www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(3): 5733-5740 © 2023 TPI

www.thepharmajournal.com Received: 13-01-2023 Accepted: 25-02-2023

Dinkar

Department of Geneticsand Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

Anand Kumar

Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

Ravi Ranjan Kumar

Dept. of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour (Bihar), India

Mankesh Kumar

Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

SP Singh

Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

Satyendra

Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

Namrata Dwivedi

Department of Plant Breeding and Genetics, Rajmata Vijayaraje Scindia Krishi Vishwavidyalaya, Raja Pancham Singh Marg, Near Akashwani, Gwalior, Madhya Pradesh India

Corresponding Author: Anand Kumar Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, Bihar India

Genetic variability, correlation and path analysis for selection in elite breeding materials of Aromatic rice (Oryza sativa L.)

Dinkar, Anand Kumar, Ravi Ranjan Kumar, Mankesh Kumar, SP Singh, Satyendra and Namrata Dwivedi

Abstract

The presence of sufficient genetic variability, the knowledge of nature of association among different characters and relative contribution of different characters to yield is a prerequisite to any breeding programme. The aim of the present study was to estimate genetic parameters of thirty two yield, yield attributing and quality traits in 36 aromatic rice genotypes with a view to select better yield attributes in aromatic rice. The higher value of phenotypic co-efficient of variation (PCV) compared to the corresponding genotypic coefficient of variation (GCV) for all the studied traits indicated that there was an influence of the environment. High estimates of PCV and GCV were noticed for number of tillers per hill, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet's per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, ratio of grain length/width and ratio of kernel length/width. High heritability coupled with high genetic advance was observed in number of tillers per hill, plant height, leaf length of blade, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, grain length, grain width, kernel length, ratio of grain length/width, ratio of kernel length/width, cooked rice length, cooked rice width, cooked rice length/width ratio, length expansion ratio, volume expansion ratio and iron content. Which reflected that the direct selection of these characters based on phenotypic expression by simple selection method for yield improvement would be more reliable. Grain yield per plant showed significant and positive association with numbers of tillers per hill, leaf length of blade, leaf width of blade, panicle length of main axis, panicle number per plant, total number of spikelet's per panicle, number of fertile grain per panicle, 1000 seed weight, biological yield, harvest index % and cooked rice width indicating selection of these characters for yield improvement in aromatic may be rewarding. Path coefficient analysis revealed that biological yield, harvest index, grain length and width expansion ratio and cooked rice length/width ratio had a high direct positive effect on grain yield have moderate direct effect on yield had direct positive effect on yield per plant indicating their importance during selection in yield improvement programme. Moreover, the information generated from this study, can be exploited in future breeding programme of aromatic rice.

Keywords: Aromatic rice, genetic variability, correlation, path analysis, quality and grain yield

Introduction

Rice (*Oryza sativa* L.), a staple food for more than half of the world's population. It is grown in more than 111 nations, from Bangladeshi plains to Nepal's Himalayan slopes and from ndonesia's rain forest to Australia's sandy plains (Khakwani *et al.*, 2006) ^[3]. The finest aromatic rice in the world, known as Basmati rice are traditionally grown in India's northwestern region and are exported in higher amount from India. Due to the hot climate, which includes high humidity, the occurrence of illnesses, and insect pests, the Basmati cultivars from the mentioned zone do not produce well in the Eastern part of India. Farmers from the eastern part of India typically grow aromatic tall *indica* rice types that are focused on the local environment. These types typically exhibit lodging susceptibility and have low yields because to an inadequate biomass distribution. Due to its superior quality, basmati rice is widely valued by consumers and commands a premium price both in the domestic and international markets. In comparison to non-basmati rice varieties, it has the potential to contribute more foreign currency and improve the economic situation of rural people and their families. Though, we know that the demand of aromatic rice is increasing day by day. So, to make the continuity in demand of aromatic rice, the breeders should have to develop those

varieties which have high yielding ability. During the course of developing varieties breeder should know the importance of each and every yield attributing characters. Whether the selected character have positive or negative effect on yield and also whether the character is exerting direct or indirect effect on yield. Hence with the help of correlation and path analysis they can select the traits in order to improve yield.

Genetic variability in a population can be partitioned into heritable and non-heritable variation with the aid of genetic parameters such as variance, genotypic coefficient of variation, heritability and genetic advance, which serve as a basis for selection of some outstanding genotypes from existing ones. Choice of parents is not only based on desirable agronomic traits, components of yield and extent of variability but also on heritability of yield contributing traits. The environment, in which selection is made, is also important because heritability and genetic advance vary with change in environment. The study of genetic variability reveals about the presence of variation in their genetic constitution and it is outmost important as it provide the basis of effective selection.

Grain yield is a complex trait and highly influenced by many genetic factors and environmental fluctuations. In plant breeding programme, direct selection for yield as such could be misleading. A successful selection depends upon the information on the genetic variability and association of morpho-agronomic traits with grain yield. Kumar et al. (2007) ^[21] reported high heritability coupled with high genetic advance for plant height, number of spikelets per panicle and 1000- grain weight. Correlation studies along with path analysis provide a better understanding of the association of different characters with grain yield. The grain yield was significantly and positively correlated with 1000 seed weight and the number of grains per spike (Kamana et al. 2019)^[19]. Path coefficient analysis separates the direct effects from the indirect effects through other related characters by partitioning the correlation coefficient (Dixet and Dubey, 1984)^[15]. Therefore, the present investigation was undertaken to study genetic variability, heritability, genetic advance, character association and path coefficient analysis in a set of thirty six aromatic rice genotypes to be used as suitable breeding materials for developing high yielding aromatic rice with desirable quality traits.

