www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(3): 4586-4594 © 2023 TPI

www.thepharmajournal.com Received: 11-12-2022 Accepted: 13-02-2023

DS Mandloi K.V.K., Dhar, Madhya Pradesh, India

Praveen Kumar Singh Gurjar K.V.K., Morena, Madhya Pradesh, India

MK Kureel College of Agriculture, Khandwa, Madhya Pradesh, India

Rajesh Lekhi College of Agriculture, Gwalior, Madhya Pradesh, India

KV Singh K.V.K., Lahar, Bhind, Madhya Pradesh, India

Influence of bio-fertilizers and level chemical fertilizers on morphological parameters of Onion (*Allium cepa* L.) *cv*. Bhima Red

DS Mandloi, Praveen Kumar Singh Gurjar, MK Kureel, Rajesh Lekhi and KV Singh

Abstract

An experiment entitled "Studies on influence of bio-fertilizers and level chemical fertilizers on growth of Onion (*Allium cepa* L.) *cv*. Bhima Red" was carried out at Agricultural Farm, Krishi Vigyan Kendra, Dhar, M.P. during 2020-21 and 2021-22 with the objectives to study effect of bio-fertilizers application on growth characters. The experiment was conducted in Randomised Block Design with 3 replications. It comprised of 14 treatments of bio-fertilizers and levels of chemical fertilizers.

Morphological parameters like leaf area, leaf area index, Bulb/green top ratio, leaf dry matter, chlorophyll content in leaves and bulb dry matter were recorded and statistically analysed. From the experiment, it may be concluded that the bio-fertilizers and various levels of chemical fertilizers had a significant effect on the growth of the crop. The treatment with 100% RDF + Azospirillum + Azotobactor + VAM was found to be the best treatment among all treatments whereas the minimum effect was observed under treatment with no bio-fertilizer and chemical fertilizer.

Keywords: Onion, morphology, Allium cepa, bio fertilizers, VAM, Azospirillum, Azotobacter

Introduction

Onion, botanically known as *Allium cepa* L. is a biennial herb of the family *Alliaceae. Pyaj* is the common name of the crop in Hindi. It is an old-world crop which was domesticated in Iran and Pakistan *i.e.*, Central Asia. Maharashtra is the leading onion growing state in India. Other major onion growing states in India are Karnataka, Gujarat, Bihar, Madhya Pradesh, Andhra Pradesh, Rajasthan, Haryana, Uttar Pradesh and Tamil Nadu. It is one of the most important bulbous vegetables and grown all over the world. It is also used for culinary purpose in everyday cooking. The crop semi-perishable in nature and it can be transported to a long distance without much transit injury losses. It becomes a major cash crop with higher market demand and price due to its culinary, dietary and medicinal values.

Ffter China, India ranks second in area and production of onion. In India, the area and production of onion are 1624 thousand hectare and 26641 thousand MT (Anonymous, 2020-21). In Madhya Pradesh, The area and production of onion are 186.92 thousand hectare and 4548.56 thousand MT (Anonymous, 2020-21). Onion is a good source of ascorbic acid, dietary fiber and it also possesses a high content of flavanoids (mainly quercetin and its conjugates) and sulphur compounds (i.e.thio sulphinate), both contain a high level of antioxidants.

Sustainable increase in crop yield has been obtained with the use of Bio-fertilizers under various agro-climatic conditions during the last few decades.

Onion a seasonal crop has comparatively low storage ability. Sometimes bulbs are to be stored for longer period due to seasonal glut in the market. Significant losses in quality and quantity of onion occur during storage. Organic farming improves the quality of the produce combine with higher nutritive value and better storage life than those grown conventionally with mineral fertilizers. In onion, the information on studies of organic farming using different kinds of organic manure and bio-fertilizers is very meagre. The post-harvest losses, *viz.*, sprouting, rotting and physiological loss in weight pose a great problem.

Materials and Methods

Experimental site and location

The present experiment was conducted at Agriculture farm, Krishi Vigyan Kendra, Dhar

Corresponding Author: DS Mandloi K.V.K., Dhar, Madhya Pradesh, India (M.P.). The topography of the field was uniform with proper drainage system.

Climate and weather condition

Dhar belongs to "Malwa Plateau" under 10th Agro-Climatic Zone of Madhya Pradesh as per classification made by National Agricultural Research Project. It is situated in the south-western part of Madhya Pradesh. It lies between the parallels of North latitude 22° 01'14 to 23° 08'49" North latitude and 74° 28'15 to 75° 42"43 East longitudes and altitude of 588 meter above mean sea level. Dhar enjoys a typical sub-tropical climate consisting of hot dry summers and cool dry winters. The minimum and maximum temperature during crop growth period 2020-21 and 2021-22 varies between 7.36 °C to 26.71 °C and from 7.00 °C to 43.00 °C, with season's average values of 19.00 °C and 34.57 °C, respectively. The morning and evening relative humidity ranged between 12.26 to 87.29% and 11.26 to 76.66% with season's average of 38.14% and 19.01%, respectively. The rainfall of crop growth period 2020-21 was about 266.2 mm and 2021-22 was 221.1 mm which was mostly received between June - July.

