

~ 3398 ~

The Pharma Innovation Journal 2023; 12(12): 3398-3407

ISSN (E): 2277-7695

ISSN (P): 2349-8242

NAAS Rating: 5.23

TPI 2023; 12(12): 3398-3407

© 2023 TPI

www.thepharmajournal.com

Received: 13-09-2023

Accepted: 29-10-2023

Dr. Chirag S Matholiya

Ph.D., Department of Farm

Machinery and Power

Engineering CAET, Anand

Agricultural University,

Godhara, Gujarat, India

Dr. Piyush R Balas

Senior Technical Assistant,

Department of Farm Machinery

and Power Engineering CAET,

Junagadh Agricultural

University, Junagadh, Gujarat,

India

Sanjaykumar J Pargi

Senior Research Assistant,

CAET, Anand Agricultural

University, Godhara, Gujarat,

India

Dr. Vishal V Agravat

Ph.D., Department of Farm

Machinery and Power

Engineering CAET, Anand

Agricultural University,

Godhara, Gujarat, India

Dr. Pankaj Gupta

Professor and Head, Department

of Farm Machinery and Power

Engineering CAET, Anand

Agricultural University,

Godhara, Gujarat, India

Corresponding Author:

Dr. Chirag S Matholiya

Ph.D., Department of Farm

Machinery and Power

Engineering CAET, Anand

Agricultural University,

Godhara, Gujarat, India

Development of an algorithm for crop row detection for

autonomous fertilizer side dressing machine

Dr. Chirag S Matholiya, Dr. Piyush R Balas, Sanjaykumar J Pargi, Dr.

Vishal V Agravat and Dr. Pankaj Gupta

Abstract
Agricultural crop production involves many operations, out of which fertilizer application is one of the

important and least exploited operations. At present fertilizer, especially in split doses applied manually.

But, labour scarcity is becoming a problem day by day. To reduce the labour problem and to make

agriculture lucrative, the use of modern technologies such as robotics, automation, etc. is the need of the

hour. Considering all these, an autonomous machine was developed for fertilizer side dressing

application. In the fertilizer side dressing technique, the exact metered quantity of fertilizer was applied

near the periphery of the plant which overcome certain problems.

An autonomous machine was developed using vision-based and sensor-based technology. In vision-based

technology, the image processing technique was used to identify the row crop and allowed the machine

to run in between the rows by correcting the lateral error. The principle of the machine was to run the

machine in between the row crop and drop the exact metered quantity of fertilizer near the plant

periphery.

In the field test, machine trajectory parameters like tracking lateral error, angle of deviation and reaction

time were found significant at 5% level of significance at camera height of 60 cm and camera angle of

45° in cotton and okra crops. The minimum tracking lateral error, angle of deviation and reaction time

were found to be 4.37 cm, 9.4° and 0.47 s for cotton crop and 3.35 cm, 7.01° and 0.38 s for okra crop,

respectively at camera height of 60 cm and camera angle of 45°.

Keywords: Autonomous, side dressing, tracking lateral error, angle of deviation, reaction time

Introduction

This research paper deals with the procedure of crop row detection algorithm which is used to

achieve the objectives of the research problem which is the development and performance

evaluation of an autonomous fertilizer side dressing machine.

Development of an Algorithm for Path Detection

For the machine guidance system, the image processing technique was found suitable

according to the review analysis. OpenCV software was used for generating the code for

image processing.

OpenCV

OpenCV (Open-Source Computer Vision Library) is an open-source library for computer

vision, machine learning, and image processing techniques. OpenCV is a cross-platform

library using which we can develop real-time computer vision applications. It mainly focuses

on image processing, video capture and analysis including features like face, line and object

detection. Open-source computer vision is a library of programming functions mainly aimed at

real-time computer vision, originally developed by Intel and it was later supported by Willow

Garage. OpenCV is an open-source BSD-licensed library that includes several hundreds of

computer vision algorithms. OpenCV supports numerous programming languages like Python,

C++, Java, etc. OpenCV has a modular structure, which means that the package includes

several shared or static libraries. The following modules are available:

www.thepharmajournal.com

~ 3399 ~

The Pharma Innovation Journal https://www.thepharmajournal.com
 Core functionality (core) - a compact module defining

basic data structures, including the dense multi-

dimensional array Mat and basic functions used by all

other modules.