Materials and Methods

The experimental material comprised of 36 aromatic rice including three checks (RajendraKasturi, genotypes ShobiniandBadshabhog) grown in randomized block design with three replications at the rice experimentation farm, Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour (Bhagalpur) during Kharif 2020-21. Each plot consisted of eight rows of 5.0 metre length spaced at 20 cm plant and within a row at 20 m. All the recommended package of practices for wheat was followed to raise a healthy crop. Data were recorded on five randomly and competitive plants of each genotype from each replication for different quantitative characters viz. number of tillers per hill, plant height (cm), panicle length (cm), number of fertile grains per panicle, total number of spikelet's per panicle, thousand grains weight (g), grain yield/plant (g), biological yield (g), harvest index (%), leaf length of blade (cm), leaf width of blade (cm), panicle number per plant, stem length excluding panicle (cm), grain length (mm), hulling %, grain

breadth (mm), grain length/breadth ratio, kernel length (mm), kernel breadth (mm), kernel length/ breadth ratio, cooking time, kernel dimension, Elongation ratio, volume expansion ratio, zinc content and iron content and the rest two characters viz., days to 50% flowering and days to maturity were recorded on plot basis. Mean values were subjected to analysis of variance to test the significance for each character as per methodology advocated by Panse and Sukhatme (1967) ^[29]. GCV and PCV were calculated by the formula given by Burton (1952)^[7], heritability in broad sense (h²) by Burton and De Vane (1953)^[8] and genetic advance i.e. the expected genetic gain were calculated by using the procedure given by Johnson *et al.* (1955) ^[18]. Correlation coefficients were computed according to the method suggested by Singh and Chaudhary (1985)^[34]. Dewey and Lu (1959)^[16] was used to perform the path analysis for grain yield and its components keeping grain yield as resultant variable and its components as causal variables.

Results and Discussion

Analysis of variance revealed significant differences among the genotypes for all the characters under study which indicated that considerable amount of variability were present in the genotypes included in the study (Table 1). Hence, there is an ample scope for inclusion of promising genotypes in breeding programme for yield and its component characters in aromatic rice. Bitew (2016)^[6] and Chakravorty et al. (2016) ^[13] also reported considerable genetic variability for grain yield and its component characters in aromatic rice. As a result, it was inferred that the study's material had a respectable amount of variability, giving the plant breeder plenty of room to choose superior genotypes for advancement. All of the studied traits had higher phenotypic variations than genotypic variances which may be due to higher degree of interaction of genotypes with the environment. These values alone are not helpful in determining the heritable portion of variation. The proportion of genetic variability which is transmitted from parents to offspring is reflected by heritability. Genotypic variances, phenotypic variances, heritability, genotypic co-efficient of variation (GCV), phenotypic co-efficient of variation (PCV), genetic advance (GA) and genetic advance as percentage of mean, GA (%) for all the yield contributing traits are shown in Table 2. All the characteristics under investigation showed substantial phenotypic and genotypic variance in the experimental material. A broad range of PCV was observed varies from 2.521 (Zinc content) to 43.984 (grains yield per plant). The GCV ranges from 1.25 (Zinc content) to 42.761 (grains yield per plant). Higher magnitudes of PCV were recorded for number of tillers per hill, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet's per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, ratio of grain length/width and ratio of kernel length/width. A higher estimate of genotypic coefficient of variation was noticed for grain yield per plant, number of fertile grains per panicle, total number of spikelet's per panicle, panicle number per plant, number of tillers per hill, biological yield, harvest index, thousand seed weight and ratio of grain length/width. While lowest magnitude of GCV was recorded for zinc content. This is an indicative of less amenability of these traits to environmental fluctuations and hence, greater emphasis should be given to these characters,

while breeding cultivars from the present material. These findings are in accordance with the result of Lalitha et al. (1999)^[23], Verma *et al.* (2000)^[40], Chaudhary *et al.* (2004)^[14], Singh *et al.* (2010), Chakravorty *et al.* (2013)^[13], Sarawgi et al. (2014) [38], Bitew (2016) [6], Bhati et al. (2015) [10], Nayak et al. (2016)^[25], Abebe et al. (2017)^[2], Kamana et al. (2019) ^[19] and Sharma Shishir et al. (2020) ^[33]. High heritability were observed for the characters like days to 50% flowering, days to maturity, number of tillers per hill, plant height, leaf length of blade, leaf width of blade, stem length excluding panicle, panicle length of main axis, panicle number per plant, total number of spikelet's per panicle, number of fertile grains per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, grain length, grain breadth, kernel length, ratio of grain length/width. ratio of kernel length/width. cooked rice length. cooked rice width, cooked rice length/width, length expansion ratio, volume expansion ratio and iron content. High genetic advance as percent of mean were observed for the character number of tillers per hill, plant height, leaf length of blade, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, grain length, grain breadth, kernel length, ratio of grain length/breadth, ratio of kernel length/width, cooked rice length, cooked rice width, cooked rice length/width ratio, length expansion ratio, volume expansion ratio and iron content. These results are in accordance to Verma et al. (2000)^[40], Chaudhary et al. (2004)^[14], Babu et al. (2012)^[9] and Bitew (2016)^[6]. This implied that these features may be thought of as advantageous traits for selection-based enhancement, possibly as a result of the presence of additive genetic effects, and that they could be enhanced by modifying selection without progeny testing.

The information on the magnitude of the inheritance of characters from parents to offspring is provided from heritability estimation, while genetic advance is helpful in finding out the actual gain expected under selection. In the present study, genetic advance as percent of mean estimated the highest for number of tillers per hill, plant height, leaf length of blade, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, grain length, grain breadth, kernel length, ratio of grain length/breadth, ratio of kernel length/width, cooked rice length, cooked rice width, cooked rice length/width ratio, length expansion ratio, volume expansion ratio and iron content.

