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Abstract 
Global warming and climate change are one of the most important aspects hampering the global 

production scenario significantly. With the development in the molecular breeding technology due to the 

advents like next generation sequencing it has become possible to encompass the multidisciplinary 

approaches while formulate any breeding programme. Genomic selection is one of the promising tools 

for improving plants for the complex traits like biotic and abiotic stress resilience and sustainable 

production. 
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Introduction 

The ever-increasing global population along with the serious threats of global warming and 

climate change are imposing a great challenge in maintenance of sustainable food production 

worldwide. The emergence of new diseases and insect pests, climatic fluctuations and 

temperature and moisture stress can lead to serious concern in the overall production and 

economic output of the crop plants. Major breeding technologies developed earlier were 

primarily focused on improving productivity levels of the crops without putting any serious 

concern for overall crop genetic diversity. Consequently, there has been great reduction in the 

genetic base of the crops which made them highly homogeneous and genetically vulnerable to 

new diseases and pests. Therefore, it has become very important to consider the crop genetic 

diversity while formulating any breeding programme to maintain the sustainability of crop 

production. 

Therefore, it now requires serious attention from breeders to put attention on developing crops 

with sustainability in production along with the singular increase in the productivity levels. It 

requires a multidisciplinary approach in tackling such serious challenges of near future. Recent 

advancements in field of functional genomics with development of advents like next 

generation sequencing there is a ray of hope to incorporate crop plants with the resilience 

against such adverse natural vicissitudes. Genomic assisted breeding and technologies can help 

in mitigating adverse effects of climate change and developing climate ready crops for greater 

and sustainable yield levels along with better resilience.  

In the recent past, there has been so many developments in the field of functional genomics 

which led to the identification and introgression of various novel QTLs responsible several 

important traits in different crops like rice, wheat, maize, soybean etc. Marker assisted 

selection is an indirect method of selecting plants based on markers linked to various genes 

controlling the trait of interest. There has been significant exploitation of MAS in selecting 

plants efficiently for various traits of agronomic importance. In case of cereals, Improved Pusa 

Basmati1, Improved samba mahsuri, Swarna sub1 and Improved Pusa RH 10 in rice, 

HUW510 in wheat (Vasistha et al., 2017) 
[1]

 and HHB67-Improved in pearlmillet (Rai et al., 

2008) 
[2]

 etc. provide excellent examples of utilization of marker assisted breeding for 

developing improved versions of excellent crop varieties. However, the constraint associated 

with MAS is that it is useful only when the trait is governed by one to few major genes, 

whereas, majority of the agronomically important traits are governed by poly genes involving 

hundreds of minor genes. In case of such polygenically inherited trait MAS is quite inefficient 

and not feasible practically in improving the crop plants. To address this issue and overcome 

the challenge a new selection means is developed which utilizes densely distributed markers 

covering the entire genome to estimate the net genetic worth of an individual, this selection  
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technique is known as genomic selection which is an 

excellent tool for development of crops for traits with very 

low heritability. Here, individual marker effect is estimated 

and sum of all marker effect at all the loci are calculated for 

the estimation of genomic estimated breeding values of an 

individual. Therefore, GS can be regarded as a promising tool 

for developing crop plants for such complex traits related to 

various responses against abiotic and biotic stresses and 

improving crop plants under complex agricultural production 

environments. One of the chief advantages of utilizing GS as 

a selection tool is that it leads to a significant reduction in the 

overall duration of breeding cycle in comparison with 

conventional breeding along with reducing the expense 

associated with the extensive phenotyping with accelerating 

genetic gains for ensuring global food and nutritional security. 

 

Statistical models of genomic selection 
Meuwissen et al. (2009) 

[37]
 provided a modified 

mathematical model for least-squares regression in GS. Here 

individual markers undergone least square regression as 

following statistical model. 

 

Y =      + e 

 

  = genotype of the individuals for the marker j 

        marker effect 

e = error associated. 

 

Post regression markers with significant effects are selected 

which are further evaluated for the estimation of the breeding 

values. However, there is a possibility of some data may go 

missing as a smaller set of markers are utilized for the 

evaluation of the breeding values. 

The problem of over parameterization and counter missing 

data can be solved utilizing models of ridge regression-based 

approach which also corrects for multi collinearity. It 

eliminates coefficients of correlated parameters and corrects 

the regression with 12 least squares. An estimator of the 

parameter b is derived which is smaller compared to the least 

square estimate. However, this model assumes equal 

contribution of each marker for every trait which is not 

correct for many of the traits. Therefore, it is necessary to 

module the marker variance based on the particular trait’s 

genetic construction.  

