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Simulation model for the heritability estimation of milk 

yield in crossbred dairy cattle under field conditions 

 
R Saravanan, E Geetha, M Jeyakumar, CM Vandana and DN Das 

 
Abstract 
The successful selection of superior animals requires a combination of accurate data collection, rigorous 

evaluation methods, and a clear understanding of breeding objectives. The absence of performance 

records poses a significant challenge to conducting meaningful research and developing analytical 

models for field animals. The simulation study was conducted in ten replicates of 500, 1000, and 3000 

first lactation records with different levels of input heritability (0.15, 0.20, and 0.25) from the field 

performance records of crossbred dairy cattle. The datasets were examined to assess the heritability of 

lactation milk yield and determine the optimal simulation model for analysis. Two distinct models, 

incorporating varied combinations of fixed effects such as village, year, and month of calving, were 

tested, each including the sire effect. Between the models considered, the heritability was generally 

higher for model 2 and the trend was similar for data sets with different sizes. The trend in the variation 

of R2–values and heritability among models and replicates exhibited a decrease with an increase in 

progeny size. The magnitude of R2–values explained by various models across different datasets was 

greater for a heritability of 0.25 compared to values of 0.15 and 0.20. 

 

Keywords: Simulation model, heritability, milk yield, genetic parameters, crossbred 

  

Introduction 

India, primarily an agricultural nation, relies significantly on the livestock sector, which holds 

a pivotal position in the country's economy. This sector plays a crucial role in supplying 

nutritious food abundant in animal protein to the general public, contributing to supplementary 

family incomes, and creating productive employment opportunities in rural areas. About 70 

percent of the rural farmers are dependent on agriculture and rearing of livestock for their 

livelihood, with 82 percent of farmers being small and marginal (Economic Survey, 20). The 

compound annual growth rate of the livestock sector has grown nearly 8 percent over the last 

five years, it assumes an important role in income, employment, and nutritional security. 

Out of 192.49 million cattle in India (20th Livestock Census), the growth of zebu cattle breeds 

accounts for only 10% (142.11 million) and the crossbred cattle population has grown to 

26.9% (50.42 million). Crossbred cows, constituting only 10% of the total breedable cow 

population, demonstrate superior productivity by contributing to 40% of the country's cow 

milk production. This highlights their efficiency compared to indigenous cows and represents 

a significant share of the overall national milk output, amounting to 26% (Jamuna et al., 2022) 
[6]. Despite India is being the leading global producer of milk, the productivity per animal 

remains notably low at 987 kg per lactation, significantly below the world average of 2038 kg 

per lactation (Thompkinson and Latha, 2012) [15]. This reduced productivity in Indian dairy 

animals is attributed to their low genetic potential for milk production, compounded by 

suboptimal input conditions. Enhancing the genetic potential is critical for elevating animal 

profitability and ensuring the sustainability of dairy development in India. To achieve this, it is 

essential to systematically evaluate and select genetically superior animals, employing them 

extensively for breeding purposes. 

The principal obstacle in executing large-scale breeding programs for field animals in India is 

the absence of essential infrastructure for recording the performance of dairy animals under 

field conditions. Consequently, the assessment of breeding value for milk production relies on 

data from limited locations. The planning and execution of effective dairy cattle breeding 

programs aimed at enhancing milk production in India face significant challenges due to the 

lack of performance records for dairy animals under field conditions (Policy Paper, 82). As a 

consequence, the estimation of genetic parameters, such as heritability, for dairy performance 

traits primarily relies on small datasets derived from records of animals maintained in  
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institutional or organized herds over extended periods. This 

data structure, combined with varying combinations of 

environmental factors in analytical models, has resulted in 

substantial discrepancies in the estimation of heritability and 

other genetic parameters across different studies on production 

traits of dairy cattle in India. This variance has generated 

confusion regarding the extent of genetic variation in milk 

production in cattle and buffaloes in the country, as well as 

the significance of various non-genetic factors that should be 

incorporated into analytical models when assessing the 

performance of dairy animals. Moreover, attempts to evaluate 

breeding bulls for milk production based on progeny 

performance are constrained to organized farms, limiting the 

assessment to a small number of progeny per sire. Reports 

from different researchers comparing various methods of sire 

evaluation also indicate significant variations in the efficiency 

of these methods, adding further complexity to the evaluation 

process. 