Heritability and genetic advance are important selection parameters. Heritability estimates along with genetic advance are normally more helpful in predicting the gain under

selection than heritability estimates alone (Johnson et al., 1955) [18]. High heritability accompanied with high genetic advance as percent of mean were observed for number of tillers per hill, plant height, leaf length of blade, leaf width of blade, stem length excluding panicle, panicle number per plant, total number of spikelet per panicle, number of fertile grain per panicle, thousand seed weight, biological yield, grain yield per plant, harvest index, grain length, grain width, kernel length, ratio of grain length/width, ratio of kernel length/width, cooked rice length, cooked rice width, cooked rice length/width ratio, length expansion ratio, volume expansion ratio and iron content. This suggested that these characters can be considered as favourable attributes for the improvement through selection and this may be due to presence of additive genes effect and thus, could be improved upon by adapting selection without progeny testing. Hence, direct selection can be done through these characters for future improvement of aromatic rice genotypes for higher grain yield with superior quality.

The correlation for morpho-agronomic traits are presented in Table 3. Grain yield per plant showed highly significant and positive association with numbers of tillers per hill, leaf length of blade, leaf width of blade, panicle length of main axis, panicle number per plant, total number of spikelets per panicle, number of fertile grain per panicle, 1000 seed weight, biological yield, harvest index % and cooked rice width while it also displayed significant and positive association with days to maturity. However, it exhibited highly significant and negative correlation with zinc content and also significant and negative correlation with cooking time. These results are in accordance to Chakraborty et al. (2013), Nagarju et al. (2013), Solomon et al. (2016) [36], Limbani et al. (2017) [22], Kalyan et al. (2017)^[20], Parween et al. (2020) and Sharma Shishir et al. (2020)^[33]. Therefore, it is suggested that these traits should be used as selection criteria for yield improvement in aromatic rice.

Path coefficient analysis provides an effective way of finding out of direct and indirect sources of correlations. The results of the path coefficient analysis are shown in Table 4. Path coefficient analysis revealed that biological yield, harvest index, grain length and width expansion ratio had a high direct positive effect on seed yield while cooked rice length/width ratio have moderate direct effect on yield. These results are in accordance to Nandan et al. (2010)^[27], Selvaraj et al. (2011)^[37], RavindraBabu et al. (2012)^[9], Naseem et al. (2014)^[28], Prem kumar et al. (2016)^[30] and Shrestha et al. (2018)^[39]. These characters should form selection criterion in breeding programme. Direct selection based on these traits could result in simultaneous improvement of seed yield had high positive direct effect on seed yield per plant, indicating true relationship of these characters with seed yield and direct selection for these characters will be rewarding.

Table 1: Analysis of variance for thirty-two different characters in thirty-six rice genotypes

SI No	Characters		MSS	
51. INO.	Characters	Replication DF =2)	Genotypes(DF=32)	Error(DF=70)
1	Days to 50% flowering	16.00	137.89 **	4.62
2	Days to maturity	4.70	88.136 **	5.40
3	Number of tillers per hill	45.56	57.01 **	2.57
4	Plant height (cm)	192.44	1462.04 **	63.86
5	Leaf length of blade (cm)	70.14	99.61 **	8.67
6	Leaf width of blade (cm)	0.071	0.18 **	0.014

The Pharma Innovation Journal

https://www.thepharmajournal.com

7	Stem length excluding Panicle (cm)	8.51	1248.17 **	26.67
8	Panicle length of main axis (cm)	4.58	33.32 **	3.65
9	Panicle number per plant	39.10	47.55 **	2.46
10	Total number of spikelet's per panicle	1943.08	17257.37 **	367.79
11	Number of fertile grains per panicle	2649.59	17533.98 **	336.44
12	Thousand seed weight (g)	11.47	50.48 **	1.39
13	Biological yield (g)	225.60	1356.06 **	77.05
14	Grain yield per plant (g)	3.32	554.46 **	10.51
15	Harvest Index (%)	57.48	267.69 **	27.49
16	Grain length (mm)	0.07	2.85 **	0.14
17	Grain breadth (mm)	0.076	0.20 **	0.03
18	Kernel length (mm)	0.564	7.023 **	0.172
19	Kernel breadth (mm)	0.009	0.059 **	0.028
20	Ratio of grain L/W	0.112	1.467 **	0.172
21	Ratio of kernel L/W	0.109	2.525 **	0.289
22	Hulling percentage	35.820	18.714 *	11.056
23	Milling percentage	6.760	24.643 **	10.152
24	Coocked rice length (mm)	1.036	3.006 **	0.278
25	Cooked rice width (mm)	0.014	0.411 **	0.052
26	Cooked rice length / Width ratio	0.068	0.669 **	0.074
27	Cooking time	0.507	18.502 **	3.720
28	Length expansion Ratio=L cooked/L Raw	0.011	0.165 **	0.029
29	Width expansion ratio=W cooked/W raw	0.040	0.128 **	0.044
30	Volume Expansion ratio	0.002	0.196 **	0.002
31	Zinc content (PPM)	0.073	0.387 **	0.196
32	Iron content (PPM)	0.070	2.918 **	0.035

** = Significant at 1% probability level

 Table 2: Estimation of genetic parameters for quantitative traits related to grain yield, its contributing and quality traits of thirty six aromatic rice genotypes