The genomic prediction models described earlier are mostly 

parametric which are superior for genetic architecture of 

additive nature but these are inefficient with the genetic 

construction of epistatic nature. Hence, it was necessary to 

develop semi-parametric and non-parametric models to model 

the traits with such complex architecture. Currently, there are 

several different statistical models which can be used for such 

complex genetic architecture and can be utilized for 

modelling of traits with both additive and epistatic nature. 

Most of the genomic prediction models provides genomic 

information based on a single trait i.e. single trait genomic 

selection or STGS. But in several cases, such as pleiotropy it 

has been observed that a single gene may hamper the 

phenotypic expression of several traits simultaneously which 

significantly hampers the performance of the STGS models. 

Although traits with lower values of heritability where 

utilization of correlated traits may lead to the achievement 

much higher efficiency in estimation of genomic prediction 

values. However, such single trait-based methods may lead to 

the loss of many crucial information which will ultimately 

result into poor accuracy of genomic values. Hence, the 

development of multi trait based genomic selection methods 

gaining popularity very rapidly. These methods provide much 

more accurate estimation of GEBV values and hence lead to 

the higher prediction accuracy of GS model.  

 

Statistical tools for evaluating genomic prediction values 

RRBLUP 

RRBLUP is one of the most widely employed packages 

among all statistical tools for evaluation of genotypes in terms 

of genomic prediction estimates. This tool is a spin-off of the 

package Best Linear Unbiased Prediction or BLUP which is a 

platform or model based on mixed linear framework 

(Endelman, 2011) 
[4]

. This model approximates training 

population associated marker effects and utilized it in the final 

evaluation of GEBV estimates. A mixed linear model-based 

function is formed which approximates associated marker 

effects to predict GEBVs is most commonly utilized under 

this model. Further, a relationship matrix is formed of 

additive nature from the available genotypic data of the 

individuals can be estimated which is further utilizable for the 

prediction of genomic estimated breeding values. 

 

GenSel 
This statistical package employs Bayesian models for the 

estimation associated marker effects in the background of the 

training population and thereby approximates the genomic 

estimated breeding values for the selection of individuals 

from breeding population. GenSel produces the result files in 

the zipped format (*.tgz) available for download and further 

study (Mukhopadhyay et al., 2009) [9]. It utilizes an interface 

which is based on command line such as linux or mac. This 

system was initially programmed and executed through 

Bioinformatics to implement Genomic Selection Project or 

BIGS (Fernando and Garrick, 2009) 
[6]

. 

 

MTGS 

There are several instances when it is necessary to select for 

multiple traits instead of a single trait where there is a 

requirement of selection index or a similar matrix in those 

cases MTGS is always superior in performance over STGS. 

This package first estimates associated marker effects and 

then utilizes this estimated marker effects to calculate 

genotypic worth of an individual. It also calculates correlation 

effects among various traits which indicates the information 

which is carried by one trait over the other. MTGS can be 

seen as all-inclusive tool which can provide single step 

resolution for multi trait genomic selection (Budhlakoti et al., 

2019) 
[7]

. 

 

STGS 

In contrast to MTGS, STGS is a package based on R which 

evaluates genotypic worth of an individual based on single 

trait data. This model first calculates associated marker effects 

for various single traits. Then, these marker effects are 

utilized to evaluate individuals for their genotypic worth i.e. 

genomic estimated breeding values. Genomic selection may 

be built on single trait as well as multi trait data as this 

package utilizes single trait data for estimation of breeding 

values hence the name single trait genomic selection or 

STGS. This package provides an all-inclusive single step 

solution for single trait genomic selection. 
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GM Stool 

GM Stool is a package based on genome wide association 

study which utilizes various statistical and deep learning 

methods to search for the optimum number of markers and 

further presenting the best prediction model with that 

optimum set of markers. One of the most important factors 

contributing to the high prediction efficiency of any GS 

model is number of markers utilized for the model. In case of 

GM Stool it chooses optimum number of markers by 

choosing SNPS having minimal p-values. Therefore, it is 

highly beneficial in developing a model where only the highly 

pertinent markers are employed in the final prediction model 

(Jeong et al. 2020) 
[8]

. 

 

solGS 

solGS is based on RRBLUP model (Endelman et al., 2011) 
[4]

 

for prediction of genomic estimated breeding values of the 

individuals which works on linux based operating system 

model. It provides a highly instinctual web interface to 

evaluate and selection of individuals for modelling of training 

set which is selected and estimation of genomic estimated 

breeding values of those select individuals. It calculates total 

correlation along with heritability and there by develops 

selection indices for various traits. Here model data and 

results can be visualized interactively and it also provides the 

opportunity of downloading the data for later study (Tecle et 

al., 2014) 
[9]

. 

 

G selection 

This is an R based package which utilizes an integrated model 

for estimation of genomic estimated breeding values. This 

model selects relevant set of markers to predict the 

performance of an individual on the basis of available data on 

the training set by utilizing an integrated model framework 

(Guha et al., 2019). The integrated model framework which is 

used to prediction of the GEBVs is formed by the 

combination of an additive with one non-additive model thus 

it can include individuals with diverse genetic constructions. 