The dairy production landscape in India diverges significantly 

from that of developed countries, characterized by very small 

herd sizes spread across numerous farmers and substantial 

variations in feeding and management practices. Such 

heterogeneity necessitates the identification of appropriate 

models and methods for effectively analyzing data recorded 

on animals reared under these diverse conditions. 

Consequently, this study takes a critical approach to address 

this issue by employing a simulation technique to generate 

data. The simulation incorporates different parameters 

gleaned from prior studies on the performance of crossbred 

cattle in the Southern region, where the animals are managed 

under field conditions. The primary objectives are to estimate 

the heritability of lactation milk yield and to determine the 

most suitable analytical model and method for evaluating 

dairy bulls based on their progeny records. This approach 

aims to provide insights into the unique challenges and 

intricacies of dairy production in India, offering a foundation 

for more effective and tailored management strategies in a 

context characterized by diverse farming practices and herd 

sizes. 
 

Materials and Methods: Simulated first lactation milk 

production records of crossbred dairy cows were generated by 

employing various genetic parameters (Table 1) sourced from 

previous studies conducted in the Southern region. This was 

accomplished using the following mixed linear model: 

Model:  
 

Yijklm= µ+ Vi+ Pj+ Mk+ Slσs+Wijklmσw 
 

Where, 

Yijklm=first LMY of mth daughter of the lth sire calving in kth 

month and jth year of calving in ith village, µ= mean 305 days 

milk yield, Vi= Effect of ith village (i= 1…30⁄ 60⁄ 90),Yj= 

Effect of jth year of calving (j = 1, …5), Mk= Effect of kth 

month of calving (k = 1, …12), Sl = Effect of lth sire NID (0, 

σ2
s) (m=1,25⁄ 50⁄ 75), Wijklm= Random error NID (0, σ2

w),σs= 

variance of sire component, and σw= error variance  

σp,σs and σw were calculated as follows; 
 

σ2
p= (Coefficient of variation x Mean)2; σ2

s = ¼. h2. σ2
p
;σ2

w = 

σ2
p - σ2

s 

 

Sm and Wijklmn are standardized normal random numbers 

generated by using the computer package (MS Excel). The h2 

is the heritability of first lactation milk yield and σ2
p, σ2

s and 

σ2
w are phenotypic, sire and error components of variances, 

respectively. The values taken from the published reports of 

earlier studies were used as input values for simulating the 

first lactation milk yields. In the model, the effects due to 

village, year of calving, month of calving and sex of the calf 

were treated as fixed and the values for different fixed effects 

influencing first lactation milk yield were chosen from earlier 

reports. Sire effect and error were treated as random while 

simulating the first lactation 305 days milk yield for each 

animal. Number of progeny per sire was varied at random 

(each sire contributing unequal number of progeny to the 

population). Finally the population mean value along with 

fixed and random variable values were summed together to 

get the phenotypic value (first lactation 305 days milk yield) 

of each animal. 

Two different models comprising of different combinations of 

fixed effects such as village, year and month of calving and 

sire as random effect were used to identify appropriate 

mathematical model to analyze the data on crossbred dairy 

animals managed under field conditions, to estimate reliable 

genetic parameter (heritability) for first lactation 305 days 

milk yield and also for evaluating the breeding bulls using 

different methods. The sex of the calf is not considered in this 

study, because of very less contribution of this effect to the 

total variation in the milk yield.  