S. No.	Characters	$\sigma^2 g$	σ²p	GCV	PCV	h ² (BroadSense)	GeneticAdvance	Genetic Adv. as % ofMean
1	Days to 50% flowering	44.421	49.049	6.34	6.66	90.6	13.066	12.428
2	Days to maturity	27.576	32.984	3.891	4.26	83.6	9.891	7.329
3	Number of tillers per hill	18.146	20.719	27.458	29.34	87.6	8.212	52.934
4	Plant height (cm)	466.06	529.928	16.456	17.55	87.9	41.706	31.791
5	Leaf length of blade (cm)	30.313	38.989	15.834	17.96	77.7	10	28.761
6	Leaf width of blade (cm)	0.056	0.069	18.541	20.69	80.3	0.435	34.228
7	Stem length excluding Panicle (cm)	407.169	433.839	19.399	20.02	93.9	40.27	38.714
8	Panicle length of main axis (cm)	9.889	13.543	11.34	13.27	73	5.535	19.961
9	Panicle number per plant	15.033	17.493	28.524	30.77	85.9	7.404	54.471
10	Total number of spikelet's per panicle	5629.858	5997.656	32.435	33.48	93.9	149.752	64.735
11	Number of fertile grains per panicle	5732.514	6068.955	38.644	39.762	94.5	151.585	77.368
12	Thousand seed weight (g)	16.363	17.757	23.517	24.50	92.1	7.999	46.505
13	Biological yield (g)	426.336	503.394	24.599	26.73	84.7	39.144	46.634
14	Grain yield per plant (g)	181.316	191.833	42.761	43.98	94.5	26.967	85.638
15	Harvest Index (%)	80.068	107.56	24.106	27.94	74.4	15.904	42.844
16	Grain length (mm)	0.903	1.047	17.972	19.36	86.2	1.817	34.376
17	Grain breadth (mm)	0.056	0.093	12.642	16.30	60.1	0.378	20.192
18	Kernel length (mm)	2.284	2.455	19.015	19.72	93	3.002	37.778
19	Kernel breadth (mm)	0.01	0.038	5.616	10.87	26.7	0.108	5.978
20	Ratio of grain L/W	0.432	0.603	22.609	26.73	71.6	1.145	39.398
21	Ratio of kernel L/W	0.745	1.034	19.338	22.78	72.1	1.51	33.822
22	Hulling percentage	2.553	13.609	2.022	4.67	18.8	1.425	1.804
23	Milling percentage	4.83	14.982	2.875	5.06	32.2	2.571	3.363
24	Coocked rice length (mm)	0.909	1.187	12.75	14.57	76.6	1.719	22.985
25	Cooked rice width (mm)	0.12	0.172	12.708	15.22	69.8	0.595	21.863
26	Cooked rice length / Width ratio	0.198	0.273	15.905	18.66	72.7	0.782	27.935
27	Cooking time	4.927	8.647	10.45	13.84	57	3.452	16.25
28	Length expansion Ratio=L cooked/L Raw	0.046	0.074	14.72	18.78	61.4	0.345	23.767
29	Width expansion ratio=W cooked/W raw	0.028	0.072	11.315	18.17	38.8	0.215	14.514
30	Volume Expansion ratio	0.064	0.067	16.819	17.13	96.4	0.514	34.022
31	Zinc content ($\mu g/g$)	0.064	0.26	1.25	2.521	24.6	0.258	1.276
32	Iron content ($\mu g/g$)	0.961	0.996	15.386	15.67	96.5	1.983	31.13

Table3: Correlation	corfficient betwe	en vield and of	her characters in	Aromatic eice
Labico. Conclution		ch yield and ot	mer enuracters m	1 in officiatio cree