 

BWGS 

BWGS or Bread Wheat Genomic Selection is a R based 

package which provides estimation of GEBVs comparatively 

easier than other models and is freely available in the sources. 

It helps in estimation of GEBVs by three processes firstly, it 

imputes for the any missing data present in the model. 

Secondly, it helps in selection of markers and training sets 

with reduction in dimensions which incorporates fewer 

markers which can reduce the complexity over a large data set 

and finally, it estimates genomic associated breeding values 

utilizing 15 different methods which may be parametric or 

semi-parametric (Charmet et al., 2020) 
[11]

. This model can be 

utilized for computation of GEBVs from a broader range of 

genetic architectures. 

 

lme4GS 

This model is an extension of lme4R and RRBLUP package. 

The utilization of earlier model lme4R for computation of 

genomic predictions is restricted as it does not allow the 

correlations among different individuals or various groups of 

individuals to be defined. It is an R based package and also 

freely available utilized for fitting of mixed linear based 

models. Further, this model provides the flexibility to the user 

for fitting of models with a defined bandwidth, selection of 

covariate structures and finally estimates GEBVs (Caamal-Pat 

et al., 2021) 
[12]

. 

 

BGLR 

BGLR is another R based package which permits integration 

of different parametric and semi parametric procedures to 

develop a large assembly of Bayesian models for computation 

of genomic prediction values. This model is particularly 

helpful while encountering a data with large number of 

parameters which may exceed the sample numbers. These 

large parameter-based datasets pose huge challenges while 

computational functions or statistical analysis is carried out. 

Hence, the model provides the necessary flexibility while 

deciding the marker density distribution and eases out the 

computational challenges encountered with such kind of 

datasets (Pérez et al., 2014) 
[13]

. 

 
Table 1: List of different software packages utilized for estimation of GEBVs

 

Sl. No. Statistical Package Remarks Reference 

1. GBLUP Utilizes genomic relationships for estimation of GEBVs. Clark et al., 2013 [14] 

2. RRBLUP Most widely utilized statistical package for estimation of GEBVs. Endelman et al., 2011 [4] 

3. ssGBLUP Mostly used for animal breeding. Alvarenga et al., 2020 [15] 

4. GenSel Provides a range of different analysis for genomic selection. Mukhopadhyay et al., 2009 [9] 

5. LASSO Selection of feature and estimation of various parameters is done simultaneously. Usai et al., 2009 [16] 

6. BRR Helps in case of data poorly distributed or insufficient. Gianola et al., 2003 [17] 

7. Bayesian LASSO It tries to obtain data from full posterior distribution under a laplace prior. Kiiveri, H.T. 2003 [18] 

8. Bayes A 
Marker variance follows a inverted chi square distribution where basic statistics of 

the distribution is same as the marker. 
Meuwissen et al., 2003 [19] 

9. Bayes B 
Number of markers are taken as non-effective and other markers are taken with large 

effects. 
Meuwissen et al., 2001 

10. Bayes C 
Helps in the computation of additive genetic worth of the sample where variable is 

unknown and to be calculated. 
Habier et al., 2011 [20] 

11. Bayes Cπ 
Helps in the computation of additive genetic worth of the sample where variable is 

known and value is reserved fixed. 
Habier et al., 2011 [20] 

12. RKHS 
Captures associated effects which are non-additive of nature either parametrically or 

non-parametrically. 

De Los Campos et al., 2010 
[21] 

13. Random Forest 
Utilized for very high dimensionality and hypercomplex data; providing a flexible 

and easy to use solution. 
Holliday et al., 2012 [22] 

14. 
Support Vector 

Machine regression 

Powerful in identifying understated patterns for a complex set of data. 
Long et al., 2011 [23] 
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15. Adaptive LASSO It possesses oracle properties which is computationally striking. Zou et al., 2006 [24] 

16. Elastic NET An extension of LASSO utilized for high dimensional and complex datasets. Ogutu et al., 2012 

17. ADAENET It combines properties of adaptive LASSO and ENET to enhance solidity. Ogutu et al., 2012 

 

GS in various crop improvement programmes 

Role of GS in improvement of yield and related traits 

With the ever-increasing rise of global population there is an 

urgent requirement for substantial increment in the productive 

potential of crops as high as 70% from the present production 

standards. Genomic prediction accuracy ranged for a very 

complex trait like individual grain weight distribution in rice 

(Yabe et al., 2018) 
[25]

 0.28 to 0.81 for grain yield in soybean 

(Brown et al. 2019) 
[26]

