www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(12): 1018-1025 © 2023 TPI

www.thepharmajournal.com Received: 03-10-2023 Accepted: 13-11-2023

Akash Galande

College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

CD Pawar

Professor, College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

AP Samant

Ph.D. Scholar, College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

MH Khanvilkar

Directorate of Extension Education, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

JJ Kadam

Department of Plant Pathology, College of Agriculture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

Rajshree Gharat

College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

Parshuram Suresh Jagtap

College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

RS Jadhao

College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

Corresponding Author: Akash Galande College of Horticulture, Dr. B.S.K.K.V., Dapoli, Ratnagiri, Maharashtra, India

Studies on jackfruit and kokum blended wine

Akash Galande, CD Pawar, AP Samant, MH Khanvilkar, JJ Kadam, Rajshree Gharat, Parshuram Suresh Jagtap and RS Jadhao

Abstract

The experiment was laid out in Completely Randomized Design with eight treatments and three replications by blending jackfruit and kokum natural juices. When analysing the chemical composition of kokum juice and jackfruit pulp, kokum juice had a lesser percentage of titratable acidity, ascorbic acid, anthocyanin, protein, tannin, and pectin, while jackfruit pulp had the largest percentage of T.S.S., reducing sugars, and total sugars with pH. T.S.S. and pH were found to be decreased throughout must fermentation; T.S.S. and pH were adjusted to 24 ^oBrix and remained natural, with the exception of treatment T₈, where pH was adjusted to 3.5. The range of wine recovery from must is between 64 and 92 percent. The yeast count increased until the fourth day, at which point it began to decline. Regarding the chemical composition of wine treatment T₅ and T₈ had the lowest T.S.S., while T₈ had the lowest reducing sugars, total sugars, tannin, and alcohol. Treatment T₇ had the highest titratable acidity, ascorbic acid, anthocyanin, and protein levels. Lowest pH was recorded by treatment T₇. Treatment T₁ had the lowest pectin content. Treatment T₄ has the highest overall sensory score. Treatment T₄ had the highest B:C ratio, followed by T₂ and T₃. As a result, treatment T₄ (85% jackfruit pulp + 15% kokum juice) was found to be the best among the various treatments under study.

Keywords: Jackfruit pulp, kokum juice, blended wine, must

Introduction

The Moraceae family includes the jackfruit tree (*Artocarpus heterophyllus* L.). Scientists suggest that Malaysia might be the true jackfruit origin. In India, jackfruit is grown on 1,87,000 Ha of land, with 18,77,000 MT of fruit produced overall (Annon., 2021) ^[5]. The jackfruit's main economic product is its fruit, which is consumed when it is ripe or unripe. Since its green, unripe condition is so similar to that of chicken. People often call jackfruit in brine "vegetable meat." Pureed jackfruit has been a staple in many recipes, including ice cream, baby food, juice, jam, jelly, candies, fruit rolls, marmalades, and jackfruit leather.

The tropical spice tree kokum (Garcinia indica Choisy) grows in India's Western Ghats. The Konkan region grows kokum on an area of around 1000 hectares, generating about 4500 MT of fruit annually, according to a baseline assessment carried out in 2010 (Annon., 2012) [3]. Because kokum fruit contains garcinol and hydroxy citric acid (HCA), it lowers cholesterol. Kokum is used to make several different items, including butter, powder, jam, pickles, dried rind (Amsul), nectar, and jam. To appeal to consumers, the art of blending entails producing products with a variety of colours, scents, astringency levels, and tastes. Kokum fruit may be used to manufacture wine and spirits, making it a great substitute for grapes in the wine industry. As a result, it was thought that kokum fruits ought to be utilised to make wine. Since kokum juice has a more intense colour and higher acidity, it can be used to make wine by diluting the juice and adjusting the must's pH to reduce colour and acidity and produce a respectable amount of high-quality wine with low alcohol. Jackfruit is low in calories and high in sugar. It is high in potassium and contains a considerable number of antioxidants. Due to its high antioxidant activity, jackfruit wine may be beneficial to health; in fact, research indicates that wine's ability to promote health is a result of its antioxidant content. Production of kokum and jackfruit has significantly expanded in the Konkan region. Jackfruit has a low acidity level and is a strong source of antioxidants and potassium. Kokum is utilised for blending in value addition because of its high acidity and natural colour.