Bhima Red was developed by ICAR-Directorate of Onion and Garlic Research (ICAR-DOGR), Pune, Maharashtra and entirely resembles with (B780531, IC No. 561258) has been developed through bulb to row selection method. Bulbs are attractive red in colour with round shape. It can be grown during rabi season also for immediate marketing as it can be stored up to 3 months during rabi. It matures after 115-120days of transplanting. TSS ranges from 10-11%. Bhima Red is a high yielding onion variety. This variety produced bulbs up to 480-520 qt/ha. It was released by ICAR-Directorate on Onion and Garlic Research, Pune12th November, 2014, Pune, Maharashtra

Treatment details

I i cutilitilit actuils	
$T_0 - Control$	$T_7 - 75\%$ RDF+ VAM
T ₁ 100% RDF	T ₈ – 50% RDF+. <i>Azospirillum</i>
$T_2 - 100\%$	$T_9 - 50\%$ RDF+ Azotobactor
RDF+Azospirillum	
T_{3} -100%	$T_{10} - 50\%$ RDF+ VAM
RDF+Azotobacter	
T ₄ -100% RDF+VAM	T ₁₁ -100% RDF
	Azospirillum+Azotobactor+VAM
$T_{5}-75\%$	T ₁₂ -75%
RDF+Azospirillum	RDF+Azospirillum+Azotobactor+VAM
T ₆ -75%	T ₁₃ -50%
RDF+Azotobactor	RDF+Azospirillum+Azotobactor+VAM

Parameters under study

- 1) Plant height at 30, 60, 90 and 120 DAT
- 2) No. of leaves per plant at 30, 60, 90 and 120 DAT
- 3) Length of leaves per plant at 30, 60, 90 and 120 DAT
- 4) Width of leaves per plant at 30, 60, 90 and 120 DAT
- 5) Bolting percentage at flowering stage
- 6) Neck thickness of the bulb at 30, 60, 90 and 120 DAT

Experimental findings

1. Plant height at 30, 60, 90 and 120 DAT

It was recorded that the different treatments of biofertilizers were significantly influenced the plant height at different growth stages. The treatment T_{11} (100% RDF + *Azospirillum* + *Azotobactor* + *VAM*) was found the best treatment among

all treatments and it gave the maximum plant height (24.13, 60.67, 82.34 and 83.55 cm) at 30, 60, 90 and 120 DAT in first year, (24.13, 60.53, 80.18 and 81.59 cm) at 30, 60, 90 and 120 DAT second year and (24.13, 60.60, 81.26 and 82.57 cm) at 30, 60, 90 and 120 DAT in pooled. It was at par to all treatments except T₉ and T₁₀ at 30 DAT, at par to treatments T₂, T₃, T₄, T₅ and T₁₂ at 60 DAT, T₂, T₃, T₄, T₅, T₆, T₇ and T₁₂ at 90 DAT and T₂, T₃, T₄, T₅ and T₁₂ at 120 DAT. However, the minimum plant height (21.55, 48.19, 74.00 and 77.26 cm) at 30, 60, 90 and 120 DAT in first year, (22.03, 45.71, 75.66 and 75.59 cm) at 30, 60, 90 and 120 DAT second year and (21.79, 46.95, 74.83 and 76.43 cm) at 30, 60, 90 and 120 DAT in pooled was recorded in treatment T₀ (Control).

2. No. of leaves per plant at 30, 60, 90 and 120 DAT

Result reported that the maximum no. of leaves per plant (4.48, 5.56, 8.26 and 9.28) at 30, 60, 90 and 120 DAT in first year, (4.62, 5.81, 8.29 and 9.43) at 30, 60, 90 and 120 DAT second year and (4.55, 5.69, 8.27 and 9.36) at 30, 60, 90 and 120 DAT in pooled was found in treatment T₁₁ (100% RDF + Azospirillum + Azotobactor + VAM) and it was the best treatment among all treatments. It was at par to treatments T_1 , T₂, T₃, T₄, T₅, T₆, T₇ and T₁₂ in first year, treatments T₂, T₃, T_4 , T_5 and T_{12} in second year and treatments T_2 , T_3 and T_{12} in pooled at 30 DAT, at par to all treatments except T_8 , T_9 , T_{10} and T₁₃ in first year, T₂, T₃, T₄, T₅ and T₁₂ in second year and treatments T_2 , T_3 , T_4 and T_{12} in pooled at 60 DAT, at par to treatments T₂, T₃, T₄, T₅, T₆ and T₁₂ in first year, treatments T_2 , T_3 and T_{12} in second year and T_2 , T_3 , T_4 and T_{12} in pooled at 90 DAT and at par to all treatments except T_8 , T_9 and T_{10} in first year, at par to treatments T₂, T₃, T₄, T₅, T₆, T₇ and T₁₂ in second year and T₂, T₃, T₄, T₅, T₆ and T₁₂ in pooled at 120 DAT. However, the minimum no. of leaves per plant (3.62, 5.19, 7.15 and 8.38) at 30, 60, 90 and 120 DAT in first year, (3.26, 5.03, 7.12 and 8.29) at 30, 60, 90 and 120 DAT second year and (3.44, 5.11, 7.13 and 8.34) at 30, 60, 90 and 120 DAT in pooled was observed in treatment T_0 (Control).