. Prediction accuracy for the traits like 

grain yield highly depends on the developed training 

population, the relation between training and breeding 

populations along with the model which was utilized to 

develop the training population as different set of models for 

the development of training population led to different 

prediction accuracy (Fristche-Neto et al., 2018) 
[27]

. The 

accuracy of a particular GS model is also highly influenced by 

the size of the training population and the affiliation of 

training population with the validation population (Lozada et 

al., 2019) 
[43]

. Biparental populations like RILs and doubled 

haploids provided better predictive performance as compared 

unrelated natural populations so such populations can be 

better utilized as training populations for the development of 

GS model (Liu et al., 2018) 
[33]

. GS can be utilized for 

germplasm enhancement in pre-breeding programmes to 

fasten the gene flow for unique traits from germplasm banks 

to elite lines. GS can also be greatly helpful while providing 

information prediction of hybrid performance (Crossa et al. 

2017) 
[29]

. NGS technologies based on genotyping by 

sequencing and genome wide SNP mapping have greatly 

facilitated GS owing to the unique advantages these 

technologies offer (Poland et al., 2012) 
[42]

. With the 

availability of genome wide distributed markers with hugely 

dense coverage can eventually lead to bring the cost 

comparable to those of phenotypic evaluation. (Jannink et al. 

2010). 
 

Various factors governing the prediction accuracy of GS  

Marker density 

In majority of the GS models viz., RRBLUP, LASSO, 

machine learning based models like SVM etc. enhanced level 

of marker coverage leads to increased prediction efficiency 

but at the same time there is slow conjunction in case of 

methods like Bayes A, Bayes B, Bayes Cπ etc. (Zhang et al., 

2017) 
[31]

. Although, in many instances lower marker 

coverage like thousands in number with lower expense can 

lead to the production of similar results (if there is presence of 

significant LD among the markers) which are achieved at the 

higher marker density thus reducing the total cost of the GS 

and making it more accessible. In most of the breeding 

programmes it becomes very difficult to have very high 

coverage of markers in the genome as it will lead to 

significant increase in the total cost which is an immense 

constrain in most of the breeding programmes as like any 

breeding programmes here also economy is an important 

aspect for the improvement in any character. Therefore, there 

is a serious dichotomy to decide the optimum number of 

markers to keep a balance between the economic aspect of the 

programme and maintaining the efficiency of the model. 

Hence, it is suggested to have a moderate coverage with 

keeping a minimum of 2000 SNPs such that prediction 

efficiency is not affected greatly (Abed et al., 2018) 
[32]

. 
 

Population size 
Population size is one of the important factors governing the 

success of any breeding programme be it traditional breeding, 

conventional MAS or models like genomic selection. In case 

of genomic selection deciding the effective size of training 

population is very crucial as a smaller size of this will lead to 

reduced accuracy of prediction values since there will be an 

inefficient estimation of the marker effects which will cause 

the reduced prediction accuracy. It has been observed in many 

studies that higher size of training population led to higher 

prediction accuracy, it was indicated that for a better GS 

model with good genomic predictions size of the training 

population should be at least three to five times higher than 

the validation population (Liu et al., 2018) 
[33]

. However, it 

has also been observed that if training population and 

breeding populations are related then better prediction 

accuracies can be achieved without resorting to larger size of 

training population. As in case of most of the programmes 

training and breeding sets are related, thus a higher prediction 

accuracy is achievable without increasing the size of the 

training population and hence maintaining the cost of the GS 

to be economical and accessible (Meuwissen, 2009) 
[37]

. 

 

Heritability of the trait 
Heritability of the trait in question also a responsible factor 

governing prediction accuracy in a GS model (Hayes et al., 

2009) 
[34]

. Heritability as a definition signifies the portion of 

total variance which is under genetic control (Lush, 1945). 

Several studies suggested that improvement under genomic 

selection for a trait is highly influenced by the heritability of 

that particular character. In majority of the occasions, it has 

been observed that trait with higher values of heritability 

provides better prediction accuracy as compared to traits with 

lower heritability and vice-versa. Usually, characters which 

are significant agronomically exhibits heritability values of 

moderate magnitude. It was also observed that as compared to 

simply inherited traits, in case of traits with complex 

interaction with the external environment heritability played 

the crucial role where increase in heritability led to better 

prediction accuracies for the traits (Zhang et al., 2017) 
[31]

. 

When heritability measures are less then and traits exhibit 

complex inheritance pattern, the performance of Bayesian 

methods and BLUP spinoffs provided much better 

performance in terms of selection accuracy as compared to 

other methods (Poland et al., 2012; Lozada et al., 2019) 
[42, 43]

. 

However, several novel techniques are helpful for 

simultaneously tackle the challenges of low heritability and 

missing observations. Approaches like multi-trait selection 

can be very useful for employing EBVs from models like 

BLUP and its spinoffs which can result into higher prediction 

values and can be used for improvement of traits which 

possess low heritability (Slater et al., 2016) 
[44]

. 