Materials and Methods

The experiment "Studies on jackfruit (Artocarpus heterophyllus L.) and kokum (Garcinia indica Choicy) blended wine" was laid out in Completely Randomized Design with eight treatments viz., T₁ - (100% jackfruit pulp), T_2 - (95% jackfruit pulp + 5% kokum juice), T_3 - (90% jackfruit pulp + 10% kokum juice), T₄ - (85% jackfruit pulp + 15% kokum juice), T₅ - (80% jackfruit pulp + 20% kokum juice), T_6 - (75% jackfruit pulp + 25% kokum juice), T_7 -(70% jackfruit pulp + 30% kokum juice), T_8 - (100% jackfruit pulp) and three replication. For this investigation fruits of jackfruit and kokum were collected from the nursery no.4 of Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth. Jackfruit pulp was prepared from deseeded bulbs (Fig.1). For extraction of juice from kokum fruit stalks were removed and then fruits were cut with kokum cutter machine and rind and seeds are separated. Pulp was prepared from rind by using heavy duty mixer and from this pulp juice was extracted (Fig.2).

The must was prepared by adding 0.1 percent pectinase to the jackfruit pulp and kept for 2 hours. Then pulp was diluted with distilled water in 1:1 proportion. Then prepared juice of both the fruits was blended as per treatment details and 1 kg of blended juice was taken. The T.S.S. of blended pulp was adjusted to $24^{\circ}B$ with the help of sugar. After adjustment of sugar, the pH of the juice was kept natural except T₈ where pH was adjusted to 3.5. The prepared must was inoculated with yeast culture after an hour by adding potassium metabisulphite (KMS) @ 30 mg per kg of juice and fermentation was allowed to continue till the must shows constant T.S.S.(Fig.3). The prepared wine was evaluated for their chemical composition and organoleptic properties immediately after preparation.

Total soluble solids (T.S.S.) were determined by using Hand refractometer (Erma Japan, 0 to 32⁰B). Reducing sugars (%), total sugars (%), titratable acidity (%) and tannin (%) content of wine were determined by using methods described by Ranganna (1997)^[16]. The pH of wine was determined with the help of pH meter. (Model Systronics µ pH system 361). Ascorbic acid (mg/100 ml), pectin (%) and anthocyanin (mg/100 ml) content of wine were determined by using methods described by Ranganna (1986) [15]. The nitrogen content of wine was estimated by Kjeldahl method using Pelican kelplus equipment. Crude protein was calculated by multiplying with a factor 6.25 (A.O.A.C., 1990). The alcohol content in wine was determined by the method as reported by Natu et al. (1995) [18]. Sensory evaluation of wine was done by scoring wine numerically on a 20point score card under six categories of sensory quality. Statistical analysis of the wine was carried out by standard method of analysis of variance described by Panse and Sukhatme (1995)^[13].

Results and Discussion

The data regarding chemical composition of jackfruit and kokum natural juice is presented in the Table 1. The jackfruit and kokum juice used for preparation of must contained T.S.S., reducing sugars, total sugar, pH, titratable acidity, ascorbic acid, proteins, tannins, pectin and anthocyanin are 26 ^oBrix and 9.5 ^oBrix, 7.81 and 3.26 percent, 17.85 and 5.20 percent, 4.84 and 2.02, 0.30 and 4.84 percent, 9.6 mg/100 ml and 66.2 mg/100 ml, 0.92 and 1.6 percent, 0.5 and 0.9 percent, 1 and 3 percent, 33 mg/100 ml and 3573 mg/100 ml, respectively. Similar findings in chemical composition of jackfruit have been recorded by Jadhav (2017) ^[8] while

studying wine preparation from jackfruit. In case of chemical composition of kokum fruit juice results were analogous with Haldankar et al. (2005) ^[7] and Chate et al. (2019) ^[6]. Data regarding to chemical composition of must is presented in Table 2 results were found to be non-significant with respect to T.S.S. Similar results found by Jadhav (2017)^[8] while studying on preparation of jackfruit wine. The acidity was found to have increased from T_1 (0.31%) to T_7 (1.06%) in the case of titratable acidity. When compared to other treatments, treatment T₇'s highest acidity (1.06%) was significantly higher. Perhaps as a result of an increase in kokum juice percentage from T_1 (0%) to T_7 (30%), acidity increased from $T_1(0.31\%)$ to $T_7(1.06\%)$. While investigating how to prepare blended wine from diluted banana and kokum juice, Nevase (2021)^[11] reported similar results. In case of pH results found to be significant. The pH of the must decreased from T_1 (4.80%) to T₇ (3.24%). Highest pH recorded by treatment T₁ (4.80) and lowest by T_7 (3.24) which was superior over others. While studying the preparation of blended wine from diluted banana and kokum juice, Nevase (2021) [11] found similar results.