3. Length of leaves per plant at 30, 60, 90 and 120 DAT

The investigation revealed that the treatment T_{11} (100% RDF + Azospirillum + Azotobactor + VAM) was significantly influenced the length of leaves of onion plant and it gave the maximum length of leaves per plant (22.12, 40.75, 57.10 and 51.42 cm) at 30, 60, 90 and 120 DAT in first year, (22.38, 40.99, 57.00 and 52.04 cm) at 30, 60, 90 and 120 DAT second year and (22.25, 40.87, 57.05 and 51.73 cm) at 30, 60, 90 and 120 DAT in pooled. It was at par to treatments T₂, T₃, T₄ and T_{12} in first year, treatments T_2 , T_3 , T_4 , T_5 and T_{12} in second year and treatments T_3 and T_{12} in pooled at 30 DAT, at par to all treatments except T_9 and T_{10} in first year, at par to all treatments except T₁₀ in second year and at par to all treatments except T_8 , T_9 and T_{10} in pooled at 60 DAT, at par to all treatments except T_{10} in first year, at par to all treatments except T_1 , T_8 , T_9 and T_{10} in second year and in pooled at 90 DAT and at par to all treatments except T₉ and T₁₀ in first year and second year while at par to all treatments except T₁, T₈, T₉ and T₁₀ in pooled at 120 DAT, whereas the minimum length of leaves per plant (19.43, 35.67, 48.67 and 44.30 cm) at 30, 60, 90 and 120 DAT in first year, (19.78, 36.67, 46.93 and 44.73 cm) at 30, 60, 90 and 120 DAT second year and (19.60, 36.17, 47.80 and 44.52 cm) at 30, 60, 90 and 120 DAT in pooled was recorded in treatment T_0 (Control).

4. Width of leaves per plant at 30, 60, 90 and 120 DAT

Result revealed that the maximum width of leaves per plant (0.50, 0.62, 0.65 and 0.67 cm) at 30, 60, 90 and 120 DAT in first year, (0.52, 0.61, 0.65 and 0.67 cm) at 30, 60, 90 and 120 DAT second year and (0.51, 0.61, 0.65 and 0.67 cm) at 30, 60, 90 and 120 DAT in pooled was recorded in treatment T_{11} (100% RDF + Azospirillum + Azotobactor + VAM) and it was found the best treatment among all treatments. It was at par to all treatments except T_9 and T_{10} in first year, at par to treatments T₂, T₃, T₄, T₅, T₆ and T₁₂ in second year, treatments T_2 , T_3 , T_4 and T_{12} in pooled at 30 DAT, at par to treatments T_2 , T_3 , T_4 and T_{12} in first year, T_2 , T_3 , T_4 , T_5 and T_{12} in second year and T_2 , T_3 and T_{12} in pooled at 60 DAT, at par to treatments T_2 , T_3 and T_{12} in first, second year and in pooled at 90 DAT and at par to treatments T₂, T₃, T₄, T₅ and T₁₂ in first year, treatments T₂, T₃, T₄, T₅, T₆, T₇ and T₁₂ in second year and treatments T_2 , T_3 , T_4 and T_{12} in pooled at 120 DAT. While, the minimum width of leaves per plant (0.41, 0.40, 0.51 and 0.50 cm) at 30, 60, 90 and 120 DAT in first year, (0.35, 0.42, 0.51 and 0.53 cm) at 30, 60, 90 and 120 DAT second year and (0.38, 0.41, 0.51 and 0.51 cm) at 30, 60, 90 and 120 DAT in pooled was found in treatment T₀ (Control).

5. Bolting percentage at flowering stage

It was recorded that the maximum bolting percentage at flowering stage (4.45, 4.47 and 4.46%) in first year, second year and in pooled was recorded in treatment T_{11} (100% RDF + *Azospirillum* + *Azotobactor* + *VAM*) and it was found the best treatment for influencing the bolting percentage in onion. It was at par to treatments T_2 , T_3 , T_4 , T_5 and T_{12} in first year and in pooled and at par to treatments T_1 , T_2 , T_3 , T_4 , T_5 , T_6 , T_7 and T_{12} in second year. However, the minimum bolting percentage at flowering stage (3.75, 3.62 and 3.68%) in first year, second year and in pooled was noted in treatment T_0 (Control).

6. Neck thickness of the bulb at 30, 60, 90 and 120 DAT

The data gathered on neck thickness of the bulb at 30, 60, 90 and 120 DAT is given in Table 1-6. Its graphical presentation has been shown in Figure 1-6. The ANOVA is given in Appendix-XVIII, XIX, XX and XXI.

It was observed that the treatment T_{11} (100% RDF + *Azospirillum* + *Azotobactor* + *VAM*) was significantly influenced the neck thickness of onion bulb and it gave the

maximum neck thickness of the bulb (0.66, 1.10, 1.28 and 1.51 cm) at 30, 60, 90 and 120 DAT in first year, (0.66, 1.33, 1.29 and 1.50 cm) at 30, 60, 90 and 120 DAT second year and (0.66, 1.21, 1.29 and 1.50 cm) at 30, 60, 90 and 120 DAT in pooled. It was at par to all treatments except T_8 , T_9 and T_{10} in first year, at par to all treatments except T₉ and T₁₀ in second year and at par to treatments T₂, T₃, T₄, T₅, T₆ and T₁₂ in pooled at 30 DAT, at par to treatments T1, T2, T3, T4, T5, T6, T_7 and T_{12} in first year and at par to treatment T_{12} in second year and in pooled at 60 DAT, at par to treatment T_3 and T_{12} in first year at 90 DAT and at par to all treatments except T₈, T_9 and T_{10} in first year, except treatments T_8 , T_9 , T_{10} and T_{13} in second year and except treatments T_1 , T_8 , T_9 , T_{10} and T_{13} in pooled at 120 DAT. However, the minimum neck thickness of the bulb (0.54, 0.67, 0.95 and 1.21 cm) at 30, 60, 90 and 120 DAT in first year, (0.54, 0.56, 0.93 and 1.23 cm) at 30, 60, 90 and 120 DAT second year and (0.54, 0.61, 0.94 and 1.22 cm) at 30, 60, 90 and 120 DAT in pooled was recorded in treatment T₀ (Control).