Cha	uracters		DFF	DM	Number of tillers perhill	Plan height	nt (cm)	Leaf length o blade (cr	of n)	af width f blade (cm)	Stem len excludi Panicl (cm)	igth ng le	Panicle length of main axis (cm)	Par nur per	nicle nber plant	Total number o spikelet pe panicle	f Nur ferti r per	nber of le grain panicle
Days to 50	0% floweri	ng	1															
Days to	o maturity		0.5601**	1														
Number of	tillers per	hill	-0.3967*'	-0.2097*	1													
Plant h	eight (cm)		0.2434*	0.1073	-0.2059*	• 1												
Leaf length	n of blade (o	cm)	-0.0312	0.1044	0.0313	0.421	1**	1										
Leaf width	of blade (c	cm)	-0.0379	0.1976*	0.1882	-0.03	311	0.2766*	*	1								
Stem length e	excluding P	anicle	0.2618**	0.1082	-0.1979*	0.964	4**	0.4343*	* _(0.0750	1							
Panicle length	n of main a	xis (c)	0.1226	0.1043	0.0094	0.17	47	0.3182*	* 0.	4355**	0.2059	*	1					
Panicle nu	mber per pl	ant	-0.3784*'	-0.2162*	0.9681**	-0.16	588	0.0677	().1233	-0.158	0	0.0230		1			
Total number	of spikelet	per p	0.1854	0.3202**	0.1587	0.09	68	0.1978*	· 0.	3624**	0.125	5	0.5826**	0.1	565	1		
Number of fe	rtile grain p	per pa	0.1059	0.2434*	0.0514	0.245	51*	0.4187*	* 0.	3277**	0.29463	**	0.5874**	0.0)546	0.7802**		1
Thousand s	seed weight	(g)	-0.0514	-0.1470	0.2496**	• 0.09	89	0.3043*	* 0.	5568**	0.1170	6	0.6195**	0.2	237*	0.5112**	0.6	193**
Biologic	cal yield (g))	-0.0492	0.1542	0.3757**	0.12	20	0.5511*	* 0.	5775**	0.1410	0	0.5975**	0.35	527**	0.5108**	0.5	376**
Harvest	t Index (%)	-	0.0634	0.2426*	0.2306*	-0.284	46**	-0.0254	0.	2720**	-0.2476	**	0.3088**	0.2	438*	0.5401**	0.5	425**
Grain le	ength (mm)		-0.4107**	-0.3191*	* 0.0542	-0.03	357	0.1021	().1359	-0.051	5	0.0709	0.0)046	-0.1576	-0	.0456
Grain br	eadth (mm)	0.0040	0.0194	-0.1134	0.220	01*	0.0280	0.	2892**	0.1882	2	0.2802**	-0.0	0822	0.1074	0.	.1120
Kernel l	ength (mm)	-0.3797**	-0.2990*	* 0.1629	-0.10)19	0.0785	(0.0901	-0.120	1	-0.0166	0.1	112	-0.2235*	-0	.0923
Kernel b	readth (mm	1)	-0.1232	-0.2149*	0.2527**	• 0.01	93	0.0434	0	.2090*	0.0500	0	0.1021	0.27	705**	0.0352	0.	.0342
Ratio of	f grain L/W	ŕ	-0.3094**	-0.2207*	0.0801	-0.13	393	0.0831	-1	0.0195	-0.130	8	-0.0616	0.0)336	-0.1378	-0	.0738
Ratio of	kernel L/W	/	-0.2835**	-0.1833	0.0358	-0.09	952	0.0251	-1	0.0396	-0.124	5	-0.0724	-0.0	0168	-0.2082*	-0	.0953
Hulling	percentage	,	0.1639	0.0792	-0.0576	0.202	28*	-0.0419)(0.1530	0.144	5	-0.1374	0.0	018	-0.0603	-0	.0761
Milling	percentage	;	0.2550**	0.1422	-0.0591	0.197	75*	0.0156	-0.	.2523**	0.1628	8	-0.2083*	0.0)161	-0.0152	-0	.0898
Coocked rid	ce length (n	nm)	-0.1443	-0.1584	0.1591	-0.09	967	-0.1703	0.	2563**	-0.161	4	0.0218	0.0)722	0.0536	0.	.0194
Cooked ric	ce width (m	m)	-0.0234	-0.0373	0.2373*	-0.05	517	-0.0719	0.	3457**	-0.043	4	0.2598**	0.2	220*	0.1059	-0	.0025
Cooked rice l	ength / Wio	th rat	-0.0711	-0.0646	-0.1015	-0.04	462	-0.0598	- 1	0.0621	-0.099	9	-0.1479	-0.	1472	-0.0017	0.	.0537
Cook	ting time		0.0890	-0.0189	-0.1939*	0.294	.9**	-0.1337	-0.	.3137**	0.3310*	**	-0.1101	-0.	1679	-0.0061	0.	.0861
Length expansi	ion Ratio=I	cooke	0.2964**	0.2115*	0.0939	-0.09	936	-0.2699*	* (0.0316	-0.130	8	-0.1085	0.0)768	0.1446	-0	.0194
Width expansio	on ratio=W	cooked	-0.0488	-0.0436	0.2952**	· -0.22	46*	-0.0898	. (0.0288	-0.188	0	-0.0060	0.26	579**	0.0087	-0	.0854
Volume E	xpansion ra	ıtio	-0.1800	-0.2066*	0.3686**	· -0.14	405	-0.0789		0.0938	-0.120	8	0.0400	0.35	577**	-0.1688	-0	.1292
Zinc cor	itent (PPM)	-0.1946*	-0.2546*	* -0.1198	-0.01	179	-0.2472*	* -0	.2936**	-0.047	5	-0.2095*	-0.0	0907	-0.2809**	-0.2	2929**
Iron con	ntent (PPM))	-0.0043	-0.1180	-0.0179	-0.16	521	-0.1313	- 1	0.1669	-0.155	8	0.0810	0.0)645	-0.0305	-0	.0819
Grain yield	d per plant	(g)	0.0423	0.2355*	0.3852**	-0.09	917	0.3144*	* 0	.548**	-0.050	8	0.6404**	0.38	355**	0.696**	0.	704**
Characters	Thousand seed	Biolog yield	ical Ha (g) Inde	rvest ex (%)	Frain (ength b	Grain readth	Ke	rnel K igth br	ernel eadtl	Rat grain	io of n L/W	Ratio	o of kernel	L/W	H	ulling centage	Mil perce	ling ntage
Dave to 500^{\prime}	weight (g)	-		(<i>)</i>	(mm)	(in		uuu)	-								
flowering																		
Dave to																		
maturity																		
Number of																		
tillers per hill																		
Plant height																		
(cm)																		
Leaf length of																		
blade (cm)																		
Leaf width of																		
blade (cm)																		

Number of tillers per hill Image: second	
tillers per hill Image: state st	
Plant height (cm) Image: second s	
(cm) Image: constraint of blade (cm) Image: constrated (cm) Image: constraint of blade (cm	
Leaf length of blade (cm) Image: second	
blade (cm) Image: constraint of blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length of main axis (c) Panicle number per plant Total number of spikelet per p P Number of	
Leaf width of blade (cm)	
blade (cm) Image: cmode of the second se	
Stem length excluding Panicle Panicle Image: Constraint of the second sec	
excluding Panicle Panicle Image: Constraint of the second se	
Panicle Image: Constraint of the second se	
Panicle length of main axis (c) Panicle number per plant Total number of spikelet per p Number of	
of main axis (c)	
(c) Image: Constraint of the second	
Pancle number per plant Total number of spikelet per p Number of	
number per plant	
plant control control Total number of spikelet per p p p Number of Image: Control Image: Control	
Total number of spikelet per p Number of	
of spikelet per p Number of	
p	
Number of	
mousing seed 1	
Weight (g)	
yield (g) 0.6420** 1	
Harvest Index (%) 0.4327** 0.1644 1	
Grain length (mm) 0.2411* 0.1237 -0.1567 1	