The data regarding to the changes in T.S.S during fermentation is given in Table 3. The fermentation was found to be most active during first 4th days as indicated by a rapid fall in T.S.S. However, T.S.S. rapidly declines until the fourth day of fermentation; after that, the rate of fermentation decreased and persisted until the end of fermentation at a significantly slower rate. However, the T.S.S. content remained unchanged after the 10th day. T.S.S. decreased from T₁ (10.0 ⁰Brix) to T₅ (7.8 ⁰Brix). The maximum reduction in T.S.S. of must was recorded by T₅ and T₈ (7.6 ⁰Brix). The results correspond with Nevase (2021) ^[11] research on blended wine made from diluted banana and kokum juice as well as sapota wine.

Table 4 contains information about pH changes that occur during fermentation. The pH of the must decreased continuously as the fermentation process went on until it was finished. The pH data indicates that a decrease in must pH from T_1 (3.25) to T_7 (2.38) at the end of fermentation was caused by the initial preparation of must, which raised the percentage of kokum juice from T_1 (0) to T_7 (30%). The results correspond with Nevase (2021) ^[11] who studied on blended wine made from diluted banana and kokum juice.

Table 5 contains information about changes in yeast count during fermentation. The yeast count increases rapidly until the 4th day before subsequently declining until the fermentation reaches the 12th day. At the end of fermentation (12th day) highest yeast count was recorded by treatment T₁ (60 x 10³) followed by treatment T₂ (40 x 10³). Whereas lowest yeast count was recorded by treatment T₆ (21 x10³) followed by T₈ (22 x 10³) and T₈ (20 x 10³). Kolambe (2018) ^[10] in soft flesh jackfruit wine and Pawaskar (2016) ^[14] in kokum wine reported similar results.

The data related to percent wine recovery of jackfruit-kokum blended wine is shown in Table 6. The percent wine recovery shows increasing trend from T_1 (64) to T_7 (92%) due to increase in kokum juice percentage from (0) to (30%) and decreased in T_8 (68%) as 100 percent jackfruit pulp was used. The highest percent wine recovery was observed in treatment T_7 (92%) and lowest in T_1 (64). The results for percent wine recovery correspond with Nevase (2021) ^[11] in a blended wine made with banana and kokum and Jadhav (2017) ^[8] in jackfruit wine. Data regarding to chemical composition of