Discussion

Result revealed that the different treatments of biofertilizers were significantly influenced the different morphological parameters (viz., plant height, no. of leaves per plant, length of leaves per plant, width of leaves per plant, bolting percentage at flowering stage and neck thickness of the bulb) at different growth stages. The treatment T₁₁ (100% RDF + Azospirillum + Azotobactor + VAM) was found the best treatment among all treatments and it gave the maximum morphological parameters at different growth stages. However, the minimum morphological parameters at different growth stages were recorded in treatment T₀ (Control). Application of biofertilizers like Azospirillum, Azotobactor and VAM improves nutrient status of the soil because it is free nitrogen fixers and phosphorus solubilizer. Efficient and healthy strain of Azotobacter in rhizosphere, which in turn have resulted in greater fixation of atmospheric nitrogen and consequently use by the plant resulting in vigorous growth of it. Due to the good absorption of nutrients increase the size of bulb and increase neck thickness of bulb. The results are in confirmation with the results achieved by Solanki et al. (2019)^[3], Vaghela et al. (2019)^[4], Rathod et al. (2020)^[1], Singh et al. (2020)^[2] and Vishvkarma et al. (2020a)^[5].

	Plant height (cm)												
		I st	Year			II nd	Year			Po	oled		
Treatments detail	30	60	90	120	30	60	90	120	30	60	90	120	
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	
$T_0 - Control$	21.55	48.19	74.00	77.26	22.03	45.71	75.66	75.59	21.79	46.95	74.83	76.43	
T ₁ -100% RDF	23.28	56.59	78.33	78.81	23.57	58.82	78.70	78.89	23.43	57.70	78.52	78.85	
$T_2 - 100\%$ RDF + Azospirillum	24.06	60.37	80.37	81.75	23.97	60.19	80.08	80.20	24.02	60.28	80.23	80.98	
T ₃ – 100% RDF + Azotobacter	24.08	60.42	80.67	82.16	24.05	60.20	80.12	80.60	24.06	60.31	80.39	81.38	
T4–100% RDF + VAM	24.03	59.71	79.73	80.28	23.93	60.12	80.00	80.19	23.98	59.92	79.86	80.24	
$T_5-75\%$ RDF + Azospirillum	24.01	59.38	79.71	79.83	23.81	60.07	79.82	80.18	23.91	59.73	79.76	80.00	
T_{6} -75% RDF + Azotobactor	23.94	58.43	79.67	79.75	23.69	59.74	79.74	79.56	23.82	59.09	79.70	79.65	
$T_7 - 75\% RDF + VAM$	23.34	58.04	78.75	79.01	23.65	59.11	79.30	79.22	23.50	58.57	79.02	79.11	
T ₈ – 50% RDF +. Azospirillum	23.11	53.66	76.63	78.44	23.44	52.18	76.67	76.85	23.27	52.92	76.65	77.65	
$T_9 - 50\%$ RDF + Azotobactor	22.75	49.07	75.67	77.90	22.86	49.77	76.52	76.67	22.81	49.42	76.09	77.29	
$T_{10} - 50\%$ RDF+ VAM	22.64	48.99	75.33	77.27	22.27	49.40	76.48	75.66	22.45	49.20	75.91	76.47	
T ₁₁ –100% RDF + Azospirillum + Azotobactor + VAM	24.13	60.67	82.34	83.55	24.13	60.53	80.18	81.59	24.13	60.60	81.26	82.57	

The Pharma Innovation Journal

https://www.thepharmajournal.com

T ₁₂ -75% RDF + Azospirillum + Azotobactor + VAM	24.09	60.45	81.67	82.59	24.05	60.41	80.14	81.03	24.07	60.43	80.91	81.81
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	23.11	56.11	78.03	78.78	23.56	58.62	78.52	78.51	23.33	57.37	78.28	78.65
S.Em ±	0.439	0.458	1.330	1.332	0.408	0.532	1.087	1.309	0.300	0.351	0.859	0.934
CD 5%	1.275	1.332	3.867	3.873	1.187	1.546	3.161	3.805	0.851	0.996	2.438	2.650

Table 2: Effect of bio-fertilizers and chemical fertilizers on no. of leaves per plant at 30, 60, 90 and 120 DAT of onion

