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Abstract 
Image segmentation is a critical task in biological image analysis, providing essential information for 

various biomedical applications. Manual segmentation, though accurate, is time-consuming and 

impractical for big image data. In this study, we analyze an automated approach to enhance live and 

apoptotic cell segmentation using FIJI, a popular open-source image processing platform. This method 

leverages supervised learning algorithm based on pixel classification with different filters to achieve 

precise and efficient segmentation of cells in complex biological images. Experiments were conducted on 

different image data such as pig luteal cell microscopy image with trypan blue stain and without stain. 

Comparative analysis of the results obtained from different filters with manual segmentation is 

performed. From the analysis, the pixel-based classification algorithm performs better in case of image 

with trypan blue stain that achieved sensitivity of 0.93% for apoptotic cell and 0.86% for live cell. 

Average IoU score of pixels based segmented cells to manual segmented cells is above 0.91 for apoptotic 

cell and 0.80 for live cell. This paper contributes to the field by providing a comprehensive framework 

for automated cell segmentation in FIJI, paving the way for improved efficiency in biological image 

analysis. The method not only enhances segmentation accuracy but also showcases the potential for 

wider applicability in diverse biological imaging contexts. 
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Introduction 

The accurate segmentation of cells from complex biological images is a fundamental 

requirement for various applications in the realm of biomedical research, including cellular 

biology, pathology, and drug discovery. The meticulous delineation of individual cell provides 

crucial insights into cellular processes, aiding in the understanding of disease mechanisms and 

facilitating the development of targeted therapies. However, the traditional approach of manual 

cell segmentation is not only time-consuming but also prone to subjectivity and variability, 

especially when dealing with image data with multiple objects [1-4]. The need for efficient and 

reproducible segmentation methods has led to a growing interest in automated techniques. 

Among the diverse array of image processing platforms, FIJI (Fiji Is Just ImageJ) has emerged 

as a powerful and widely adopted tool in the biological imaging community. Developed as an 

open-source platform, FIJI offers a comprehensive set of features and plugins, making it 

suitable for a broad range of image analysis tasks [6-7]. As the demand for automated 

segmentation methods intensifies, the integration of sophisticated algorithms within platforms 

like FIJI becomes pivotal for advancing the field of biological image analysis. 

FIJI provides a range of traditional image segmentation techniques that have been the 

foundation in various scientific investigations. Thresholding is a fundamental technique in 

image segmentation, involving the classification of pixels based on intensity values [8]. FIJI 

offers a variety of thresholding algorithms, such as Otsu's method [9] and the Triangle method 
[10]. These methods are widely employed for their simplicity and effectiveness in scenarios 

with distinct intensity differences. Region growing algorithms [11], available in FIJI, start with 

seed points and expand regions based on pixel similarity. This method is valuable for 

segmenting structures with locally homogeneous characteristics. The watershed transformation 
[12] is employed for segmenting images with complex structures or overlapping objects. FIJI's 

watershed segmentation allows researchers to identify markers and delineate regions based on 

intensity gradients, contributing to the precise segmentation of distinct objects. FIJI 

incorporates edge detection algorithms, including the Canny edge detector [13]. Edge detection 

is beneficial for identifying boundaries within an image. FIJI has been extensively utilized in 

cellular biology for segmenting cell structures in microscopy images.  
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A study by Schindelin et al. showcases the application of FIJI 

in the segmentation of cells, emphasizing its user-friendly 

interface and adaptability to diverse experimental setups [6]. In 

neuroscience, FIJI has been employed for segmenting and 

analyzing neuronal structures in brain imaging. FIJI finds 

applications in medical imaging and pathology [14]. Image 

segmentation is crucial for identifying regions of interest in 

diagnostic images. Studies by Preibisch et al., showcase the 

use of FIJI for segmenting large 3D image datasets, 

emphasizing its role in volumetric image analysis [7]. Saalfeld 

et al. demonstrated the integration of machine learning 

techniques within FIJI for neuron segmentation, highlighting 

the platform's adaptability to cutting-edge methodologies [15]. 