The following models were employed to analyse the data,  

Model 1: Yijkm = μ + Si + Vj+ Yk+ eijkm 

Model 2: Yijklm = μ + Si + Vj+ Yk+ Ml + eijklm 

where,  Yijklm= first LMY of mth daughter of the ith sire 

calving in jth village in kth year and lth monthof calving, µ= 

Overall mean, Si = Effect of ith sire (i = 1,25), Vj = Effect 

of jth village (i = 1,…30), Yk= Effect of kth year of calving (k 

= 1, …5), Ml=Effect of lth month of calving (l = 1, …12), 

eijklm=Random error with mean zero and constant variance σ2
e 

Various datasets were simulated by combining 30 villages and 

25 sires at three different levels of input heritability (0.15, 

0.20, and 0.25), encompassing 500, 1500, and 3000 records. 

Ten replicates of each dataset were then generated and 

subjected to analysis using the previously described models. 

This analysis aimed to estimate heritability and compare 

different models and methods, ultimately identifying the most 

appropriate models and suitable methods for the evaluation of 

breeding bulls. 

 
Table 1: Summery of parameters considered for generation of data 

on first lactation 305 day milk yield 
 

 
 

Results and Discussion: Utilizing a simulation technique, 

first lactation milk production records were generated by 

adopting various parameters derived from earlier studies on 

the performance of crossbred cattle under field conditions in 

the Southern region. The resulting data were then analyzed to 

estimate the heritability of lactation milk yield and to identify 

the most appropriate analytical model and suitable method for 

evaluating dairy sires based on their progeny records. 
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Ten replicates of datasets, each containing 500, 1000, and 

3000 records on the first lactation yield of progeny sired by 

25 bulls distributed across 30 villages, were generated. These 

datasets encompassed three levels of heritability (0.15, 0.20, 

and 0.25). Subsequently, these datasets were analyzed by 

fitting two different models that included various 

combinations of fixed effects, such as village, year, and 

month of calving, with the sire included as a random effect in 

all models. 

For each replicated dataset, the model's explained sum of 

squares (R2 value) and heritability were computed. In Table 2, 

the R2 values and heritability estimates obtained for various 

replicates with an input heritability value of 0.15 are 

presented for datasets comprising 500, 1000, and 3000 

records, respectively. The progeny group size per sire ranged 

from 9 to 36, 20 to 57, and 93 to 147 for datasets with 500, 

1000, and 3000 records. The table illustrates that the R2 values 

explained by different models in distinct replicates varied 

from 4.55 to 28.12 percent, 10.27 to 21.26 percent, and 8.35 

to 15.41 percent for datasets with 500, 1000, and 3000 

records, respectively. Additionally, the tables indicate that 

model 2, encompassing fixed effects such as village, year, and 

month of calving, along with the random effect of sire, 

elucidated the maximum variation in the data. The variation 

explained by model 2 in different replicates ranged from 

13.65 to 28.12 percent, 11.60 to 21.26 percent, and 9.04 to 

15.41 percent for sets of 500, 1000, and 3000 records, 

respectively. Furthermore, a reduction in R2 values by 1.33 to 

5.09 percent was observed in different replicates for datasets 

containing 1000 and 3000 records (Table 2). 

The degree of variation explained by the two fitted models 

exhibited variability from one replicate to another. In the case 

of replicates for datasets with 500 records, the R2 values 

ranged from 13.65 to 28.12 percent for model 2 and from 

11.55 to 26.54 percent for model 1 (Table 2). A comparable 

pattern was also noted in datasets with 1000 and 3000 

records. The extent of variation elucidated by different 

models displayed a diminishing trend with an increase in data 

size. For model 2, the R2 values ranged from 11.60 to 21.26 

percent for 1000 records and 9.04 to 15.41 percent for 3000 

records, in contrast to 13.65 to 28.12 percent for datasets with 

500 records. Likewise, for model 1, the R2 values among 

replicates varied from 10.27 to 19.78 percent for 1000 records 

and 8.35 to 14.76 percent for 3000 records. 

The heritability estimates exhibited significant variation 

across replicates and the analytical models utilized for the 

analysis. Notably, the variability in heritability estimates was 

considerably lower when comparing different models within 

replicates as opposed to the variation observed across 

replicates within models. The estimated values derived from 

diverse analytical models and replicates spanned from 0.01 to 

0.46, as given in Table 2. 