	No. of leaves per plant												
		Is	^t Year			II nd	Year			Po	oled		
Treatments detail	30 DAT	60 DAT	90 DAT	120 DAT	30 DAT	60 DAT	90 DAT	120 DAT	30 DAT	60 DAT	90 DAT	120 DAT	
$T_0 - Control$	3.62	5.19	7.15	8.38	3.26	5.03	7.12	8.29	3.44	5.11	7.13	8.34	
T ₁ -100% RDF	4.03	5.44	7.48	9.02	3.82	5.30	7.64	8.81	3.93	5.37	7.56	8.92	
$T_2 - 100\%$ RDF + Azospirillum	4.20	5.52	8.00	9.12	4.19	5.44	8.11	9.18	4.20	5.48	8.06	9.15	
T ₃ –100% RDF + Azotobacter	4.37	5.53	8.04	9.18	4.23	5.52	8.14	9.22	4.30	5.52	8.09	9.20	
T ₄ –100% RDF + VAM	4.11	5.52	7.95	9.07	4.17	5.42	7.96	9.06	4.14	5.47	7.96	9.07	
T_{5} 75% RDF + Azospirillum	4.10	5.47	7.85	9.06	4.08	5.42	7.82	9.00	4.09	5.44	7.84	9.03	
T ₆ -75% RDF + Azotobactor	4.06	5.46	7.81	9.06	4.00	5.39	7.80	8.98	4.03	5.43	7.81	9.02	
$T_7 - 75\%$ RDF + VAM	4.05	5.44	7.55	9.04	3.92	5.38	7.79	8.84	3.99	5.41	7.67	8.94	
T ₈ – 50% RDF +. <i>Azospirillum</i>	3.79	5.41	7.37	8.77	3.60	5.15	7.31	8.73	3.69	5.28	7.34	8.75	
$T_9 - 50\%$ RDF + Azotobactor	3.74	5.28	7.30	8.65	3.58	5.14	7.18	8.69	3.66	5.21	7.24	8.67	
T ₁₀ - 50% RDF+ VAM	3.73	5.27	7.19	8.60	3.44	5.10	7.14	8.60	3.59	5.19	7.17	8.60	
T ₁₁ –100% RDF + Azospirillum + Azotobactor + VAM	4.48	5.56	8.26	9.28	4.62	5.81	8.29	9.43	4.55	5.69	8.27	9.36	
T ₁₂ -75% RDF + Azospirillum + Azotobactor + VAM	4.41	5.55	8.08	9.24	4.26	5.59	8.21	9.31	4.33	5.57	8.14	9.28	
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	3.81	5.42	7.40	8.90	3.81	5.16	7.54	8.79	3.81	5.29	7.47	8.85	
S.Em ±	0.174	0.074	0.228	0.160	0.208	0.143	0.086	0.209	0.135	0.080	0.122	0.132	
CD 5%	0.505	0.214	0.663	0.466	0.604	0.415	0.251	0.607	0.384	0.228	0.346	0.373	

Table 3: Effect of bio-fertilizers and chemical fertilizers on length of leaves per plant at 30, 60, 90 and 120 DAT of onion

	Length of leaves per plant (cm)												
		ľ	st Year			II nd	Year	Pooled					
Treatments detail	30	60	90	120	30 DAT	60 DAT	00 D A T	120	30	60	90	120	
	DAT	DAT	DAT	DAT	JU DAI	00 DA I	90 DA I	DAT	DAT	DAT	DAT	DAT	
$T_0 - Control$	19.43	35.67	48.67	44.30	19.78	36.67	46.93	44.73	19.60	36.17	47.80	44.52	
T ₁ -100% RDF	20.44	39.18	54.97	48.95	20.59	39.70	54.08	49.62	20.52	39.44	54.53	49.29	
$T_2 - 100\%$ RDF + Azospirillum	21.49	40.36	56.26	50.44	21.71	40.46	56.19	50.88	21.60	40.41	56.22	50.66	
T ₃ – 100% RDF + Azotobacter	22.05	40.74	56.44	50.59	22.03	40.51	56.34	51.12	22.04	40.63	56.39	50.86	
T4-100% RDF + VAM	21.49	40.13	55.92	49.87	21.64	40.09	55.86	50.23	21.57	40.11	55.89	50.05	
T ₅ –75% RDF + Azospirillum	20.89	40.01	55.67	49.83	21.58	40.04	55.50	50.05	21.24	40.03	55.59	49.94	
T ₆ –75% RDF + Azotobactor	20.78	39.69	55.25	49.18	21.16	40.01	55.36	49.96	20.97	39.85	55.31	49.57	
$T_7 - 75\%$ RDF + VAM	20.74	39.63	55.21	49.15	20.88	39.75	54.81	49.75	20.81	39.69	55.01	49.45	
T ₈ – 50% RDF +. <i>Azospirillum</i>	20.07	38.70	54.33	48.29	20.25	39.36	53.19	49.34	20.16	39.03	53.76	48.81	
T ₉ -50% RDF + Azotobactor	20.05	38.04	53.33	46.48	20.11	39.30	52.22	48.01	20.08	38.67	52.78	47.25	
T ₁₀ -50% RDF+ VAM	19.68	36.77	51.33	45.99	19.81	38.00	47.07	47.72	19.74	37.39	49.20	46.86	
T ₁₁ -100% RDF + Azospirillum + Azotobactor + VAM	22.12	40.75	57.10	51.42	22.38	40.99	57.00	52.04	22.25	40.87	57.05	51.73	
T ₁₂ -75% RDF + Azospirillum + Azotobactor + VAM	22.09	40.67	57.03	50.60	22.08	40.77	56.37	51.15	22.09	40.72	56.70	50.88	
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	20.22	39.02	54.60	48.53	20.47	39.70	53.92	49.55	20.35	39.36	54.26	49.04	
S.Em ±	0.273	0.807	1.359	1.326	0.311	0.711	0.948	1.002	0.207	0.538	0.828	0.831	
CD 5%	0.792	2.346	3.950	3.855	0.905	2.066	2.755	2.913	0.587	1.526	2.351	2.359	

Table 4: Effect of bio-fertilizers and chemical fertilizers on width of leaves per plant at 30, 60, 90 and 120 DAT of onion