 Image Processing (imgproc) - an image processing

module that includes linear and non-linear image

filtering, geometrical image transformations (resize,

affine and perspective warping, generic table-based

remapping), color space conversion, histograms, and so

on.

 Video Analysis (video) - a video analysis module that

includes motion estimation, background subtraction, and

object tracking algorithms.

 Camera Calibration and 3D Reconstruction (calib3d) -

basic multiple-view geometry algorithms, single and

stereo camera calibration, object pose estimation, stereo

correspondence algorithms, and elements of 3D

reconstruction.

 2D Features Framework (features2d) - salient feature

detectors, descriptors, and descriptor matchers.

 Object Detection (objdetect) - detection of objects and

instances of the predefined classes (for example, faces,

eyes, mugs, people, cars, and so on).

 Video I/O (videoio) - an easy-to-use interface to video

capturing and video codecs

Python

Python is a popular and widely used general-purpose and

high-level programming language. It was created by Guido

van Rossum in 1991 and further developed by the Python

Software Foundation. It was designed with an emphasis on

code readability, and its syntax allows programmers to

express their concepts in fewer lines of code. Python aides

and supports various programming ideal models, moreover, as

question arranged, basic and handy programming or

procedural styles. It has colossal features of dynamic sort

framework and customized memory administration and

contains a goliath and standard library. NumPy and pprint

libraries are available in Python which was used in the

algorithm development. NumPy is a library consisting of

multidimensional array objects and a collection of routines for

processing of array. Using NumPy, mathematical and logical

operations on arrays can be performed. pprint was used to

print in array format in the console. Python 3 was used to

develop an algorithm for path detection within the crop area.

Materials and Methods

Image processing is the technique that deals with processing

digital images through an algorithm. Digital images from the

video stream get processed into the microcontroller.

Experiments were conducted in the field with three

independent parameters namely camera height (3 levels),

camera angle (3 levels) and crops (cotton and okra) (Table 1).

Machine movement was identified based on the result of

Tracking lateral error, Angle of deviation, and Reaction time.

Table 1: Independent and Dependent Parameters

Sr. No. Variables Parameters Levels

1 Independent Parameters

Camera height (cm)

H1 = 40

H2 = 60

H3 = 80

Camera angle (degree)

θ1 = 30

θ2 = 45

θ3 = 60

Crop
Cotton

Okra

2 Dependent Parameters
Tracking lateral error, cm

Angle of deviation, ° Reaction time, s

Steps for Algorithm Development for Crop Row Detection

Several steps for path detection have been followed in image

processing are mentioned in Flow 1.

https://www.thepharmajournal.com/

~ 3400 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Flow 1: Flowchart for path detection

Step-1: Get input video stream

Two webcams were used to capture the video stream from the

crop row. From these webcams, two video streams were

captured.

import cv2

import numpy as np

from pprint import pprint

vid1 = cv.VideoCapture(1) # Camera Left

vid2 = cv.VideoCapture(0) # Camera Right

Here cv2 was used for accessing the camera of the system.

Numpy was used for the numerical calculation of the image.

print was used for printing data in the console (Only for the

development debugging process). vid1 and vid2 were a

variable that provides a live video stream of the camera.