An intriguing observation is that heritability estimates 

displayed minimal variance across models within replicates. 

Specifically, the variation was less than 0.08. Conversely, 

among replicates within models, the differences in estimates 

ranged from 0.37 to 0.46. In certain replicates, these 

differences were notably high (0.41 to 0.47), while in others, 

they were exceptionally low (less than 0.05), and in some 

instances, the sire components of variance were even 

negative. Comparing models, heritability values generally 

leaned towards higher estimates for model 2, which 

incorporated fixed effects such as village, year, and month of 

calving, along with sire as random effects. This trend 

persisted in datasets with 1000 and 3000 records. However, 

the variation in the magnitude of heritability estimates 

decreased with increasing data size (progeny group size). The 

estimates ranged from 0.02 to 0.46 in replicates of 500 

records, 0.02 to 0.26 in 1000 records, and 0.07 to 0.23 in 3000 

records. As the progeny group size increased, the variation in 

the magnitude of heritability values estimated from different 

replicates within models decreased, along with a corresponding 

reduction in the variation across models within replicates. 

The R2 values and heritability estimates, derived from the 

analysis of data generated with an input heritability value of 

0.20 using different models, are summarized in Table 3. 

Across replicates and models, the R2 values ranged from 8.96 

percent (for model 1) to 28.63 percent (for model 2), which 

incorporated all three fixed effects (Table 3). Generally, R2 

values were highest for model 2 (16.55 to 28.63 percent), 

followed by model 1, which included only village and year of 

calving among fixed effects (15.42 to 27.37 percent). The 

variability in the variation explained by the model, in terms of 

R2 value, among the replicates in different models fluctuated 

by approximately 10-12 percent. 

For datasets comprising 1000 and 3000 records, model 2 

consistently exhibited the highest R2 values. Model 2, 

incorporating all three fixed effects, explained 13.62 to 22.44 

percent and 9.69 to 15.70 percent of the variation for datasets 

of 1000 and 3000 records, respectively (Table 3). Model 1, 

which included village and year of calving, closely followed 

this pattern. The heritability values, as outlined in Table 3, 

also displayed less variation across models within replicates 

compared to estimates across replicates within models. In 

datasets of 500 records, heritability estimates ranged from 

0.02 to 0.53. Notably, in one replicate, heritability values 

estimated with two models were quite high (0.40 to 0.53), 

while in two other replicates, the values were very low, falling 

below 0.10 (Table 3). 

The range of differences in heritability estimates across 

models within replicates was 0.01 to 0.13, contrasting with a 

notably higher range (0.37 to 0.51) across replicates within 

the models. As the progeny group size increased, the variation 

in heritability estimates across models and replicates 

diminished, ranging from 0.04 to 0.36 for datasets of 1000 

records and 0.08 to 0.29 for datasets of 3000 records. Despite 

the reduction in the range of variation in heritability estimates 

with increasing progeny group size, the observed trend of 

lesser variation in estimates across models within replicates 

compared to the variation across replicates within models 

persisted in the case of datasets comprising 1000 and 3000 

records. 

The range of differences in heritability estimates across 

models within replicates was 0.01 to 0.13, contrasting with a 

notably higher range (0.37 to 0.51) across replicates within 

the models. As the progeny group size increased, the variation 

in heritability estimates across models and replicates 

diminished, ranging from 0.04 to 0.36 for datasets of 1000 

records and 0.08 to 0.29 for datasets of 3000 records. Despite 

the reduction in the range of variation in heritability estimates 

with increasing progeny group size, the observed trend of 

lesser variation in estimates across models within replicates 

compared to the variation across replicates within models 

persisted in the case of datasets comprising 1000 and 3000 

records. 

The outcomes pertaining to R2 values and heritability 

estimates derived from the analysis of data generated with an 

input heritability value of 0.25 are detailed in Table 4, 
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encompassing datasets of 500, 1000, and 3000 records. 