	Width of leaves per plant (cm)												
		I st	Year			II nd	Year	Pooled					
Treatments detail	30	60	90	120	20 30 DAT 60 DAT 90			120	30	60	90	120	
	DAT	DAT	DAT	DAT	50 DA I	00 DA I	90 DA I	DAT	DAT	DAT	DAT	DAT	
$T_0 - Control$	0.41	0.40	0.51	0.50	0.35	0.42	0.51	0.53	0.38	0.41	0.51	0.51	
T ₁ -100% RDF	0.45	0.52	0.55	0.60	0.45	0.53	0.55	0.59	0.45	0.53	0.55	0.59	
$T_2 - 100\%$ RDF + Azospirillum	0.47	0.57	0.62	0.65	0.48	0.58	0.62	0.65	0.48	0.58	0.62	0.65	
T ₃ –100% RDF + Azotobacter	0.48	0.58	0.63	0.65	0.49	0.59	0.63	0.66	0.49	0.59	0.63	0.65	

The Pharma Innovation Journal

https://www.thepharmajournal.com


T ₄ –100% RDF + VAM	0.47	0.57	0.58	0.64	0.48	0.57	0.58	0.63	0.48	0.57	0.58	0.63
T ₅ –75% RDF + Azospirillum	0.47	0.55	0.57	0.63	0.48	0.56	0.57	0.61	0.47	0.56	0.57	0.62
T ₆ –75% RDF + Azotobactor	0.47	0.54	0.57	0.62	0.48	0.56	0.57	0.61	0.47	0.55	0.57	0.61
$T_7 - 75\%$ RDF + VAM	0.46	0.53	0.56	0.61	0.46	0.54	0.56	0.60	0.46	0.54	0.56	0.61
T ₈ – 50% RDF +. Azospirillum	0.44	0.48	0.55	0.56	0.45	0.47	0.55	0.58	0.45	0.48	0.55	0.57
T ₉ -50% RDF + Azotobactor	0.42	0.44	0.54	0.55	0.44	0.47	0.54	0.57	0.43	0.45	0.54	0.56
$T_{10} - 50\%$ RDF+ VAM	0.41	0.43	0.52	0.53	0.43	0.45	0.52	0.55	0.42	0.44	0.52	0.54
T ₁₁ –100% RDF + <i>Azospirillum</i> + <i>Azotobactor</i> + <i>VAM</i>	0.50	0.62	0.65	0.67	0.52	0.61	0.65	0.67	0.51	0.61	0.65	0.67
T ₁₂ –75% RDF + Azospirillum + Azotobactor + VAM	0.49	0.60	0.64	0.66	0.50	0.59	0.64	0.66	0.49	0.60	0.64	0.66
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	0.44	0.49	0.55	0.57	0.45	0.50	0.55	0.58	0.45	0.50	0.55	0.57
S.Em ±	0.019	0.021	0.019	0.015	0.018	0.016	0.019	0.025	0.013	0.013	0.014	0.015
CD 5%	0.054	0.060	0.056	0.043	0.053	0.045	0.056	0.074	0.037	0.037	0.039	0.042

Table 5: Effect of bio-fertilizers and chemical fertilizers on bolting percentage at flowering stage of onion

Transformation distant	Boltin	g percentage at flowerin	g stage
Treatments detail	I st Year	II nd Year	Pooled
$T_0 - Control$	3.75	3.62	3.68
T ₁ -100% RDF	4.11	4.26	4.19
$T_2 - 100\%$ RDF + Azospirillum	4.39	4.41	4.40
T ₃ –100% RDF + Azotobacter	4.40	4.42	4.41
T4–100% RDF + VAM	4.33	4.35	4.34
T ₅ –75% RDF + Azospirillum	4.30	4.32	4.31
T ₆ –75% RDF + $Azotobactor$	4.15	4.32	4.24
$T_7 - 75\%$ RDF + VAM	4.12	4.32	4.22
T ₈ – 50% RDF +. <i>Azospirillum</i>	4.08	4.16	4.12
$T_9 - 50\%$ RDF + Azotobactor	3.82	3.96	3.89
$T_{10} - 50\%$ RDF+ VAM	3.81	3.86	3.83
T ₁₁ –100% RDF + Azospirillum + Azotobactor + VAM	4.45	4.47	4.46
T_{12} -75% RDF + Azospirillum + Azotobactor + VAM	4.42	4.45	4.44
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	4.08	4.18	4.13
S.Em ±	0.102	0.101	0.072
CD 5%	0.297	0.295	0.204

Table 6: Effect of bio-fertilizers and chemical fertilizers on neck thickness of the bulb at 30, 60, 90 and 120 DAT of onion