Step-2: Extraction frame from video stream

One frame each was extracted from video stream of left and

right camaras. The extracted frame was considered as left and

right image. The extracted image from video stream is shown

in Fig. 1.

while(True):

ret1, frame1 = vid1.read()

ret2, frame2 = vid2.read()

cv.imwrite(‘frame1.jpg’, frame1)

cv.imwrite(‘frame2.jpg’, frame2)

Capture video stream

Extract frame from video stream

Get depth image and crop that image for further process

Implement binary segmentation on the input depth

image

Implement edge detection and plot edges on the binary

segmented image

Plot the middle line of crop row

Plot the centerline of the image

Plot angle of deviation using middle line and centerline

Path detection completed

Start the camera

https://www.thepharmajournal.com/

~ 3401 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Fig 1: Frame extracted from video stream

Here while (True) command was used to constantly extract a

frame from a video stream. ret (ret1, ret2) was a video frame

ret which represents the FPS of the camera. The frame

(frame1, frame2) was a single image data extracted from a

video.

Step-3: Get desired size depth image

Left and right images were merged and get a merged image as

depth image.

imgL = cv.imread('frame1.jpg',0)

imgR = cv.imread('frame2.jpg',0)

stereo = cv. StereoBM create (num Disparities = 16,

blockSize=15)

disparity = stereo.compute(imgL,imgR)

cv.imwrite('depth.jpg', disparity)

Image cropping

img = cv2.imread(‘depth.png’)

height, width, channels = img.shape

img = img[0:height-int(height/4),int(width/5):width-

int(width/5)]

cv2.imshow(‘croped’,img)

Frames were stored as images. The data of frames were stored

in imgL and imgR variables to access numerical data of the

image. The depth image was got from imgL and imgR using

StereoBM_create and stored as a depth image. The merged

image was stored with the name “depth.jpg”. The height,

width and channel were stored and cropped according to the

suitability of the image processing. The image was cropped

by 25% of the height (height/4) because the remaining part of

the height was not required for image processing. The image

was cropped by 20% of the width (width/5) from both sides of

the image because the image was seemed to be centered from

the crop for future processes.

Binocular disparity refers to the difference in image location

of an object seen by the left and right eyes resulting from the

eyes’ horizontal separation (parallax). The brain uses

binocular disparity to extract depth information from the two-

dimensional retinal images in stereopsis (Doxygen, 2021) [1-2].

The disparity is referred to the identification of the match

point in two images. The disparity needs to be set in the code

for getting depth image. The measurement of the disparity of

the cameras is shown in Fig. 2. In our case, the disparity was

found to be 16 mm with the help of using formula 1.

Fig 2: Disparity measurement of cameras

Disparity =
BF

Z
 (1)

Where,

B = Distance between two cameras (23 cm)

https://www.thepharmajournal.com/

~ 3402 ~

The Pharma Innovation Journal https://www.thepharmajournal.com
F = Focal length of camera (Focal length = 41.55 mm)

Z = Distance from the camera to the ground (60 cm)

Disparity =
23∗41.55

60

Disparity = 16 mm

Step-4: Implement binary segmentation on depth image

Depth image was converted into grayscale and then binary

segmentation was implemented using cv2.threshold function.

The binary segmented image data were stored in the variable

named binary Segmented.

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binarySegmented

=cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv

2.THRESH_OTSU)

A basic technique for object segmentation was called

thresholding. Thresholding is a very popular segmentation

technique, which was used for separating an object from its

background. The thresholding process involved comparing

each pixel value of the image (pixel intensity) to a definite

threshold value. All the pixels of the input image were

separated into 2 sets (Fari, 2013).

1. Pixels having intensity value lesser than the threshold.

2. Pixels having an intensity value larger than the threshold.

Binary segmentation was done based on values 0 and 1. 0

value denoted to black pixel and 1 value denoted to white

pixel. The threshold value range was 0 to 255. If the observed

pixel value was found above the average pixel value, then it

was depicted in maxVal and denoted to 1. This meant that

white background was found. If the observed pixel value was

found below the average pixel value, then it was denoted to 0.