FIJI allows the incorporation of custom machine learning 

models and offers plugins, such as Trainable Weka 

Segmentation, enabling researchers to train classifiers for 

specific segmentation tasks [16]. This integration enhances 

FIJI's capabilities by allowing adaptive learning from image 

datasets. A study by Arganda-Carreras et al. [16] demonstrated 

the application of machine learning-based algorithms, 

including TWS, for the segmentation of biological structures 

in microscopy images. The use of machine learning allows 

these algorithms to adapt to variations in image characteristics 

and achieve high segmentation accuracy. Research by 

Ronneberger et al. introduced the U-Net architecture, a 

convolutional neural network (CNN) specifically designed for 

biomedical image segmentation. The U-Net architecture 

incorporates a contracting path for capturing context and a 

symmetric expanding path for precise localization, making it 

well-suited for tasks such as cell segmentation [5]. While 

CNNs, including U-Net, have shown remarkable success in 

various segmentation tasks, their complexity and 

computational requirements can limit their applicability, 

especially for real-time or resource-constrained scenarios. In a 

study a pixel classification algorithm based on random forests 

was employed for the segmentation of cervical cell images. 

The algorithm demonstrated robust performance in dealing 

with variations in cell appearance, contributing to the 

efficiency of high-throughput analysis in cytological 

screening [17]. This enhanced the potential of pixel 

classification algorithms in addressing challenges related to 

cell heterogeneity and diverse imaging conditions. Despite the 

progress in automated segmentation methods, challenges 

persist. Variations in image size, cell size, shape, and staining 

intensity, as well as the presence of artifacts, necessitate 

continuous advancements in segmentation algorithms. 

Furthermore, the lack of a universal solution highlights the 

need for analysis of context-specific approaches that can 

adapt to different biological imaging tasks. In this context, 

pixel classification algorithms have garnered attention for 

their ability to assign pixels to predefined classes based on 

learned features by improving the precision of cell 

segmentation. This supervised machine learning-based 

algorithms allows to adapt to diverse biological images and 

imaging conditions pose significant challenges for accurate 

segmentation. This study seeks to address the challenges by 

analyzing an enhanced cell segmentation approach using FIJI 

and leveraging a pixel classification algorithm. These 

algorithms typically involve training a classifier with different 

filters on labeled data, allowing it to learn the characteristics 

of different cell types and structures. The primary objectives 

of this research are two-fold: firstly, to analyze a pixel 

classification algorithm within the FIJI framework 

considering different filters for automated cell segmentation, 

and secondly, to rigorously evaluate the performance of the 

approach against manual segmentation. 

 

Methodology 

Design of multiclass image segmentation 

The general process for multiclass image segmentation using 

the open-source software Fiji [18] is illustrated in Figure 1. Fiji 

offers various tools for segmenting molecular images, and in 

this context, it provides a machine learning-based interface 

for segmenting image volumes of any size and dimension. 

The image processing encompasses both trypan blue stain and 

unstain images. 

In this segmentation approach, a manual annotation of a 

subset of objects from each class is carried out using Fiji's 

drawing tools. It is noteworthy that the annotation doesn't 

need to cover the entire image, deviating from traditional 

methods that require annotation for the entire image, a time-

consuming task especially unsuitable for large datasets with 

numerous objects. The Fiji Pixel classification algorithm 

proves to be well-suited for efficiently segmenting extensive 

image data containing multiple objects. Following the 

annotation of selected objects, users choose pixel 

classification settings and select filters provided in the 

settings. The analysis incorporates diverse filters, including a 

basic filter comprising Gaussian blur, Gaussian gradient 

magnitude, Laplacian of Gaussian, and Hessian eigenvalues. 

Additionally, Sobel filter, Gabor filter, and Structure Tensor 

eigenvalues are employed, all executed with sigma values of 

1, 2, 4, and 8. Upon selecting the filters, training is executed 

using a random forest classifier. The outcome is a segmented 

image representing different classes. Further enhancement 

involves applying color contrast techniques to distinguish live 

and apoptotic cells distinctly within the segmented image. To 

evaluate the classifier's performance with different filters, the 

segmented images undergo the mask instant comparator 

method. This comprehensive procedure ensures a robust and 

efficient segmentation process, particularly applicable to large 

image datasets with diverse objects. The worflow of the study 

is illustrated in fig.1.   
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Fig 1: Multiclass cells segmentation using pixel classification 

 

Pixel based classification algorithm 

The automatic cell image segmentation using pixel 

classification algorithm uses random forest classifier to 

classify each pixel independently. Random forest classifier [19] 

is a commonly used supervised learning method that can be 

trained on pre labeled pixels i.e., Live Cell, Apoptotic Cell 

and Background. In the pixel classification algorithm, the 

random forest is trained on few manually labeled multiclass 

pixels. This approach can handle big image data. The first 

step computes a feature vector for each labeled pixel in the 

image. The feature vectors are generated by applying a set of 

filters to the given input images. Some of the filters used in 

the image analysis are basic filters that include gaussian blur, 

gaussian gradient magnitude, Laplacian of gaussian, and 

hessian eigen values, Sobel filter, Gabor filter and Structure 

tensor eigenvalues with sigma values 1, 2, 4 and 8. A stack of 

feature is built by adding each pixel to their feature vector. 