 

Minor allele frequency 

Frequency of minor allele also plays an important role in the 

improvement of a trait under GS. Even with large marker 

coverage in the genome there are instances of decrease in the 

prediction accuracy after a point, it is due to the frequency of 
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minor allele in the population being to less. Studies are 

conducted with varying marker coverage with lower and 

higher frequency of alleles with smaller effects. Results 

suggested that utilizing a lower coverage of SNP chips with 

selection of less frequent markers which have large effects 

can be very useful and provide much better results in terms of 

prediction accuracy as compared to highly dense marker 

coverage with lesser number of minor alleles (Zhu et al., 

2017) 
[45]

. Therefore, it is always advisable to utilize high 

quality of SNP genotyping data which possess minor allele 

frequency at least more than 0.1 to attain better estimates of 

genomic prediction values (Hickey et al., 2012) 
[46]

. 

 

Role of GS in improvement for biotic stress tolerance 

Climate change and intensive agriculture led to the danger of 

development of biotypes and pathotypes of different insect 

pests and diseases (Fones et al. 2020) 
[47]

. Against so many 

diseases there are several reports of evolution of virulent 

pathotypes leading to breakdown of available resistance 

(Kumar et al. 2021) 
[48]

. Therefore, it requires urgent attention 

from breeders in terms of identification of new and reliable 

sources of resistance and their incorporation in the available 

elite lines. Maker assisted backcross breeding is one of the 

widely employed method for introgressing different resistance 

genes from enriched germplasm sources to agronomically 

improved cultivars at least for the traits which are 

qualitatively controlled. Although, these methods have quite 

difficulty while development of lines with improved 

horizontal resistance which is controlled by many genes each 

with very little effect on the disease resistance. GS can be 

very useful for improvement of crops for disease resistance 

where resistance is polygenically controlled and shows 

quantitative inheritance. The genomic prediction accuracies 

for various important diseases of wheat were observed to be 

ranging from 0.1-0.8 in several studies reported earlier 

(Mirdita et al. 2015, Juliana et al. 2017) 
[49, 50]

. Various studies 

utilizing GS for development of resistance against important 

diseases in agronomically valuable crops reported, such 

instances include stem rust of wheat (Rutkoski et al., 2011) 
[51]

; fusarium head blight resistance (Arruda et al., 2015) 
[52]

; 

blast and bacterial blight of rice (Balimponya, 2015) 
[53]

; 

northern corn leaf blight (Technow et al., 2013) 
[54]

; 

phytopthora resistance in soybean (Rolling et al., 2020) 
[55]

 

etc. In many cases such as resistance against fusarium head 

blight resistance in barley quite high prediction accuracy of 

0.72 was achieved. 

 

Role of GS in improvement of quality of various crops 

Inheritance of quality traits being complex varies greatly few 

of those are controlled by very few genes while others are 

controlled by polygenes with large influence of environment 

on the expression of the traits (Laidig et al., 2017) 
[56]

. 

Genomic selection applied for traits like end use quality in 

wheat which resulted a high prediction accuracy of 0.62 for 

mixing time (Battenfield et al., 2016) 
[57]

. It was also revealed 

that GS may become far more efficient than conventional 

MAS in terms of prediction accuracy for various traits in soft 

wheat dictating it to be far more rewarding in breeding 

applications (Heffner et al., 2011) 
[58]

. 

Quality traits like protein and oil content are popular to be 

negatively associated with productivity hence breeding for 

such traits always lead to some amount of compromise for 

yielding ability of the crops (Lam et al., 1996) 
[59]

. Genomic 

selection involving multi-trait for such traits like protein 

content, dough making quality and grain yield have been 

observed to be efficient to breed for better quality without 

compromising for yield levels (Michel et al. 2019) 
[17]

. In 

crops like cotton genomic prediction has been employed for 

various quality traits like fibre length, fibre strength and the 

yield of lint which resulted in very high prediction accuracies 

when genomic and pedigree information combined to build a 

model (Li et al., 2022) 
[61]

. There are various different factors 

which influence prediction accuracy of GS model while 

utilizing it for improvement of a quality trait. These include 

statistical model which is employed such as GBLUP or 

RRBLUP, frequency of the minor allele, genetic construction 

and heritability of the particular trait (Zhang et al., 2019) 
[62]

. 

Traits like protein content and ergosterol content have been 

utilized for genomic selection which showed encouraging 

results with virtuous prediction accuracies ranging from 0.4-

0.8 (Nielsen et al., 2016) 
[63]

. Various such studies indicated 

that employment of GS for evaluation of large number of 

lines and cultivars has tremendous potential which will help 

to overcome the requirement of expensive and labour-

intensive phenotypic assessment (Schmidt et al. 2016) 
[64]

. 