wine are given in table 7. Concerning T.S.S., wine's T.S.S. content declined from T₁ (10 ⁰Brix) to T₅ (7.8 ⁰Brix) as the percentage of kokum juice increased from 0% to 20%. From treatment T_5 to T_7 it was slightly increased i.e. 7.8 ⁰Brix (T_5) to 8.2 ⁰Brix (T₇). Lowest T.S.S. was recorded by T₅ and T₈ (7.6 ^{0}Brix) and it was at par with T₄ (8 ^{0}Brix) and T₆ (8 ^{0}Brix). Treatments T_5 and T_8 recorded the lowest T.S.S., possibly as a result of improved must fermentation. The maximum T.S.S. was recorded by treatment T₁(10 ⁰Brix). Nevase (2021) ^[11] reported comparable outcomes in a blended wine made from diluted juices of banana and kokum. Reducing sugar content of wine showed decreasing trend from T_1 (2.06%) to T_8 (0.47%) with increases kokum juice percentage. Lowest reducing sugar was recorded by treatment T_8 (0.47%) which was at par with treatment T_7 (0.50%), T_6 (0.74%), T_5 (0.90%), T_4 (0.99%) and T_3 (1.32%). Nevase (2021) ^[11] found comparable outcomes when studying the process of producing wine using diluted banana and kokum juice. Treatment T₁ recorded the highest reducing sugars (2.06%). The reason for the decrease in reducing sugar with an increase in kokum juice percentage could be attributed to a higher conversion of reducing sugars into alcohol. When the percentage of kokum juice increased, the total sugar content of the wine decreased from T_1 (2.24%) to T_8 (0.84%). Lowest total sugars content was recorded by treatment T_8 (0.84%) which was significantly superior over other treatments. The maximum total sugar content was recorded by treatment T1 (2.24%). Decrease in total sugar with increase in kokum juice percentage. Nevase (2021) ^[11] found similar results while studying the production of wine from diluted juice of bananas and kokum. With increase in kokum juice percentage acidity increases and pH decreases from T₁ to T₈. Hence congenial condition of pH (between 3 to 4) required for fermentation is created which helps fermentation. The highest titratable acidity was recorded by treatment $T_7(1.08\%)$ which was significantly superior over other treatments. From the Table 7 it is clearly observed that titratable acidity of blended wine increased from $T_1(0.63)$ to $T_7(1.08\%)$ and then decreased in $T_8(0.97\%)$. This increase in acidity may be impact of increasing kokum juice percentage from T_1 (0) to T_7 (30%). Lowest titratable acidity was recorded by treatment T_1 (0.63%). The pH of wine showed decreasing trend from T_1 (3.25) to T_7 (2.38) with increase in kokum juice percentage from $T_1(0)$ to $T_7(30\%)$ and it was increased in T₈ (3.14). Lowest pH was recorded by treatment T_7 (2.38) which was at par with treatment T_6 (2.53) and significantly superior over all others treatments. Highest pH was recorded by treatment T_1 (3.25). Acids are inversely related to pH, therefore the reduction in pH with an increase in acidity of wine was observed. Ascorbic acid of wine showed increased trend from T_1 (4.68 mg/100 ml) to T_7 (14.02 mg/100 ml) with increase in kokum juice percentage from T_1 (0) to $T_7(30\%)$ and then slightly decreased in $T_8(4.88 \text{ mg}/100 \text{ mg}$ ml) where 100 percent jackfruit pulp was used. Highest ascorbic acid content was recorded by treatment T₇ (14.08 mg/100 ml) which was significantly superior than all others treatments. Lowest ascorbic acid content was recorded by treatment T_1 (4.68 mg/100 ml). Similar finding reported by Nikhanj et al. (2015) ^[12] while studying fermentative production of guava wine (Psidium guajava L.). In case of anthocyanin content of wine with an increase in kokum juice percentage from T_1 (0) to T_7 (30%) in blended must, the anthocyanin content of wine showed an increasing trend from T_1 (10.18 mg/100 ml) to T_7 (122 mg/100 ml), and

subsequently decreased in T₈ (11.75 mg/100 ml) where 100 percent jackfruit pulp was present. Increase in anthocyanin content of wine with an increase in kokum juice percentage was reported by Nevase (2021) [11] in a blended wine made with banana and kokum. The highest anthocyanin content was recorded by treatment T₇ (122 mg/100 ml) which was significantly superior over other treatments. Treatment T₁ (10.18 mg/100 ml) had the lowest anthocyanin content. The protein content of wine showed increasing trend from T₁ (0.30%) to T₇ (0.57%) with increase in kokum juice percentage from T_1 (0) to T_7 (30%) and subsequently decreased at T_8 (0.28%) where 100 percent jackfruit pulp was present in blended must. Highest protein content was recorded by treatment T_7 (0.57%) which was significantly superior over all others treatments. Lowest protein content was recorded by treatment T_8 (0.28%). Similar finding reported by Muotoulu and Mbaeyi-Nwaoha (2020) ^[10] while studying quality assessment of formulated table wine from blends of Starfruit (Averrhoa carambola L.) and peter mango (Mangifera indica L.) fruit. When the percentage of kokum juice increased from T_1 (0) to T_7 (30%), the tannin content of the wine showed an increasing trend from T_1 (0.30%) to T_7 (0.46%), and then it decreased in T₈ (0.25%) when 100% jackfruit pulp was used in the blended must. Lowest tannin content was recorded by treatment T_8 (0.25%) was significantly superior over others treatments. Significantly highest tannin content in wine was recorded by treatment T_7 (0.46%). Similar results were reported by Sarkale (2012) [19] while studying wine preparation from kokum fruit. When the percentage of kokum juice increased from $T_1(0)$ to $T_7(30\%)$, the pectin content of the wine showed an increasing trend from T_1 (0.21%) to T_7 (0.50%), and then it decreased in T₈ (0.20%) when 100% jackfruit pulp was used in the blended must. Lowest pectin content was recorded by treatment T_8 (0.20%) which was at par with treatment T_1 (0.21%) and T_2 (0.24%) and significantly superior over all others treatments. Treatment T_7 had the highest pectin content (0.50%). Similar finding reported by Muotoulu and Mbaeyi-Nwaoha (2020) [10] while studying quality assessment of formulated table wine from blends of starfruit (Averrhoa carambola L.) and peter mango (Mangifera indica L.) fruit. Wine's alcohol percentage increased from T_1 (7.3%) to T_5 (14.17%), then declined from T_5 (14.17%) to T_7 (12.40%), and then increased once more in T_8 (14.04%). Treatment T_5 recorded the highest alcohol content at 14.17%, which was at par with T_8 (14.04%). Treatment T_1 (7.30%) had the lowest alcohol content because it had the highest T.S.S. at the end of fermentation. A similar finding was reported by Sharma et al. (2003) [17] when they investigated strawberry wine's physico-chemical and sensory qualities were affected by maturation.