The feature vectors generated are paired with their respective 

ground truth classes that constitute the training feature set. 

Later each pixel's feature vector is fed into the random forest 

for training, which then predicts the probability of the pixel 

belonging to a particular class. The random forest classifier 

used in this training procedure consists of 100 decision trees 
[18]. This segmentation process utilizes the learned 

relationships from the training phase to categorize pixels 

throughout the entire image. The result is a segmented image 

where each pixel is assigned a probability of belonging to 

either Live Cell, Apoptotic Cell and Background.  

 

Feature extraction 

The pixel classification algorithm relies on selection of filters 

to compute pixel features with a designated list of sigma 

values. These sigma values play a crucial role in shaping the 

behavior of the filters. The input to the algorithm consists of 

an image 𝐼 and list of sigma values (such as 𝜎1, 𝜎2…𝜎𝑁) and a 

directive indicating the input image processing for 2D. For 

2D, the size of the pixels 𝑥 and 𝑦 be denoted by 𝑤𝑥 and 𝑤𝑦 

where 𝑤𝑥 = 𝑤𝑦 = 1. The purpose of sigma value in the list is 

to blur the input images according to gaussian filter resulting 

to 𝑁 differently blurred images of the given input images 

denoted by 𝐺𝑖 
[18, 20]. 

 

𝐺𝑖 = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑖𝐼, for 𝑖 = 1, … . , 𝑁 

 

Where, 𝐺0 = 𝐼 denotes the original image. The first order 

partial derivatives of the given image with 𝑥 and 𝑦 pixel is 

denoted by 𝛿𝑥𝐺𝑖 and 𝛿𝑦𝐺𝑖. They are computed by using the 

following mathematical expression. 

 

𝛿𝑥𝐺𝑖 =
1

𝑤𝑥
[−0.5 0 0.5] ∗ 𝐺𝑖  

 

Likewise, the second order derivative of the given input 

image is denoted as 𝛿𝑥
2𝐺𝑖 and they are computed as  

 

𝛿𝑥
2𝐺𝑖 =

1

𝑤𝑥
2 [1 − 2 1] ∗  𝐺𝑖  

 

Mixed second order derivative of the given input image is 

denoted as 𝛿𝑥𝛿𝑦𝐺𝑖 and computed as  

 

𝛿𝑥𝛿𝑦𝐺𝑖 =
1

𝑤𝑦
− [−0.5 0 0.5]𝑦 ∗ (

1

𝑤𝑥
[−0.5 0 0.5]𝑥 ∗ 𝐺𝑖)  

 

Gaussian Blur [16]: The mathematical expression of gaussian 

blur resulting to 𝑁 images of gaussian blurred of the given 

input images is as follows 

 

𝑓𝑖
𝑔𝑢𝑎𝑠

= 𝐺𝑖 for 𝑖 = 1, … . 𝑁  

 

Gaussian Gradient Magnitude [16]: It produces 𝑁 + 1 output 

images for each 𝐺𝑖 where 𝑖 = 0, … . 𝑁. The magnitude of the 

gradient vector for each pixel is used to generate the output 

image and the mathematical expression is as follows 

 

𝑓𝑖
𝑔𝑔𝑚

= √(𝛿𝑥𝐺𝑖)
2 + (𝛿𝑦𝐺𝑖)

2 (= |𝑔𝑟𝑎𝑑 𝐺𝑖|) 

 

Laplacian of Gaussian [16]: It also produces 𝑁 + 1 output 

images for each 𝐺𝑖 where 𝑖 = 0, … . 𝑁. The resulting output is 
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the total of second order partial derivatives and represented as 

 

 𝑓𝑖
𝑙𝑔

= 𝛿𝑥
2𝐺𝑖 + 𝛿𝑦

2𝐺𝑖 

 

Hessian Eigenvalues [16]: It produces 2(𝑁 + 1) output 

images i.e. two images for each 𝐺𝑖 where 𝑖 = 0, … . 𝑁. 