Generally, the R2 values were higher for the model 

incorporating all fixed effects except the sire. Specifically, for 

this model (model-2), the R2 values ranged from 16.29 to 

30.54 percent, 15.85 to 21.74 percent, and 12.20 to 15.52 

percent for datasets with 500, 1000, and 3000 records, 

respectively. Typically, the village factor accounted for 

approximately 5 to 12 percent of the variation, while the other 

two effects explained only a marginal proportion of the 

variation. Even in datasets with 1000 and 3000 records, the 

village effect explained around 4 to 10 percent of the 

variation. Examining the presented results, it is evident that 

the variation in R2 values explained by different models 

exhibited a decreasing trend with the increase in progeny 

group size. 

The variability in R2 values explained by different models 

within replicates also diminished with an increase in progeny 

group size. The distinctions in R2 values across models within 

replicates ranged from 9.33 to 12.93 percent in datasets of 500 

records, 8.12 to 13.30 percent for datasets of 1000 records, 

and 5.69 to 10.09 percent in datasets with 3000 records. 

The pattern in the variation of heritability values estimated 

from these datasets mirrored the values derived from datasets 

with input heritability values of 0.15 and 0.20 (Tables 2 & 3). 

Beyond the reduction in the variability of heritability 

estimates, the values converged toward the input values as the 

progeny group size increased. This aligns with findings from 

another study where heritability estimates from the best-fitted 

models ranged from 0.08 to 0.15 for milk according to days in 

milk of the first lactation (Cho et al., 2016) [3]. 

Sevaral research workers have examined performance records 

of dairy animals, comparing diverse models with various 

effects and endorsing models with the highest R2 values as 

optimal for breeding animal evaluation. For instance, Rao and 

Dommerholt (1980) [14] scrutinized 14 different models 

encompassing sires, years, seasons, age-linear, age-quadratic, 

lactation length-linear, and lactation length-quadratic effects. 

In their study, model 1, comprising all effects, yielded the 

highest R2 value (79.36 percent). Notably, they observed a 

substantial increase in R2 value (16 to 28.45 percent) when 

transitioning from models excluding sires to models 

incorporating sires, indicating potential confounding between 

sire and year of calving. Similarly, Nagarcenkar et al. (1985) 
[11] evaluated 25 different models involving sire as a random 

effect, calf sex, managerial factors, year and month of calving 

as fixed effects, along with age at first calving and lactation 

length as covariates. Meanwhile, Hamadani et al. (2023) [5] 

emphasized the significant impact of fixed and random factors 

on genetic factors and breeding-value accuracies in birth 

weight estimation models. Their findings highlighted that 

model 1, encompassing all effects, exhibited the highest R2 

value (28.45 percent) compared to other models. Furthermore, 

Mai et al. (2021) [10] highlighted the superiority of fixed-effect 

models over conventional methods in heritability estimation, 

emphasizing their increased effectiveness in such 

assessments. 

In the evaluation of sire performance, Chauhan et al. (1987) 
[2] employed three distinct models and determined that the 

model encompassing all three fixed effects (AI center-year-

month) was more suitable and exhibited less bias than models 

incorporating AI center-year as fixed effects or AI center-

year-month as random effects. In contrast, Kumar (1987) [8] 

incorporated herd, calving period, age at calving, and the level 

of exotic inheritance of crossbred progeny in the model. 

Surprisingly, he found that when all effects were considered, 

the accuracy was at its lowest. Consequently, he concluded 

that the optimal linear model should exclusively incorporate 

herd and sire effects. 

In a study by Kishore (1993) [7], three diverse models 

incorporating AI center, breed of the dam, sex of the calf, 

month and year of calving, and age at first calving as effects 

were compared. Kishore observed that Model C, achieved 

through the grouping of AI centers based on their production 

levels and locations, yielded the highest R2 value (23.10 

percent) compared to Model A (utilizing adjusted data for AI 

centers and breed of the dam) and Model B (formed by 

grouping AI centers into progeny testing units). 