Sensory evaluation of jackfruit - kokum blended wine

Information regarding the sensory assessment of the jackfruit and kokum blended wine is presented in Table 8. A group of 10 judges evaluated the wine made from a blend of jackfruit and kokum juice using a 20-point rating system. Treatment T_4 received the highest possible score of 14 for colour and appearance, taste, and astringency; T_5 received the highest possible score of 14 for body treatment; and T_4 received the highest possible score of 13 for aroma treatment. T_4 received the highest rating of 14 out of 20 for overall acceptability and overall quality treatment, which comes under standard wine.

Cost of production of wine prepared by blending jackfruit and kokum natural juice

180 ml of blended wine with jackfruit and kokum had the highest production cost in T_1 (Rs. 20.40) and the lowest in T_2 (Rs. 18). Treatment T_4 had the maximum net profit (Rs. 67.24), while treatment T_7 had the lowest (Rs. 40). Treatment T_4 recorded the highest benefit-cost ratio (4.62), followed by T_2 (4.31) and T_3 (4.20), with treatment T_7 recording the lowest (3.40).

Table 1: Chemical composition of jackfruit and kokum natural juice

Sr. No.		Jackfruit pulp	Kokum juice
1	T.S.S.(⁰ Brix)	26.0	9.5
2	Reducing sugars (%)	7.81	3.26
3	Total sugars (%)	17.85	5.20
4	Titratable acidity (%)	0.30	4.84
5	pH	4.84	2.02
6	Ascorbic acid (mg/100 ml)	9.6	66.2
7	Proteins (%)	0.92	1.6
8	Tannins (%)	0.5	0.9
9	Pectin (%)	1	3
10	Anthocyanin (mg/100 ml)	33	3573

 Table 2: Chemical composition of must prepared by blending jackfruit and kokum juice

	Treatments		T.S.S. (⁰ Brix)	Titratable acidity (%)	pН
	J (%)	K (%)	1.5.5. ([*] DTIX)	The actually (76)	рп
T_1	100	00	24.2	0.31	4.80
T_2	95	05	24.0	0.33	4.20
T_3	90	10	24.0	0.49	4.00
T_4	85	15	24.2	0.64	3.71
T 5	80	20	24.0	0.80	3.45
T_6	75	25	24.2	0.90	3.30
T_7	70	30	24.0	1.06	3.24
	T_8	3	24.2	0.98	3.50
	Mean		24.10	0.67	3.80
S. Em. (±)		. (±)	0.04	0.007	0.011
	C.D. a	t 1%	N.S.	0.029	0.047

https://www.thepharmajournal.com

Treatments	0 Day	2 nd Day	4 th Day	6 th Day	8 th Day	10 th Day	12 th Day
T_1	24.2	18.6	11.8	11.2	11.2	11.0	10.0
T2	24.0	16.0	11.0	9.6	9.6	9.2	9.0
T3	24.0	17.2	9.6	9.2	8.8	8.6	8.4
T4	24.2	16.4	10.0	8.8	8.4	8.0	8.0
T5	24.0	16.4	9.2	8.2	8.0	7.8	7.6
T6	24.2	16.2	11.2	9.0	8.4	8.2	8.0
T 7	24.0	18.0	9.0	8.8	8.6	8.6	8.2
T8	24.2	22.0	8.8	8.4	8.2	7.8	7.6
Mean	24.17	17.60	10.07	9.15	8.90	8.65	8.65

Table 4: Change in pH during fermentation of the mus	Table 4:	Change in	pH during	fermentation	of the must
--	----------	-----------	-----------	--------------	-------------