Grain breadth (mm)	0.2018*	0.1363	-0.0775	-0.1968*	1							
Kernel length	0.1835	0.1327	-0.1654	0.8781**	-0.2952**	1						
Kernel breadth	0.2919**	0.1233	0.0261	0.1160	0.1326	0.0884	1					
Ratio of grain	0.0841	0.0401	-0.0580	0.8195**	-0.6865**	0.7859**	0.0273	1				
Ratio of kernel	0.0174	0.0455	-0.1743	0.6917**	-0.3016**	0.8256**	-0.4451**	0.6474**	1			
Hulling	-0.1239	-0.0595	-0.1852	-0.2827**	0.1352	-0.3129**	0.0591	-0.2884**	-0.2882**	1		
Milling	-0.1784	-0.0989	-0.1560	-0.3630**	0.0698	-0.3977**	-0.0259	-0.3175**	-0.3197**	0.7681 [,]	**	1
Coocked rice	0.2606**	0.0746	-0.0187	0.4791**	-0.0383	0.4668**	0.1190	0.3463**	0.3299**	-0.149	4 -0.	2285*
Cooked rice	0.2864**	0.2966**	0.1099	-0.1726	0.3341**	-0.2386*	0.2507**	-0.3074**	-0.3390**	0.032	7 -0	.0689
Cooked rice	0.0088	-0 1538	-0.0542	0.4830**	-0 2792**	0 5084**	-0 1125	0 4944**	0.4980**	-0.142	5 -0	1162
rat	-0.0967	-0.2407*	-0.0741	-0.1257	-0.0283	-0.1023	0.0557	-0.0603	-0.0802	0.1972	* 0	1/02
Length	0.1124	0.1040	0.1114	0.6870**	0.1705	0.5305**	0.0337	0.5037**	0.4565**	0.1572	5 0	1903*
Ratio=L cooke	-0.1124	-0.1040	0.1114	-0.0879**	0.1705	-0.5595**	-0.0272	-0.3937	-0.4303	0.102.	0.	1075
expansion ratio=W	0.0526	0.1041	0.1586	0.0084	-0.5847**	0.0339	0.1194	0.3469**	-0.0502	-0.072	2 -0	.1040
Volume Expansion ratio	0.0339	0.0210	0.0739	0.0419	-0.0137	0.1368	0.1364	0.0391	0.0365	-0.017	7 -0	.0818
Zinc content (PPM)	-0.2309*	-0.3365**	-0.1635	-0.0242	0.0934	-0.0942	-0.0364	-0.0712	-0.0629	0.018	5 -0	.0340
Iron content (PPM)	0.0606	-0.0998	0.1660	-0.0627	-0.0037	-0.1199	0.0620	-0.0500	-0.1379	-0.030	7 0	0371
Grain yield per plant (g)	0.7351**	0.7574**	0.7456**	-0.0441	0.087	-0.0598	0.1102	-0.0599	-0.1163	-0.136	8 -0	.1439
Characters	Coocke length	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Co ntio	ooking time	ngth expan tio=L cook Raw	sion ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	Iron content (PPM)
Characters Days to 50% flowering	Coocke length	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Co itio	ooking time	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi	Coocke length	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice l Width ra	length / Co	ooking time	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille	Coocke length	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Control	ooking time	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height	ty	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Co	ooking Ra time	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm)	Coocke length ty ers	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Co	time Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blada (cm)	Coocke length ty ers f	ed rice Cool (mm) widt	ked rice Co h (mm)	ooked rice Width ra	length / Co	ooking Ra time	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of	Coocke length ty ers f	ed rice Cool (mm) widt	ked rice Co h (mm)	voked rice i Width ra	length / C(ooking Ra time	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width ol blade (cm)	Coocke length ty ers f f	ed rice Cool (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width oi blade (cm) Stem length	Coocke length ty ers f f	ed rice Cool (mm) widt	ked rice Co	voked rice i Width ra	length / Cu	ooking Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Daysial	f	ed rice Cool (mm) widt	ked rice Co	voked rice i Width ra	length / C4	ooking Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length	f f of	ed rice Cool (mm) widt	ked rice Co	ooked rice Width ra	length / Co	ooking Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width oi blade (cm) Stem length excluding Panicle Panicle number Stem length main axis (c) Panicle number	f f f f	ed rice Cool (mm) widt	ked rice Co	voked rice i Width ra	length / Cu itio	ooking Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle numbo per plant	f f f f	ed rice Cool (mm) widt	ked rice Co	voked rice i Width ra	length / C4	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansion	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number orgital per plant Total number	f of of	ed rice (cool (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of spikelet per p Number of	Coocke length ty ers f f of of	ed rice (cool (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pnratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width ol blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of fertile grain po pa	f of er er	ed rice (cool (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number spikelet per p Number of fertile grain pe pa Thousand see weight (g)	Coocke length ty ers f f f f f er cof cor cor cor cor cor cor cor cor cor cor	ed rice (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of fertile grain pe pa Thousand see weight (g) Biological yiel (g)	Coocke length ty crs f f f f f er cof cof cof cof cof cof cof cof cof cof	ed rice (Cool (mm) widt	ked rice Co	voked rice i Width ra	length / C4 tio	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width pratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number of fertile grain pe pa Thousand see weight (g) Biological yiel (g) Harvest Indes (%)	Coocke length ty crs f f f f f f cof cor cof cor cof cor cof cor cor cor cor cor cor cor cor cor cor	ed rice (Cool (mm) widt	ked rice Co	voked rice i Width ra	length / C4 tio	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width onratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width ol blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of fertile grain pe pa Thousand see weight (g) Biological yiel (g) Harvest Indey (%) Grain length (mm)	Coocke length ty crs f f f f f er d d	ed rice (mm) widt	ked rice Co	voked rice i Width ra	length / C(ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width nratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf width of blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle numbe per plant Total number of fertile grain pe pa Thousand see weight (g) Biological yiel (%) Grain length (mm) Grain breadth (mm)	Coocka length ty crs f f f f f f f f f f f f f f f f f f f	ed rice (mm) widt	ked rice Co	poked rice i Width ra	length / C(itio	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width nratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width ol blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of fertile grain pe pa Thousand see weight (g) Biological yiel (g) Harvest Indey (%) Grain length (mm) Grain breadtf (mm) Kernel length	Coocke length ty crs f f f f of of of of of of of	ed rice (mm) widt 	ked rice Co	voked rice i Width ra	length / C(itio	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width nratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)
Characters Days to 50% flowering Days to maturi Number of tille per hill Plant height (cm) Leaf length o blade (cm) Leaf width of blade (cm) Leaf width of blade (cm) Stem length excluding Panicle Panicle length main axis (c) Panicle number per plant Total number of fertile grain pe pa Thousand see weight (g) Biological yiel (g) Harvest Indes (%) Grain length (mm) Grain breadtf (mm) Kernel length	Coocke length ty crs f f f f f f f f f f f f f f f f f f f	ed rice (mm) widt 	ked rice Co h (mm)	voked rice i Width ra	length / C4 ttio	ooking Ra Ra	ngth expan tio=L cook Raw	ision ed/L expansio	Width nratio=Wcooked/W raw	Volume Expansion ratio	Zincconter (PPM)	t Iron content (PPM)