This meant that black background was found. The binary

segmentation in image is shown in Fig. 3.

Fig 3: Binary segmented image

Step-5: Implement edge detection on the binary

segmented image

Canny edge detection is a widespread edge detection

technique. It was developed by John F. Canny. Edge detection

technique is used to classify points in a digital image with

discontinuities or sharp changes in the image brightness. The

points which fall into image brightness and vary sharply are

called the edges (or boundaries) of the image (Doxygen,

2021) [1-2].

edges = cv2.Canny(binarySegmented,100,200)

Two edges were formed in the image followed by two crop

rows. edges data of images were stored in variable named

edges. The edges of the crop row are indicated by a white

continuous line in Fig. 4.

https://www.thepharmajournal.com/

~ 3403 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Fig 4: Canny edge detection in image

Canny edge detection

The smoothened image was filtered with a Sobel kernel in

both horizontal and vertical directions to get the first

derivative in the horizontal direction (Gx) and vertical

direction (Gy). Edge gradient and direction for each pixel are

mentioned in formula 2.

 (2)

Gradient direction is always perpendicular to edges and

rounded to one of four angles representing vertical, horizontal

and two diagonal directions. After getting gradient magnitude

and direction, a full scan of the image was done to remove

any unwanted pixels, which may not constitute the edge. For

edge detection, every pixel was checked if it was a local

maximum in its neighbourhood in the direction of the

gradient.

In Fig. 5, point A was considered an edge in the vertical

direction. The gradient direction was ordinary to the edge.

Points B and C were in gradient directions. So, point A was

checked concerning points B and C. If it formed a local

maximum then it was considered for the next stage, otherwise

it was suppressed (put to zero). In short, a binary image with

"thin edges" was found as a result.

Fig 5: Gradient direction

https://www.thepharmajournal.com/

~ 3404 ~

The Pharma Innovation Journal https://www.thepharmajournal.com
Now, the number of edges was formed and the upcoming

stage was decided which edges were edges or not. Threshold

values need to be differentiated into two edges which are

minVal and maxVal. The pixels having an intensity gradient

more than maxVal are sure to edge and those pixels’ intensity

below minVal are sure to be non-edges. The pixels that lie in

between two threshold values were classified as edges or non-

edges based on their connectivity. If they are connected to

"sure-edge" pixels, they are considered as part of edges.

Otherwise, they were discarded. Canny edge detection

discontinuity is shown in Fig. 6.

Fig 6: Canny edge detection discontinuity

In Fig. 6, edge A is above the maxVal, so it was considered as

"sure-edge". Although edge C is below maxVal, it was

connected to edge A, so it was considered a valid edge and

got a full curve. But edge B is above minVal but it was not

connected to any "sure-edge" so it was discarded. So, the

minVal and maxVal were decided accordingly to get the

correct result.

Step-6: Plot the middle line of the crop row

Center points between two edges were identified and plot the

middle line. From top to bottom middle points of both edges

were identified and drawn middle line of the crop row.

indices = np.where(edges != [0])

coordinates = zip(indices[0], indices[1])

start_point =

(int((indices[1][0]+indices[1][1])/2),indices[0][0])

print(start_point)

end_point = (int((indices[1][len(indices[1])-

1]+indices[1][len(indices[1])-

2])/2),indices[0][len(indices[0])-1])

print(end_point)

color = (0, 255, 0)

thickness = 2

edgesMiddleLine = cv2.line(img, start_point, end_point,

color, thickness)

Indices were stored on the edges point in white color and

extracted all points using zip. The start coordinate point was

stored in the start_point 2D array and the end coordinate point

was stored in end_point 2D. The straight red line was plotted

from the start to end-points of both edges line. Middle line

points were stored in edgesMiddleLine array and plot green

line on it. The middle line detection in the crop row is shown

in Fig. 7.

https://www.thepharmajournal.com/

~ 3405 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Fig 7: Crop row middle line plotting in image

In Fig. 7, the coordinate points of the top right and top left

side edge detection were denoted as A1 and B1 and the

coordinate points of bottom right and bottom left side edge

detection were denoted as A2 and B2. The top and bottom

center points of the middle line of the crop row were denoted

as X and Y. Middle line of the crop row was drawn from

extracting line between X and Y.