Initially, second order partial derivatives are calculated as 

 

ℎ𝑥𝑥 = 𝛿𝑥
2𝐺𝑖 ℎ

𝑦𝑦 = 𝛿𝑦
2𝐺𝑖 ℎ

𝑥𝑦 = ℎ𝑦𝑥 = 𝛿𝑥𝛿𝑦𝐺𝑖 

 

These partial derivatives for each pixel 𝑢 can be represented 

in matrix form as 

 

ℎ𝑢 = [
ℎ𝑥𝑥(𝑢) ℎ𝑥𝑦(𝑢)

ℎ𝑦𝑦(𝑢) ℎ𝑦𝑥(𝑢)
] 

 

and the filter computes two eigenvalues for this matrix and 

written pixel by pixel into two output images as  

𝑓1
ℎ(𝑢) = 𝜆1,𝑢 and 𝑓2

ℎ(𝑢) = 𝜆2,𝑢 

 

Structure Tensor Eigenvalues [16]: In this filter four images 

4(𝑁 + 1) for each 𝐺𝑖 where 𝑖 = 0, … . 𝑁 is generated. The 

four output images are calculated on different integration 

scale as two images are calculated with parameter 𝛾 = 1 and 

another two are calculated with 𝛾 = 3. To compute pixel wise 

product for first order derivatives is as follows 

 

𝑝𝑥𝑥 = 𝛿𝑥𝐺𝑖 . 𝛿𝑥𝐺𝑖, 𝑝𝑥𝑦 = 𝛿𝑥𝐺𝑖 . 𝛿𝑦𝐺𝑖, 𝑝𝑦𝑥 = 𝛿𝑦𝐺𝑖 . 𝛿𝑥𝐺𝑖, and 

𝑝𝑦𝑦 = 𝛿𝑦𝐺𝑖 . 𝛿𝑦𝐺𝑖  

 

Then gaussian blur 𝜎 = 𝛾 are used to blue these images as 

𝑞𝛾
𝑥𝑥 = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑖𝑝

𝑥𝑥, 𝑞𝛾
𝑦𝑦

= 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑖𝑝
𝑦𝑦 , 𝑞𝛾

𝑦𝑥
=

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑖𝑝
𝑦𝑥 and 𝑞𝛾

𝑥𝑦
= 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑖𝑝

𝑥𝑦 

Further, the four-blur image for each pixel 𝑢 in the given 

image are sampled into matrix as 

 

𝑞𝑢 = [
𝑞𝛾

𝑥𝑥(𝑢) 𝑞𝛾
𝑥𝑦

(𝑢)

𝑞𝛾
𝑦𝑦

(𝑢) 𝑞𝛾
𝑦𝑥

(𝑢)
]  

 

The filter computes two eigenvalues for this matrix and 

written pixel by pixel into two output images as 𝑓1
𝑠𝑡𝑒(𝑢) =

𝜆1,𝑢 and 𝑓2
𝑠𝑡𝑒(𝑢) = 𝜆2,𝑢 

Gabor [22]: The 2-D Gabor filter is characterized by the 

convolution of a Gaussian function and a complex sinusoidal 

waveform that varies in frequency and orientation. It is 

computed as  

 

𝐺(𝑥, 𝑦) = 𝑒
−

(𝑥−𝑥0)2

2𝜎𝑥
2 −

(𝑦−𝑦)2

2𝜎𝑦
2

  𝑒𝑗(𝑤𝑥𝑜𝑥+𝑤𝑦𝑜𝑦)  

 

where 𝑤𝑥𝑜 and 𝑤𝑦𝑜denotes centre frequency in which the 

filter produces the greatest response of x and y. 𝜎𝑥 and 𝜎𝑦 

denotes the standard deviation of the Gaussian function and 

𝑥, 𝑦 represent the pixel position of the image. 

 

Sobel [21]: In Sobel the gradient of a 2D function 𝑓(𝑥, 𝑦) is 

denoted by the vector 𝛻𝑓 = [𝐺𝑥, 𝐺𝑦], where 𝐺𝑥 and 𝐺𝑦 

represents first derivative and its magnitude is represented as 

∥ 𝛻𝑓 ∥= [𝐺𝑥2 + 𝐺𝑦2] 1
2⁄ . The key characteristic of the 

gradient vector is that it points toward the direction of the 

greatest rate of change of the function 𝑓 at the coordinates 

(𝑥, 𝑦). The angle at which the maximum rate of change occurs 

is given by 𝛼(𝑥, 𝑦) = arctan (
𝐺𝑦

𝐺𝑥
).  

 

Metrics 

Recall, Intersection over Union (IoU), and F-measure are 

commonly used metrics in the evaluation of classification and 

object detection tasks. 