Treatments	0 Day	2 nd Day	4 th Day	6 th Day	8 th Day	10 th Day	12 th Day
T1	4.84	3.96	3.80	3.70	3.50	3.43	3.25
T_2	4.26	3.80	3.63	3.50	3.46	3.33	3.16
T ₃	4.00	3.76	3.53	3.49	3.30	3.10	3.10
T_4	3.76	3.60	3.52	3.40	3.30	3.28	2.88
T5	3.50	3.36	3.20	3.14	3.10	2.90	2.71
T6	3.35	3.20	3.18	3.10	3.10	3.06	2.53
T ₇	3.20	3.13	2.79	2.66	2.54	2.45	2.38
T8	3.50	3.40	3.30	3.28	3.16	3.10	3.14
Mean	3.79	3.50	3.36	3.28	3.18	3.08	2.80

Table 5: Changes in yeast count during fermentation of the must

Treatments	Colony count in number × 10 ³									
Treatments	0 day	4 th Day	8 th day	12 th day						
T ₁	0	1760	480	60						
T2	0	1880	540	40						
T3	0	1560	320	31						
T4	0	1430	300	28						
T ₅	0	1260	280	26						
T ₆	0	860	240	21						
T7	0	946	220	25						
T8	0	940	310	20						
Mean	0	1329.5	336.25	32						

Table 6: Percent wine recovery from blended must of jackfruit and kokum

	Wine recovery (%)										
Treatments	$T_1(100:0)$	$T_1(100:0)$ $T_2(95:5)$ $T_3(90:10)$ $T_4(85:15)$ $T_5(80:20)$ $T_6(75:25)$ $T_7(70:30)$ T_8 Control									
Mean	64	72	76	79	80	84	92	68			
S. Em. (±)		0.957									
C.D. at 1%					3.95						

 Table 7: Chemical composition of jackfruit and kokum blended wine (T.S.S., reducing sugars, total sugars, titratable acidity and pH, ascorbic acid, anthocyanin, total protein, tannin, pectin and alcohol)

Treatments	T.S.S. (⁰ Brix)	Reducing sugars (%)	Total sugars (%)	Titratable acidity (%)	pН	Ascorbic acid (mg/100 ml)	Anthocyanin (mg/100 ml)	Protein (%)	Tannin (%)	Pectin (%)	Alcohol (%)
T1	10.0	2.06	2.24	0.63	3.25	4.68	10.18	0.30	0.30	0.21	7.30
T2	9.0	1.77	2.08	0.70	3.16	6.06	50.92	0.33	0.32	0.24	8.90
T3	8.4	1.32	1.98	0.75	3.10	7.00	67.46	0.37	0.34	0.32	11.30
T 4	8.0	0.99	1.77	0.78	2.88	7.40	91.64	0.40	0.36	0.36	12.74
T ₅	7.6	0.90	1.66	0.80	2.70	9.40	96.63	0.46	0.37	0.38	14.17
T ₆	8.0	0.74	1.37	0.90	2.53	11.73	101.10	0.52	0.42	0.42	13.74
T ₇	8.2	0.50	0.96	1.08	2.38	14.02	122.00	0.57	0.46	0.50	12.40
T ₈ (Control)	7.6	0.47	0.84	0.97	3.14	4.88	11.75	0.28	0.25	0.20	14.04
Mean	8.65	1.09	1.61	0.82	2.89	8.14	68.96	0.40	0.35	0.32	11.80
S. Em. (±)	0.11	0.21	0.02	0.01	0.05	0.08	0.28	0.01	0.01	0.01	0.10
C.D. at 1%	0.47	0.87	0.10	0.04	0.23	0.32	1.17	0.07	0.04	0.05	0.42

Treatments	Colour & Appearance	Body	Aroma	Taste	Astringency	Overall acceptability	Overall quality (Avg. score)
T1	10	9	12	11	11	11	11
T ₂	11	10	12	13	13	12	12
T3	12	11	12	12	13	12	12
T_4	14	13	13	14	14	14	14
T5	13	14	12	12	12	12	12
T ₆	12	11	11	10	11	11	11
T7	11	10	10	11	11	10	10
T ₈ (Control)	12	12	12	12	10	12	12
Mean	12	11	12	12	12	12	12
Grape wine	15	14	15	15	15	15	15

Table 8: Sensory evaluation of jackfruit and kokum blended wine

Table 9: Cost of production of wine prepared from 1kg must prepared from jackfruit and kokum blended juices