		Ne	ck thick	ness of th	ne bulb ((cm)							
		I st	Year			II nd	Year		Pooled				
Treatments detail	30	60	90	120	30	60	90	120	30	60	90	120	
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	
$T_0 - Control$	0.54	0.67	0.95	1.21	0.54	0.56	0.93	1.23	0.54	0.61	0.94	1.22	
T ₁ -100% RDF	0.61	0.96	1.09	1.41	0.61	0.93	1.05	1.42	0.61	0.95	1.07	1.41	
T ₂ -100% RDF + Azospirillum	0.63	1.03	1.19	1.47	0.64	1.04	1.16	1.46	0.64	1.03	1.18	1.46	
T ₃ –100% RDF + Azotobacter	0.64	1.03	1.20	1.48	0.65	1.05	1.17	1.47	0.65	1.04	1.18	1.47	
T4-100% RDF + VAM	0.63	1.03	1.18	1.46	0.63	1.03	1.16	1.44	0.63	1.03	1.17	1.45	
T ₅ –75% RDF + Azospirillum	0.62	1.01	1.12	1.45	0.63	1.01	1.09	1.44	0.63	1.01	1.10	1.45	
T ₆ –75% RDF + Azotobactor	0.62	0.99	1.11	1.43	0.63	0.99	1.09	1.44	0.62	0.99	1.10	1.44	
$T_7 - 75\% RDF + VAM$	0.61	0.97	1.10	1.43	0.63	0.93	1.07	1.42	0.62	0.95	1.09	1.43	
T ₈ – 50% RDF +. Azospirillum	0.57	0.91	1.02	1.35	0.60	0.84	1.00	1.36	0.59	0.88	1.01	1.36	
$T_9 - 50\%$ RDF + Azotobactor	0.57	0.88	1.00	1.33	0.58	0.73	0.98	1.32	0.58	0.81	0.99	1.32	
$T_{10} - 50\%$ RDF+ VAM	0.57	0.84	0.96	1.26	0.57	0.67	0.94	1.24	0.57	0.76	0.95	1.25	
T ₁₁ –100% RDF + Azospirillum + Azotobactor + VAM	0.66	1.10	1.28	1.51	0.66	1.33	1.29	1.50	0.66	1.21	1.29	1.50	
T ₁₂ –75% RDF + Azospirillum + Azotobactor + VAM	0.65	1.05	1.22	1.50	0.65	1.15	1.18	1.49	0.65	1.10	1.20	1.49	
T ₁₃ -50% RDF + Azospirillum + Azotobactor + VAM	0.60	0.92	1.05	1.38	0.61	0.86	1.02	1.36	0.60	0.89	1.03	1.37	
S.Em ±	0.021	0.055	0.029	0.049	0.022	0.067	0.030	0.036	0.015	0.043	0.021	0.031	
CD 5%	0.062	0.160	0.084	0.144	0.064	0.195	0.089	0.105	0.043	0.123	0.060	0.087	

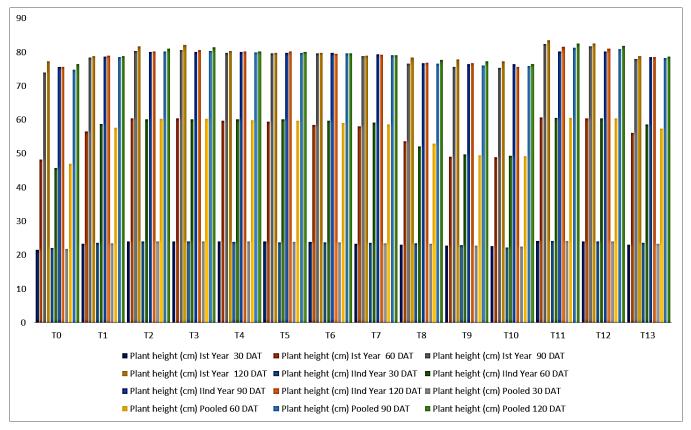


Fig 1: Effect of bio-fertilizers and chemical fertilizers on plant height (cm) at 30, 60, 90 and 120 DAT of onion

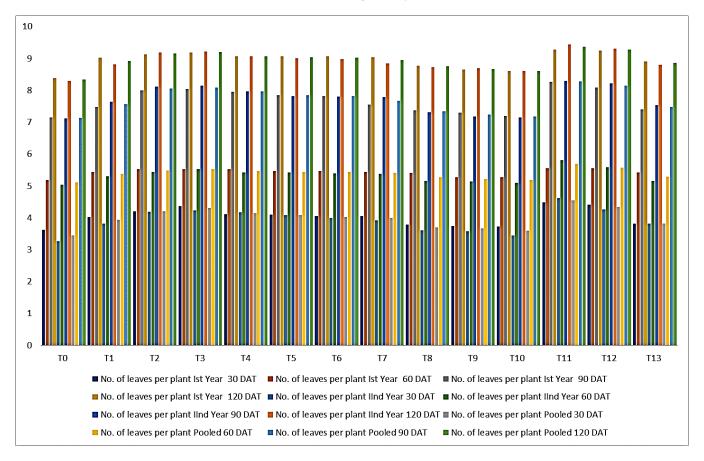



Fig 2: Effect of bio-fertilizers and chemical fertilizers on no. of leaves per plant at 30, 60, 90 and 120 DAT of onion

https://www.thepharmajournal.com

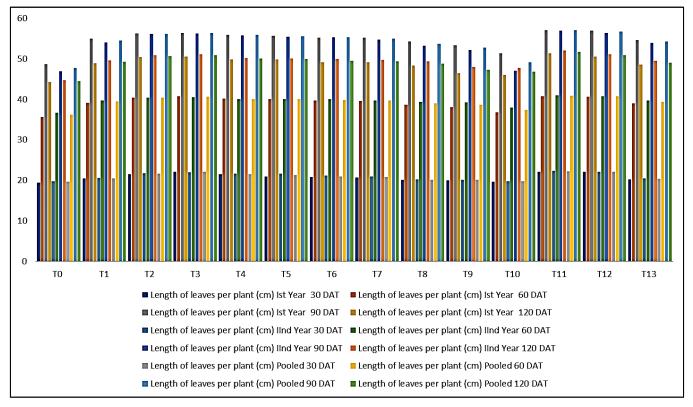


Fig 3: Effect of bio-fertilizers and chemical fertilizers on length of leaves per plant (cm) at 30, 60, 90 and 120 DAT of onion