In a separate investigation, Parekh et al. (1994) [12] employed 

two models, one within genetic groups (Model 1) and the 

other across genetic groups (Model 2), incorporating herd-

year-season subclasses for evaluating Friesian sires. Model 2 

demonstrated greater efficiency with a 72.10 percent R2 value, 

in contrast to Model 1, which achieved 60 percent. Notably, 

the R2 values obtained in this study were relatively larger than 

those reported in the present study. 

Lin and McAllister (1984) [9] conducted a simulation study to 

estimate heritability in the univariate case. Their findings 

revealed that estimates of heritability obtained through four 

methods (Henderson's method 3, maximum likelihood, 

restricted maximum likelihood, and minimum norm quadratic 

unbiased estimation) were similar in magnitude and closely 

approximated the heritability value used for generating milk 

production records. This alignment could be attributed to the 

utilization of very large datasets in their study, a contrast to 

the present study where the largest datasets comprised only 

3000 records across 50 sire groups. Given the consistent 

superiority of model 2 in terms of R2 values, this model was 

employed for the evaluation of sires using various sire 

evaluation methods based on progeny records. 

 

Table 2: The sum of squares (R2 – value in percent) and Heritability values estimated for different models in replicated data sets of records 
 

R N=500(hi
2= 0.15) N=1000(hi

2= 0.15) N=3000(hi
2= 0.15) 

Model M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) 

1 11.55 (- ve) 13.65 (- ve) 12.62(0.15) 14.40(0.16) 11.86(0.17) 12.43(0.17) 

2 18.37 (0.29) 19.26 (0.28) 12.47(0.10) 13.28(0.10) 14.44(0.23) 14.84(0.19) 

3 19.34 (0.09) 19.64 (0.06) 11.92(0.05) 13.70(0.05) 11.65(0.21) 12.61(0.21) 

4 15.30 (0.07) 16.93 (0.08) 14.03(0.20) 14.74(0.21) 12.23(0.09) 12.80(0.10) 

5 18.87 (0.02) 21.98 (0.02) 12.48(0.02) 15.45(0.02) 14.76(0.19) 15.41(0.23) 

6 21.79 (0.20) 23.91 (0.20) 19.78(0.25) 21.26(0.26) 10.66(0.12) 11.00(0.12) 

7 26.54 (0.32) 28.12 (0.34) 12.22(- ve) 13.48(- ve) 10.23(0.10) 10.51(0.10) 

8 18.31 (0.20) 20.91 (0.18) 11.66(0.09) 12.21(0.09) 10.93(0.08) 11.40(0.08) 

9 23.29 (0.44) 25.41 (0.46) 15.10(0.06) 16.95(0.06) 12.36(0.12) 13.19(0.12) 

10 13.51 (- ve) 16.15 (- ve) 10.27(0.04) 11.60(0.04) 8.35(0.09) 9.04(0.09) 

R = Replicates; hi
2 = Input heritability; S = Sire; V = Village; Y = Year of calving and M = Month of calving. The figures in parentheses indicate 

heritability values. The number of progeny varied from 9 to 36 for different sires in different replicates. 
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Table 3: The sum of squares (R2 – value in percent) and Heritability values estimated for different models in replicated data sets (hi
2= 0.20) 

 

 N=500(hi
2= 0.20) N=1000(hi

2= 0.20) N=3000(hi
2= 0.20) 

R M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) 

1 27.37(0.53) 28.63(0.48) 17.70 (0.33) 19.03 (0.33) 12.44 (0.22) 13.35 (0.22) 

2 23.83(0.06) 26.94(0.05) 15.62 (0.06) 17.22 (0.06) 11.45 (0.09) 11.86 (0.09) 

3 18.84(0.15) 19.01(0.15) 12.54 (0.12) 13.62 (0.12) 8.96 (0.13) 9.69 (0.13) 

4 18.51(0.28) 22.83(0.30) 17.97 (0.34) 19.72 (0.35) 11.09 (0.19) 11.34 (0.19) 