Treatments	Cost of production 1kg of wine (Rs)	Cost of production 180 ml of wine (Rs)	Sale price / 180 ml bottle (Rs)	B:C ratio
T1	61.11	20.40	65	3.54
T_2	64.11	18.00	70	4.31
T ₃	69.51	16.47	70	4.20
T_4	73.83	16.86	80	4.62
T ₅	75.25	16.95	70	4.13
T ₆	80.03	17.17	60	3.49
T ₇	84.88	17.39	60	3.40
T8	62.65	17.65	70	3.97

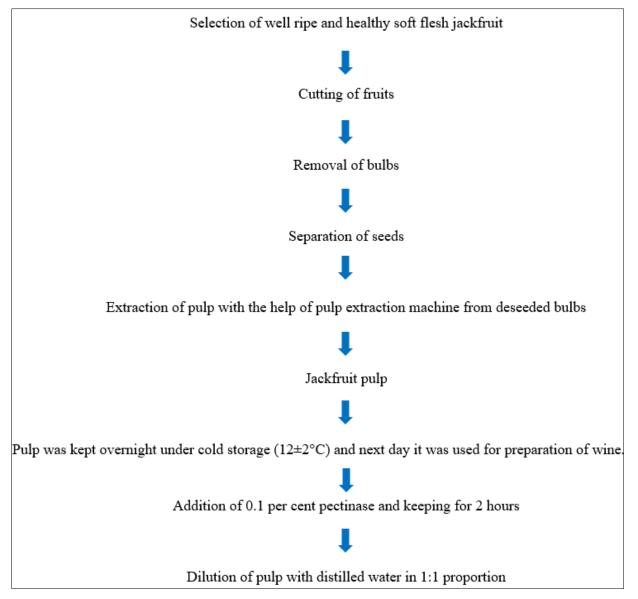


Fig 1: Preparation of soft flesh jackfruit pulp for wine

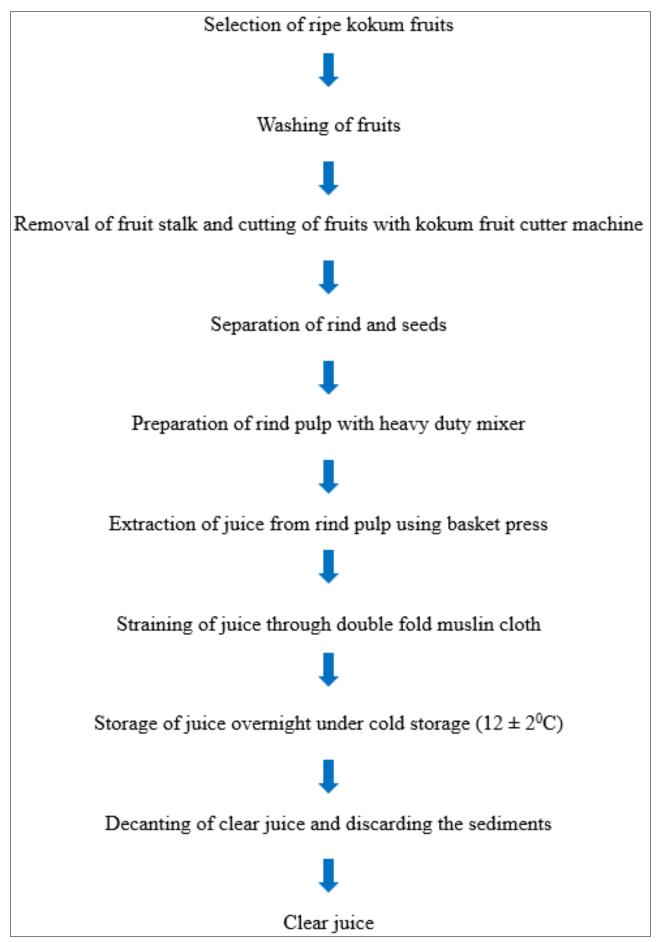


Fig 2: Extraction of juice from kokum fruits

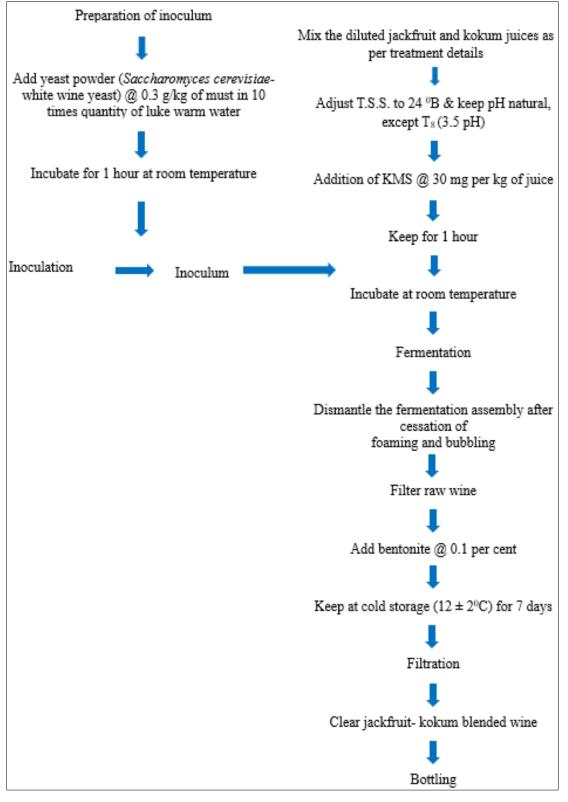


Fig 3: Preparation of jackfruit -kokum blended wine

Conclusion

The results of this study indicate that treatment T_4 (85% jackfruit + 15% kokum juice), which has the highest overall quality score (14) and highest B:C ratio (4.62), can produce the best quality standard wine.

References

 AOAC. Official Method of Analysis. Association of Official Analytical Chemists, Washington, D.C., 12th Edition; c1975. p. 15-18.

- AOAC. Official Method of Analysis. Association of Official Analytical Chemists, Washington, D.C., 13th Edition; c1980. p. 376-384.
- Anonymous. Resource Book on Kokum (*Garcinia indica* Choisy). Western Ghats Kokum Foundation, Panaji – Goa; c2012. p. 6.
- 4. Anonymous. Resource Book on Kokum (*Garcinia indica* Choisy). Western Ghats Kokum Foundation, Panaji –

Goa; c2014. p. 35.

- Anonymous. Area production and productivity of jackfruit in India. Horticulture statistics at a glance. National Horticulture Board (NHB), Government of India, Gurgaon, Haryana; c2021. p. 1.
- Chate MR, Kakde SB, Neeha VS. Kokum (*Garcinia indica*) fruit: A review. Asian J Dairy Food Res. 2019;38(4):329-332.
- Haldankar PM, Kore VN, Nimbalkar SR. Variability of fruit characters in kokum (*Garcinia indica* Choisy). J Spices Aromatic Crops. 2005;14(1):65-70.
- 8. Jadhav AP. Study on preparation of jackfruit (*Artocarpus heterophyllus* Lam.) wine. M.Sc. (Agri.) Thesis submitted to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra; c2017.