 

Implication of GS in breeding for climate resilience crops 

Intensive agricultural practices along with the breeding 

activities to develop superior high yielding cultivars without 

taking factors like trait and genotypic diversity into 

consideration while preparing a breeding programme 

especially in the post green revolution era led to the event of 

genetic erosion leading to bottleneck and genetic vulnerability 

(Pingali, 2012) 
[65]

. Breeding under such high resource 

intensive environments had resulted in loss of certain valuable 

alleles which helped in adaptation and tolerance to various 

stress situations (Brown, 2003) 
[66]

, making the crops highly 

vulnerable and severely under prepared for threats like 

climate change and emergence of new diseases and pests. 

QTLs for several drought stress adaptive traits have been 

identified and transferred such traits include ABA 

accumulation (Rahman et al., 2011) 
[67]

, accumulation of 

sugars in the cell and their storage and distribution in various 

plant organs (Salem et al., 2021) 
[68]

, crop canopy temperature 

(Lopes et al., 2014) 
[69]

, delaying senescence (Borrell et al., 

2014) 
[70]

 and physiology and architecture of rhizospheric 

regions (Christopher et al., 2013) 
[71]

. These QTLs are being 

cloned utilizing various high-throughput technologies which 

can deliver innovative prospects for incorporation of 

resistance against such abiotic stresses and precise 

identification important genomic regions which confer such 

resistance in different crops (Salvi et al., 2007) 
[72]

. Recent 

advancements in the advents of genomics and sequencing 

technologies like NGS and TGS will be greatly useful for 

dissecting effect of climate change on crop phenotype which 

will further assist in development of resilience against severe 

climatic changes occurring throughout the globe and making 

our crops future ready (Kole et al., 2015) 
[73]

. 

 

Utilization of genomic selection in horticultural 

improvement 

Horticultural crops including various fruits and vegetables are 

important fractions of our entire dietary system which helps in 

ensuring overall nutritional security of a human being. There 

are several obstacles are encountered while breeding for fruits 

which include the span of vegetative phase and higher levels 
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of heterozygosity, in such circumstances GS with an efficient 

model can emerge out as a superior selection strategy in terms 

of accuracy and overall efficiency for prediction of such traits 

imbibed into a complex genetic system (Budhlakoti et al., 

2022)
 [73]

. Jung et al. (2022) 
[75]

 attempted to evaluate genomic 

prediction of large no. of apple accession for 30 different 

quantitative traits and observed a varying prediction accuracy 

ranging from 0.18-0.82 for various traits under different 

environmental conditions revealing a significant potential of 

GS for improvement of those traits. In case of winter squash 

predictive ability for various fruit quality traits were evaluated 

which found to be low to moderate in terms of efficiency 

(Hernandez et al., 2020) 
[76]

. It has been observed that among 

various models available for GS ssGBLUP expressed higher 

prediction accuracy even better than GBLUP for different 

traits associated with fruit quality parameters in citrus (Imai et 

al., 2019) 
[77]

. Kumar et al. (2019) 
[78]

 evaluated a population 

of 550 F1s of pear for several fruit traits, prediction efficiency 

for the different traits ranged from 0.32-0.6 with the average 

hovering around 0.42 indicating usefulness of GS in 

evaluation of fruit related traits. Breeding for horticultural 

crops is quite complex and the produce quality is associated 

with so many parameters such as shelf life, sugar metabolism, 

fruit formation and ripening process and the physiology 

associated with it etc. Though, omics-based approaches like 

GS can be very useful in breeding for improvement of such 

traits specially when the nature and pattern of the trait 

expression is such complicated (Mathiazhagan et al., 2021) 
[79]

. 

 

Genomic selection 

Genomic selection for various important traits in different crops
 

Crop Trait Population Model Prediction accuracy Reference 

Rice 

Grain filling traits 128 Japanese rice cultivars GBLUP and PLS 

Percent filled grains, variance of 

filled grain weight and filled grain 

avg. weight predicted with 0.30, 0.53 

and 0.28 accuracy. 

Yabe et al. 2018 
[25] 

Various agronomic 

traits 
A panel of 115 rice varieties 

GBLUP, LASSO, PLS, 

NN, SVM and RKHS 

Genomic prediction would lead to 

35.5% increase in grain yield, 30.21% 

in panicle number and 23.3% in 1000 

kernel weight. 

Xu et al. 2018 [81] 

Grain yield and 

yield attributes 

A panel of 3000 rice 

varieties 
GBLUP 

Very high prediction accuracy 

achieved ranging from 0.35-0.92. 
Cui et al. 2020 

Grain yield, tiller 

number, 1000 

kernel weight and 

kernel number 

210 RILs (F9) 2D-BLUP 

Metabolomic secondary traits can be 

utilized to increase in the prediction 

accuracy of traditional traits. 