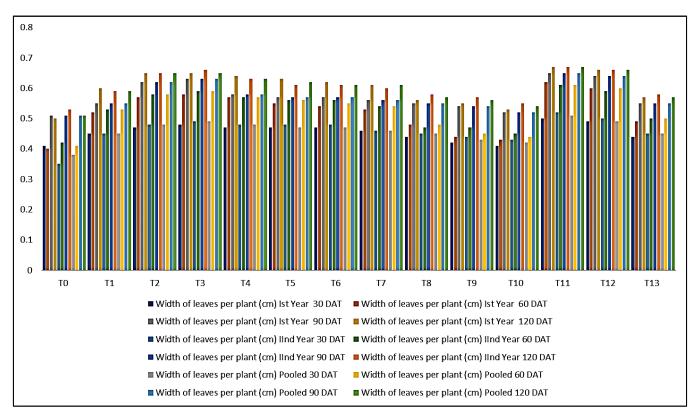
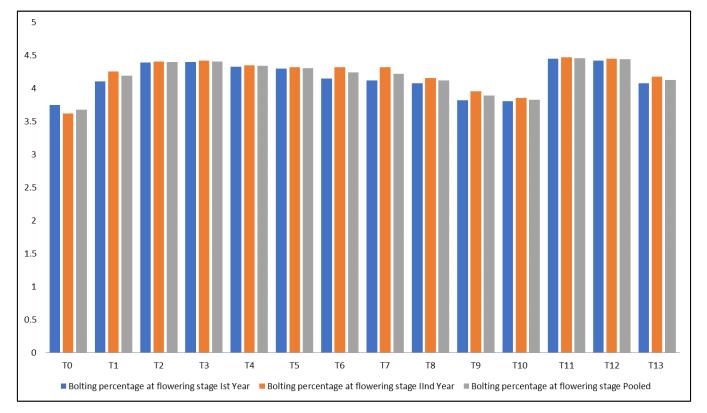



Fig 4: Effect of bio-fertilizers and chemical fertilizers on width of leaves per plant (cm) at 30, 60, 90 and 120 DAT of onion

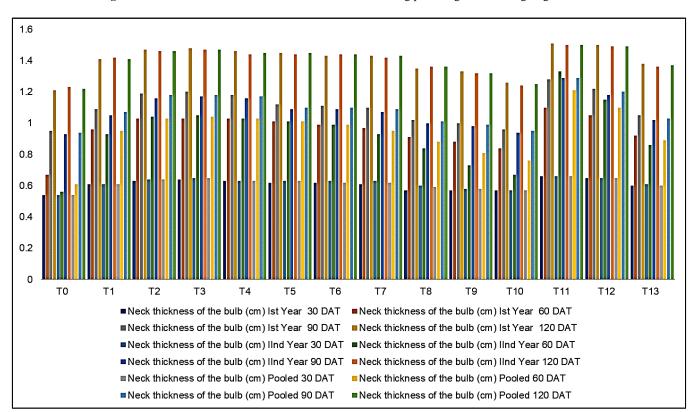


Fig 5: Effect of bio-fertilizers and chemical fertilizers on bolting percentage at flowering stage of onion

Fig 6: Effect of bio-fertilizers and chemical fertilizers on neck thickness of the bulb (cm) at 30, 60, 90 and 120 DAT of onion

Conclusion

The maximum morphological parameters (*viz.*, plant height, no. of leaves per plant, length of leaves per plant, width of leaves per plant, bolting percentage at flowering stage and neck thickness of the bulb) at different growth stages were recorded in treatment T_{11} (100% RDF + *Azospirillum* + *Azotobactor* + *VAM*), whereas the minimum morphological

parameters at different growth stages were recorded in treatment T_0 (Control).

References

1. Rathod PH, Katkar RN, Bhende RV, Ghawade SM, Lakhe SR, Kharche VK. Effect of Sulphur and Zinc Containing Customized Fertilizers on Growth, Yield and Nutrient Uptake of Onion. Int. J Curr. Microbiol. App. Sci. 2020;9(1):2061-2069.

- Singh, Raghvendra Pratap, Kasera, Sourabh, Singh, Devi. Effect of bio-fertilizers on growth. yield and quality of Brinjal (*Solenum melongena* L.) cv.Kashi Uttam. Chemical Science Review and Letters, 2020, 9(35): ISSN - 2278-6783.
- 3. Solanki GB, Chudasama VR, Kumar M, Joshi PC, Vani FB, Acharya SK. Effect of organic manures and biofertilizers application on growth of onion (*Allium cepa* L.). Int. J of Chem. Stud. 2019;7(4):2600-2606.
- Vaghela KS, Patel KM, Nadod SR. Effect of organic, inorganic and biofertilizer on growth and yield of onion (*Allium cepa* L.) cv. GJRO-11. Int. J of Chem. Stud. 2019;7(4):2358-2361.
- Vishvkarma D, Lekhi R, Singh KV, Kureel MK, Mandloi DS. Effect of bio-fertilizer with levels of fertilizer on growth of onion. The Pharma. Innovation J. 2020a;9(7):592-595.