Step-7: Plot the centerline of the image
Machine deviation was observed when the machine deviates

from the centerline of the crop row. The deviation was

measured from the difference between the centerline of the

crop row and the centerline of the image. The middle line of

the crop row was identified in the previous step. While the

centerline of the image was observed. The centerline of the

image is shown in Fig. 8.

height, width, channels = img.shape

color = (0,0, 255)

centerUpper = (int(width/2),0)

centerLower = (int(width/2),int(height))

image = cv2.line(edgesMiddleLine, centerUpper,

centerLower, color, thickness)

https://www.thepharmajournal.com/

~ 3406 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Fig 8: Image centerline and crop row middle line

In Fig. 8, X is a line that represents the middle line of two

edge lines and X’ is a line that represents the centerline of the

image in respective of height and width.

Step-8: Plot the angle of deviation

The angle between the crop row middle line and image

centerline was observed. The deviation angle was measured

using formula 3 and is shown in Fig. 9.

Tanθ = XX’/ (h/2) (3)

Where,

XX’ = Distance between two center points

h = height of the image

xPoint = start_point

xDPoint = centerUpper

midPoint = (centerLower - centerUpper) / 2

tanVal = (xPoint - xDPoint) / (xDPoint - midPoint)

(xPoint - xDPoint) = tanVal * (xDPoint - midPoint)

tanAng = math.tan(tanVal)

xPoint in program is a point X which is the crop row

midpoint. xDPoint in program is a point X’ which is the

midpoint of the centerline. O is midPoint which is the center

point of the image frame. tanVal is tan formula value which is

[Adjacent side/ Side opposite]. θ is tanAng which is angle

deviation. XX’ is (xPoint - xDPoint) which is tracking lateral

error.

https://www.thepharmajournal.com/

~ 3407 ~

The Pharma Innovation Journal https://www.thepharmajournal.com

Fig 9: Angle of deviation from crop row middle line

Results and Discussion

The objective was fulfilled by developing an algorithm for the

crop row identification and vehicle movements within the

rows. That algorithm was developed in OpenCV software

using Python programming language. In the image processing

technique, different electronic components were used namely

raspberry pi, webcams and relay module. The image

processing technique was utilized for guiding the machine in

between the rows of a crop. DC motors were mounted to the

front wheels for easy steering. In the image processing

technique, the cameras sensed the crop row and gave the

command to the DC motors through raspberry pi and relay

module. The deviation of the machine centerline from the

crop centerline along with lateral error was calculated. The

decision was taken by the microcontroller based on the

predefined consideration points and lateral error. The machine

was moved left or right to minimize the lateral error by

changing the speeds of motors on the front wheels with the

help of the relay module, which helped the machine to move

straight in between the rows.

Conclusion

The minimum tracking lateral error, angle of deviation and

reaction time were found to be 4.37 cm, 9.4° and 0.47 s for

cotton crop and 3.35 cm, 7.01° and 0.38 s for okra crop

respectively at camera height of 60 cm and camera angle of

45°. That was the best result in crop row detection techniques.

References

1. Doxygen. Canny edge detection; c2021. Retrieved from

https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.ht

ml

2. Doxygen. Depth map from stereo images; c2021.

Retrieved from

3. https://docs.opencv.org/4.5.2/dd/d53/tutorial_py_depthm

ap.html

4. Fari MA. Study of image segmentation using

thresholding technique on a noisy image. International

Journal of Science and Research. 2013;2(1):49-51.

https://www.thepharmajournal.com/