Wang et al. 2020 
[83] 

Wheat 

Grain yield 

Six different populations of 

size 52, 38, 31, 20, 13 and 

242 

RRBLUP, PLSR, RKHS, 

ELNET and RF 

Moderately accurate predictive ability 

of the GS model. 
Dunckel et al. 

2017 [84] 

Baking quality 
840 genotypes of winter 

wheat 
RR-BLUP and WBLUP 

Prediction accuracy for different 

characters ranged 0.38-0.63. 

Michel et al. 

2018 

Grain yield and 

quality traits 

A population of 170 

cultivars and 154 DH lines 

RR-BLUP, G-BLUP, 

BayesA, BayesB, Bayesian 

LASSO and RKHS 

Prediction accuracy for grain yield 

was 0.5-0.8. 
Haile et al. 2018 

[86] 

Grain yield and 

quality 

A population 57 fixed lines 

of bread wheat 

RR-BLUP, Bayes A, 

Bayes B, Bayes ridge 

regression and Bayes 

LASSO 

Construction of a selection index 

based on yield, maximum resistance 

with extensibility can be useful for 

improvement of both traits. 

Yao et al. 2018 
[87] 

Grain yield 
3 different populations with 

a total of 3282 genotypes 
Mixed model BLUPs 

Incorporation of data on secondary 

traits led to 146% increase in terms of 

predictions for grain yield by three 

cycles. 

Sun et al. 2019 
[88] 

Grain quality and 

yield 

666 soft winter-wheat 

genotypes 

RRBLUP, Bayes B, Bayes 

A, Bayes Lasso and Bayes 

C 

Prediction accuracy for different 

characters ranged from 0.52-0.81 with 

9 varying GS models. 

Sandhu et al. 

2021 [89] 

Fusarium head 

blight resistance 

One panel of 237 lines and 

another of 367 breeding 

lines 

ST-GBLUP and MT-

GBLUP 

MT-GBLUP models could lead to 

increase in prediction accuracy by 

two times during the early stages. 

Gaire et al. 2022 
[90] 

Maize 

Drought tolerance 240 lines 
RR, LASSO, EN, Bayes A, 

Bayes B, RF and RKHS 

SNPs for drought tolerance were 

identified to be used for resilience 

breeding. 

Shikha et al. 

2017 [91] 

Grain yield and 

yield attributes 
212 RILS and 304 F2:3 lines GBLUP and RBLUP 

Inclusion of non-additive effects led 

to increased predictive ability. 

Liu et al. 2019 
[92] 

Haploid induction 

rate 
159 inducer lines GBLUP 

Average prediction accuracy ranged 

from 0.7 with overall ranging from 

0.45-0.89. 

Almeida et al. 

2020 [93] 

Sorghum 
Biomass yield 453 diverse lines GBLUP 

Multi trait incorporated GS increased 

the prediction accuracy by 50% over 

single trait. 

Fernandes et al. 

2018 [94] 

High biomass for 200 genotypes of sorghum BayesA, BayesB, Prediction accuracy for various traits Oliveira et al. 
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production 

BayesCπ, BayesLasso, 

BRR and RRBLUP 

ranged from 0.35-0.78. 2018 [95] 

Grain antioxidants 
95 sorghum lines with 19 

RILs 

GBLUP, BRR, Bayesian 

LASSO and BayesB 

Prediction accuracy for different traits 

ranged from 0.49-0.58. 

Habyarimana et 

al. 2019 [96] 

Physiological 

characters 
869 sorghum lines 

BN, PBN, DBN, MTr-

GBLUP and MTi-GBLUP 

Prediction accuracies ranged from 

0.46-0.75 for various traits. 

Santos et al. 

2020 [97] 

Soybean 

Soybean cyst 

nematode resistance 
A panel of 282 genotypes 

RRBLUP, BLR, BCP, 

SVM and RF 

Prediction accuracy in various models 

for the trait ranged from 0.48-0.75 

with a mean of 0.62. 

Bao et al. 2014 
[98] 

Yield and seed 

protein 
1284 F6 lines GBLUP 

Average prediction accuracy for traits 

varied from 0.46-0.62. 

Duhnen et al. 

2017 [99] 

Yield and seed 

traits 
483 lines of soybean RRBLUP 

Prediction accuracy for various traits 

observed to be ranging 0.26-0.81. 

Brown et al. 

2019 [26] 

Chlorophyll content 172 lines 
RRBLUP, GBLUP, RF, 

BLR and SVM 

Prediction accuracy observed for the 

trait 0.31(RRBLUP)-0.74(LASSO). 

Ravelombola et 

al. 2019 [101] 

Yield and yield 

attributes 

A panel of 250 soybean 

lines 
RRBLUP 

High prediction accuracy of 0.64 for 

various traits indicating traits can be 

selected through molecular breeding. 