5 27.21(0.31) 28.27(0.32) 14.05 (0.15) 15.99 (0.14) 11.53 (0.22) 12.13 (0.22) 

6 23.27(0.15) 24.75(0.15) 22.25 (0.27) 22.44 (0.27) 10.46 (0.13) 10.86 (0.13) 

7 25.41(0.28) 26.58(0.26) 15.63 (0.17) 16.05 (0.16) 10.52 (0.18) 10.99 (0.18) 

8 23.80(0.34) 27.09(0.35) 18.72 (0.17) 19.04 (0.16) 14.25 (0.23) 14.59 (0.23) 

9 18.30(0.10) 23.03(0.10) 14.13 (0.15) 15.71 (0.14) 14.56 (0.27) 14.71 (0.27) 

10 15.42(0.02) 16.55(0.02) 16.99 (0.34) 19.20 (0.36) 15.55 (0.28) 15.70 (0.29) 

R = Replicates; hi
2 = Input heritability; S = Sire; V = Village; Y = Year of calving and M = Month of calving. The figures in parentheses indicate 

heritability values. The number of progeny varied from 9 to 36 for different sires in different replicates. 
 

Table 4: The sum of squares (R2 – value in percent) and Heritability values estimated for models in replicated data sets (hi
2= 0.25) 

 

 N=500(hi
2= 0.25) N=1000(hi

2= 0.25) N=3000(hi
2= 0.25) 

R M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) M – 1(S, V, Y) M – 2(S, V, Y, M) 

1 25.57 (0.42) 26.64 (0.37) 15.02 (0.26) 16.29 (0.26) 11.41 (0.25) 12.20 (0.25) 

2 18.90 (0.17) 20.67 (0.18) 18.85 (0.29) 19.15 (0.28) 13.47 (0.23) 14.05 (0.22) 

3 17.03 (0.17) 19.39 (0.19) 14.49 (0.23) 16.31 (0.22) 13.82 (0.15) 14.23 (0.15) 

4 24.75 (0.33) 27.25 (0.32) 18.10 (0.29) 19.19 (0.29) 14.81 (0.31) 15.24 (0.31) 

5 19.44 (0.14) 22.36 (0.14) 19.05 (0.20) 19.94 (0.22) 11.75 (0.26) 12.38 (0.26) 

6 28.45 (0.60) 30.54 (0.63) 21.21 (0.48) 21.74 (0.48) 13.10 (0.21) 13.78 (0.21) 

7 14.67 (0.06) 16.29 (0.05) 16.72 (0.20) 17.11 (0.19) 14.62 (0.28) 15.30 (0.28) 

8 26.67 (0.57) 27.05 (0.56) 15.51 (0.24) 16.19 (0.24 12.61 (0.18) 12.82 (0.18) 

9 14.69 (0.09) 16.90 (0.11) 15.02 (0.26) 16.29 (0.26) 14.99 (0.28) 15.52 (0.28) 

10 15.71 (0.14) 18.84 (0.13) 13.80 (0.23) 15.85 (0.25) 13.25 (0.22) 13.79 (0.22) 

R = Replicates; hi
2 = Input heritability; S = Sire; V = Village; Y = Year of calving and M = Month of calving. The figures in parentheses indicate 

heritability values. The number of progeny varied from 9 to 36 for different sires in different replicates. 
 

Conclusion 

The heritability estimates derived from diverse datasets, 

encompassing varying levels of input heritability, progeny 

group size, and number of sires, indicate that the inherent 

differences among sires play a more significant role in 

determining the estimated heritability magnitude compared to 

the environmental effects considered in the model. The trend 

in R2values and heritability variation across models and 

replicates diminishes with an increase in progeny group size. 

Additionally, the differences in R2 values and heritability 

decrease within replicates and across replicates within models 

as progeny group size increases at all three heritability levels. 

The magnitude of R2 values explained by different models in 

various datasets is higher for 0.25 heritability compared to 

0.15 and 0.20. 
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