Recall [23]: It is also known as sensitivity or true positive rate 

that measures the ability of a model to correctly identify all 

relevant instances within a dataset. It is calculated as the ratio 

of true positives to the sum of true positives and false 

negatives: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

 

High recall indicates that the model is effective in capturing a 

large proportion of the positive instances. 

Intersection over Union (IoU) [24]: IoU is commonly used in 

the context of object detection and segmentation tasks. It 

measures the overlap between the predicted segmentation and 

the ground truth segmentation. The IoU is calculated as the 

ratio of the intersection area to the union area of the two 

segmented images: 𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 values range from 

0 to 1, where a higher IoU indicates better spatial overlap 

between the predicted and true segmented area. 

F-measure [25]: The F-measure combines precision and recall 

into a single metric. It is particularly useful when there is an 

uneven class distribution. The F1 score is the harmonic mean 

of precision and recall, and it provides a balance between the 

two: 𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.  It ranges from 0 to 1, 

with higher values indicating a better trade-off between 

precision and recall. 

 

Results and Discussion  

In this work, we demonstrated an automatic process for luteal 

cell image segmentation using open-source scientific image 

analysis platform, FIJI. In this analysis, microscopic cell 

images of trypan blue stain and unstain image data were used 

and it is shown in figure 2.  

 

The Pixel classification algorithm is utilized for the automated 

segmentation and classification of live and apoptotic cells. 

The process involves annotating a few objects and executing 

the random forest classification algorithm. The algorithm 

operates on various filters, including Gaussian blur, Gaussian 

gradient magnitude, Laplacian of Gaussian, Hessian 

eigenvalues, Sobel filter, Gabor filter, and Structure tensor 

eigenvalues with sigma values of 1, 2, 4, and 8. To assess its 

performance, we conducted experiments on ten stained and 

unstained images, respectively. The evaluation was based on 

recall, Intersection over Union (IoU), and F-measure metrics. 

The average performance metric values for each filter were 

calculated from the results obtained in the experiments on the 

ten images. The final outcomes were summarized in Tables 1 

and 2. 
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(a)        (b) 
 

Fig 2: (a) Trypan blue stain luteal cell image (b) Unstain luteal cell image

 

In Table 1, the results obtained from trypan blue stain images 

were depicted, whereas Table 2 presented the results for 

unstain images. The performance metrics for live and 

apoptotic cells were computed separately and displayed 

accordingly. Notably, Table 1 indicated that the basic filter 

outperformed other filters, achieving performance 

consistently above 0.80 in recall and IoU metrics. However, it 

exhibited lower performance in the case of apoptotic cells, 

particularly with the F-measure metric. 

Similarly, in Table 2, the algorithm's performance was 

assessed for unstain images based on recall, IoU, and F-

measure. Interestingly, the algorithm exhibited superior 

performance in the segmentation of live and apoptotic cells of 

trypan blue stained images compared to unstained images. 

Consequently, the segmented images from trypan blue stained 

samples were chosen and are visualized in Figure 2. 

 
Table 1: Apoptotic and Live Cell Segmentation using trypan blue stain images 

 

With Stain 

Types of Filter 
Recall IoU F-measure 

Apoptotic Live Apoptotic Live Apoptotic Live 

Basic 0.930 0.866 0.917 0.805 0.552 0.719 

Gabor 0.861 0.714 0.75 0.806 0.527 0.753 

Sobel 0.797 0.843 0.791 0.745 0.469 0.699 

Structure Eigen 0.809 0.835 0.875 0.851 0.534 0.726 

 
Table 2: Apoptotic and Live Cell Segmentation using images without stain 

 

Without Stain 

Types of Filter 
Recall IoU F-measure 

Apoptotic Live Apoptotic Live Apoptotic Live 

Basic 0.767 0.903 0.595 0.751 0.504 0.685 

Gabor 0.712 0.906 0.595 0.713 0.508 0.652 

Sobel 0.672 0.908 0.595 0.559 0.472 0.551 

Structure Eigen 0.681 0.896 0.595 0.636 0.476 0.539 
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Fig 3: Segmentation of live and apoptotic cell in trypan blue stain pig luteal cell images. 

 

Conclusion  

The research illustrated the automated image segmentation 

using Fiji an open-source software. Through an analysis of the 

pixel classification algorithm applied to various cell image 

datasets, it was determined that cell images with trypan blue 

stain are more conducive to segmentation compared to unstain 

images. Notably, while deep learning typically demands 

extensive datasets, this algorithm prove advantageous for 

image segmentation even with limited datasets. 
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