- 9. Kolambe SC. Preparation of wine from soft flesh jackfruit. M.Sc. (Agri.) thesis (unpublished), submitted to Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra; c2018.
- Muotoulu UF, Mbaeyi-Nwaoha IE. Quality assessment of formulated table wine from blends of Star fruit (*Averrhoa carambola* L.) and peter mango (*Mangifera indica*) Fruits. Am J Food Sci Tech. 2020;8(5):211-225.
- 11. Nevase MD. Standardization of blended wine from diluted juice of banana and kokum. M.Sc. (Hort.) thesis (Unpublished) submitted to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra; c2021.
- 12. Nikhanj P, Kocher G. Fermentative production of guavawine (*Psidium guajava* L.) using S. cerevisiae. Curr Nutr Food Sci. 2015;11:21-30.
- 13. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers. Indian Council of Agricultural Research Publication; c1985. p. 87-89.
- 14. Pawaskar SA. Studies on storage and wine making technology in kokum fruit. M.Sc. (Agri) thesis submitted to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra; c2016.
- 15. Ranganna S. Handbook of analysis and quality control for fruits and vegetable products. 2nd Edn. Tata McGraw Hill Publishing Company Ltd., New Delhi; c1986.
- 16. Ranganna S. Handbook of analysis and quality control for fruits and vegetable products. 3rd Edn. Tata McGraw Hill Publishing Company Ltd., New Delhi; c1997.
- 17. Sharma S, Joshi VK. Studied the effect of maturation on the physico-chemical and sensory quality of strawberry wine. J Sci Ind. Res. 2003;62:601-608.
- 18. March ST, Smith GF. Design and natural science research on information technology. Decision support systems. 1995;15(4):251-66.
- 19. Sarkale AN, Pawar CD. Effect of TSS and pH levels on chemical composition of kokum (*Garcinia indica*) must and it's fermentation. International Journal of Processing and Post-Harvest Technology. 2012;3(2):291-295.