(mm)									
Ratio of grain L/W									
Ratio of kernel									
L/W									
Hulling percentage									
Milling									
percentage									
Coocked rice length (mm)	1								
Cooked rice width (mm)	0.1195	1							
Cooked rice length / Width rat	0.6164**	-0.6893**	1						
Cooking time	-0.1760	-0.2112*	-0.2112*	1					
Length expansion Ratio=L cooke	0.2733**	0.2888**	0.2888**	-0.0360	1				
Width expansion ratio=W cooked	0.1211	0.5453**	0.5453**	-0.1250	0.1062	1			
Volume Expansion ratio	0.0923	0.1726	0.1726	-0.1310	0.0620	0.1699	1		
Zinc content (PPM)	-0.0397	-0.0504	-0.0504	-0.0025	0.0214	-0.1176	0.0408	1	
Iron content (PPM)	-0.2581**	0.2001*	0.2001*	-0.1603	-0.1136	0.1915*	0.0058	0.2866**	1
Grain yield per plant (g)	0.0284	0.2989**	0.2989**	-0.2032*	0.0202	0.1642	0.0632	-0.3172**	0.0723

Table 5: Direct and indirect effect of different characters on grain yield in aromatic rice

Characters	DFF	DM	Number of tillers per hill	Plant height (cm)	Leaf length of blade (cm)	Leaf width of blade (cm)	Stem length excluding Panicle (cm)	Panicle length of main axis (cm)	Panicle number per plant	Total number of spikelet per panicle	Number of fertile grain per panicle
Days to 50% flowering	0.0375	0.021	-0.0149	0.0091	-0.0012	-0.0014	0.0098	0.0046	-0.0142	0.007	0.004
Days to maturity	-0.0103	-0.0184	0.0039	-0.002	-0.0019	-0.0036	-0.002	-0.0019	0.004	-0.0059	-0.0045
Number of tillers per hill	0.0245	0.0129	-0.0617	0.0127	-0.0019	-0.0116	0.0122	-0.0006	-0.0598	-0.0098	-0.0032
Plant height (cm)	-0.0178	-0.0078	0.015	-0.0729	-0.0307	0.0023	-0.0703	-0.0127	0.0123	-0.0071	-0.0179
Leaf length of blade (cm)	0.0011	-0.0038	-0.0011	-0.0152	-0.0361	-0.01	-0.0157	-0.0115	-0.0024	-0.0071	-0.0151
Leaf width of blade (cm)	0	-0.0001	-0.0001	0	-0.0002	-0.0007	0.0001	-0.0003	-0.0001	-0.0002	-0.0002
Stem length excluding Panicle	0.0199	0.0082	-0.0151	0.0734	0.0331	-0.0057	0.0762	0.0157	-0.012	0.0096	0.0224
Panicle length of main axis (c)	0.0062	0.0053	0.0005	0.0088	0.016	0.0219	0.0104	0.0504	0.0012	0.0293	0.0296
Panicle number per plant	-0.0258	-0.0147	0.0659	-0.0115	0.0046	0.0084	-0.0108	0.0016	0.0681	0.0107	0.0037
Total number of spikelet per p	0.0023	0.004	0.002	0.0012	0.0024	0.0045	0.0016	0.0072	0.0019	0.0124	0.0097
Number of fertile grain per pa	-0.0063	-0.0144	-0.003	-0.0145	-0.0247	-0.0193	-0.0174	-0.0347	-0.0032	-0.046	-0.059
Thousand seed weight (g)	-0.0046	-0.0131	0.0223	0.0088	0.0272	0.0497	0.0105	0.0553	0.02	0.0456	0.0553
Biological yield (g)	-0.0315	0.0987	0.2404	0.0781	0.3526	0.3695	0.0902	0.3823	0.2257	0.3268	0.344
Harvest Index (%)	0.0384	0.1469	0.1396	-0.1723	-0.0154	0.1647	-0.1499	0.1869	0.1476	0.327	0.3284
Grain length (mm)	-0.1349	-0.1048	0.0178	-0.0117	0.0335	0.0446	-0.0169	0.0233	0.0015	-0.0518	-0.015
Grain breadth (mm)	0.0005	0.0026	-0.015	0.0291	0.0037	0.0382	0.0249	0.037	-0.0109	0.0142	0.0148
Kernel length (mm)	0.0281	0.0221	-0.012	0.0075	-0.0058	-0.0067	0.0089	0.0012	-0.0082	0.0165	0.0068
Kernel breadth (mm)	-0.0009	-0.0015	0.0017	0.0001	0.0003	0.0014	0.0003	0.0007	0.0019	0.0002	0.0002
Ratio of grain L/W	0.1359	0.0969	-0.0352	0.0612	-0.0365	0.0086	0.0575	0.0271	-0.0147	0.0605	0.0324
Ratio of kernel L/W	-0.0111	-0.0072	0.0014	-0.0037	0.001	-0.0015	-0.0049	-0.0028	-0.0007	-0.0082	-0.0037
Hulling percentage	0.0004	0.0002	-0.0001	0.0005	-0.0001	-0.0004	0.0003	-0.0003	0	-0.0001	-0.0002
Milling percentage	-0.001	-0.0005	0.0002	-0.0008	-0.0001	0.001	-0.0006	0.0008	-0.0001	0.0001	0.0003
Coocked rice length (mm)	0.0253	0.0278	-0.0279	0.017	0.0299	-0.045	0.0283	-0.0038	-0.0127	-0.0094	-0.0034
Cooked rice width (mm)	0.0043	0.0069	-0.0441	0.0096	0.0134	-0.0643	0.0081	-0.0483	-0.0413	-0.0197	0.0005
Cooked rice length / Width rat	-0.0154	-0.014	-0.0219	-0.01	-0.0129	-0.0134	-0.0216	-0.032	-0.0318	-0.0004	0.0116
Cooking time	-0.001	0.0002	0.0022	-0.0034	0.0015	0.0036	-0.0038	0.0013	0.0019	0.0001	-0.001
Length expansion Ratio=L cooke	0.0007	0.0005	0.0002	-0.0002	-0.0006	0.0001	-0.0003	-0.0003	0.0002	0.0003	0
Width expansion ratio=W cooked	-0.0204	-0.0182	0.1232	-0.0937	-0.0375	0.012	-0.0785	-0.0025	0.1118	0.0036	-0.0357
Volume Expansion ratio	-0.0008	-0.0009	0.0017	-0.0006	-0.0004	-0.0004	-0.0005	0.0002	0.0016	-0.0008	-0.0006
Zinc content (PPM)	-0.0014	-0.0019	-0.0009	-0.0001	-0.0018	-0.0022	-0.0004	-0.0016	-0.0007	-0.0021	-0.0022
Iron content (PPM)	0.0001	0.0027	0.0004	0.0037	0.003	0.0038	0.0036	-0.0019	-0.0015	0.0007	0.0019