Ravelombola et 

al. 2021 [102] 

Canola 

Yield and yield 

attributes 
A panel of 475 diverse lines RRBLUP 

For different traits prediction 

accuracy varied from 0.39-0.61. 

Jan et al. 2016 
[103] 

Seed traits, maturity 

traits and lodging 

resistance 

950 F1 hybrids RRBLUP 

Prediction accuracy ranged from 

0.29-0.81; highest for seed oil content 

and lowest for germination. 

Jan et al. 2016 
[103] 

Vigour, flowering, 

resistance to black 

leg and yield 

400 genetically diverse lines GBLUP 

Prediction accuracy ranged from 

0.37-0.8 for most of the traits. 
Raman et al. 

2018 [104] 

Black leg resistance 

and seed quality 

202 genotypically diverse 

lines 
GBLUP 

Prediction accuracy varied from 0.29-

0.69 for different characters. 

Fikere et al. 2020 
[105] 

Sclerotinia stem rot 187 genetically diverse lines 
RRBLUP, Bayes C and 

BRR 

Prediction accuracy for four different 

traits ranged 0.4-0.64. 
Roy et al. 2022 

Seed yield and 

other agronomic 

traits 

950 hybrids GBLUP and RKHS 

Prediction accuracy ranged from 

0.247-0.717 for different traits. 
Knoch et al. 

2021 [107] 

Tomato 

Agronomic traits 

under high 

temperature stress 

A population of F4 lines RRBLUP 

Prediction accuracy for yield was 

0.729 and for soluble solid content 

was 0.715. 

Cappetta et al. 

2021 

Pepper 

fruit length, shape, 

width, weight, and 

pericarp thickness 

351 genotypes 

GBLUP, RRBLUP, BL, 

BayesB, Bayes C, EBL, 

RKHS and RF 

Prediction accuracies for various 

traits ranged from 0.32 (fruit length)- 

0.48 (fruit weight). 

Hong et al. 2020 
[109] 

Apple 

Fruit quality 1120 F1s 
RRBLUP and Bayessian 

LASSO 

Very high average prediction 

accuracy of 0.7-0.9 for different traits. 

Kumar et al. 

2012 [110] 

Fruit texture 537 diverse genotypes RRBLUP 
Prediction accuracy ranged from 

0.01-0.81 in different populations. 

Roth et al. 2020 
[111] 

Yield and yield 

related traits 
269 diverse genotypes 

RF, Bayes C, RKHS, 

GBLUP and MTM.UN 

Average prediction efficiency varied 

from 0.18-0,88. 

Jung et al. 2022 
[75] 

Peach 
Fruit weight and 

quality traits 
1147 F1s GBLUP 

A high prediction efficiency of 0.6-

0.72 was achieved. 

Biscarini et al. 

2017 [113] 

Arabidopsis 

Growth under 

different 

environments 

67 genetically distinct 

accessions 
RRBLUP 

Prediction accuracy for growth under 

different environments varied from 

0.33-0.51. 

Tong et al. 2020 
[114] 

Cassava Yield traits 
888 genetically diverse 

genotypes 

GBLUP, RRBLUP, 

LASSO, BLASSO, 

IBLASSO and RKHS 

Prediction accuracy varied from 

0.457-0.57 for different traits under 

different models. 

Andrade et al. 

2019 [115] 

Potato 

Late blight and 

common scab 

resistance 

273 and 370 genetically 

diverse genotypes for late 

blight and scab respectively 

BRR and Bayes B 

Prediction accuracy varied from 0.4-

0.76 for two traits under different 

models. 

Rodriguez et al. 

2018 [116] 

 
Carotenoid content 

and other traits 
632 clonal lines GBLUP and RRBLUP 

Prediction accuracy varied from 0.12-

0.52 for different under different 

models. 

Esuma et al. 

2021 [117] 

 

Conclusion 

Genomic selection has revealed humungous potential in terms 

of increasing genetic gains in crop plants recently. Along with 

the arrivals of technologies like next generation sequencing it 

has become very feasible to sequence the entire genome of 

various crop plants at a relatively lower expense. 

Advancements in the development of highly dense marker 

technologies can further strengthen the accuracy of such GS 

models. Although, there is a great scope for further 

refinements in terms of successful implementation of the 

models. The principal barrier in this regard is the accessibility 

for implementing such technology and the overall expense 

associated with that. Improvements in terms of developing 

training populations under highly managed and well 

controlled conditions can greatly increase the prediction 

efficiency leading to higher genetic gains from a breeding 
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programme. There is an urgent need for development of an 

efficiently designed programme utilizing currently available 

technologies in arena of genomic assisted breeding. The 

various technologies linked with the genomics and genomics 

assisted breeding are evolving at such a pace that it can 

become much more accessible and cost effective to be 

successfully employed in due course of time. 
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