F., Bagheri, M., & Mahdavi, V. (2013). Effects of common pesticides used in Rice fields on the conidial germination of several isolates of entomopathogenic fungus, *Beauveria bassiana* (Balsamo) Vuillemin. *Journal of the Entomological Research Society*. 15(1), 17-22.
- Hassan SA. Testing methodology and the concept of IOBC/WPRS working groups. In: Jepson PC, ed. Pesticides and Non-Target Invertebrates. Wimborne, Dorset: Intercept; c1989. p. 1-8.
- 6. Hirapara IM, Jethva DM, Desai AV, Bavisha RV. Compatibility of *Beauveria bassiana* (Balsamo) Vuillemin

with different insecticides and fungicides. In: International Seminar on Transboundary Pest Management, TNAU; c2020. p. 1-2.

- Jaros-Su J, Groden E, Zhang J. Effects of Selected Fungicides and the Timing of Fungicide Application on *Beauveria bassiana*-Induced Mortality of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Biol Control. 1999;15:259-269.
- Joshi M, Gaur N, Pandey R. Compatibility of entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* with selective pesticides. J Entomol Zool Stud. 2018;6(4):867-872.
- 9. Khun KK, Ash GJ, Stevens MM, Huwer RK, Wilson BAL. Compatibility of *Metarhizium anisopliae* and *Beauveria bassiana* with insecticides and fungicides used in macadamia production in Australia. Pest Manag Sci; c2020. p. 1-10.
- Mantzoukas S, Eliopoulos PA. Endophytic Entomopathogenic Fungi: A Valuable Biological Control Tool against Plant Pests. Appl Sci. 2020;10:360.
- Nene YL, Thapliyal PN. Fungicides in plant disease control. 3rd ed. New Delhi: Oxford, IBH Publishing Company; c1993. p. 531-532.
- Reddy DS, Reddy MLN, Pushpalatha M. Interaction of fungicides with bio-control agents. J Entomol Zool Stud. 2018;6(4):545-551.
- 13. Sandhu SS, Shukla H, Aharwal RP, Kumar S, Shukla S. Efficacy of entomopathogenic fungi as green pesticides:

https://www.thepharmajournal.com

current and future prospects. In: Microorganisms for Green Revolution; c2017. p. 327-349.

- Saranraj P, Jayaprakash A. Agrobeneficial Entomopathogenic Fungi – *Beauveria bassiana*: A Review. Indo-Asian J Multidiscip Res. 2017;3(2):1051-1087.
- 15. Vincent JM. Distortion of fungal hyphae in the presence of certain inhibitors. Nature. 1927;59:850.
- 16. Wari D, Okada R, Takagi M, Yaguchi M, Kashima T, Ogawara T, et al. Augmentation and compatibility of *Beauveria bassiana* with pesticides against different growth stages of *Bemisia tabaci* (Gennadius): an *in vitro* and field approach. Pest Manag Sci. 2020;76:3236-3252.