Characters	Thousand seed weight (g)	Biological yield (g)	Harvest Index (%)	Grain length (mm)	Grain breadth (mm)	Kernel length (mm)	Kernel breadth (mm)	Ratio of grain L/W	Ratio of kernel L/W	Hulling percentage	Milling percentage
Days to 50% flowering	-0.0019	-0.0018	0.0024	-0.0154	0.0002	-0.0142	-0.0046	-0.0116	-0.0106	0.0061	0.0096
Days to maturity	0.0027	-0.0028	-0.0045	0.0059	-0.0004	0.0055	0.004	0.0041	0.0034	-0.0015	-0.0026
Number of tillers per hill	-0.0154	-0.0232	-0.0142	-0.0033	0.007	-0.0101	-0.0156	-0.0049	-0.0022	0.0036	0.0036
Plant height (cm)	-0.0072	-0.0089	0.0208	0.0026	-0.0161	0.0074	-0.0014	0.0102	0.0069	-0.0148	-0.0144

The Pharma Innovation Journal

https://www.thepharmajournal.com

Leaf length of blade (cm)	-0.011	-0.0199	0.0009	-0.0037	-0.001	-0.0028	-0.0016	-0.003	-0.0009	0.0015	-0.0006
Leaf width of blade (cm)	-0.0004	-0.0004	-0.0002	-0.0001	-0.0002	-0.0001	-0.0001	0	0	0.0001	0.0002
Stem length excluding Panicle	0.009	0.0107	-0.0189	-0.0039	0.0143	-0.0091	0.0038	-0.01	-0.0095	0.011	0.0124
Panicle length of main axis (c)	0.0312	0.0301	0.0155	0.0036	0.0141	-0.0008	0.0051	-0.0031	-0.0036	-0.0069	-0.0105
Panicle number per plant	0.0152	0.024	0.0166	0.0003	-0.0056	0.0076	0.0184	0.0023	-0.0011	0.0001	0.0011
Total number of spikelet per p	0.0063	0.0063	0.0067	-0.002	0.0013	-0.0028	0.0004	-0.0017	-0.0026	-0.0007	-0.0002
Number of fertile grain per pa	-0.0365	-0.0317	-0.032	0.0027	-0.0066	0.0054	-0.002	0.0044	0.0056	0.0045	0.0053
Thousand seed weight (g)	0.0893	0.0573	0.0386	0.0215	0.018	0.0164	0.0261	0.0075	0.0016	-0.0111	-0.0159
Biological yield (g)	0.4108	0.6398	0.1052	0.0791	0.0872	0.0849	0.0789	0.0257	0.0291	-0.0381	-0.0633
Harvest Index (%)	0.262	0.0995	0.6053	-0.0948	-0.0469	-0.1001	0.0158	-0.0351	-0.1055	-0.1121	-0.0945
Grain length (mm)	0.0792	0.0406	-0.0514	0.3284	-0.0646	0.2883	0.0381	0.2691	0.2271	-0.0928	-0.1192
Grain breadth (mm)	0.0267	0.018	-0.0102	-0.026	0.1321	-0.039	0.0175	-0.0907	-0.0398	0.0179	0.0092
Kernel length (mm)	-0.0136	-0.0098	0.0122	-0.0649	0.0218	-0.0739	-0.0065	-0.0581	-0.061	0.0231	0.0294
Kernel breadth (mm)	0.002	0.0009	0.0002	0.0008	0.0009	0.0006	0.0069	0.0002	-0.0031	0.0004	-0.0002
Ratio of grain L/W	-0.037	-0.0176	0.0255	-0.3599	0.3015	-0.3452	-0.012	-0.4392	-0.2843	0.1267	0.1394
Ratio of kernel L/W	0.0007	0.0018	-0.0068	0.0271	-0.0118	0.0323	-0.0174	0.0254	0.0392	-0.0113	-0.0125
Hulling percentage	-0.0003	-0.0001	-0.0004	-0.0007	0.0003	-0.0008	0.0001	-0.0007	-0.0007	0.0024	0.0019
Milling percentage	0.0007	0.0004	0.0006	0.0014	-0.0003	0.0015	0.0001	0.0012	0.0012	-0.0029	-0.0038
Coocked rice length (mm)	-0.0457	-0.0131	0.0033	-0.0841	0.0067	-0.0819	-0.0209	-0.0608	-0.0579	0.0262	0.0401
Cooked rice width (mm)	-0.0533	-0.0552	-0.0204	0.0321	-0.0621	0.0444	-0.0466	0.0572	0.0631	-0.0061	0.0128
Cooked rice length/Width rat	0.0019	-0.0333	-0.0117	0.1044	-0.0604	0.1099	-0.0243	0.1069	0.1077	-0.0308	-0.0251
Cooking time	0.0011	0.0028	0.0009	0.0014	0.0003	0.0012	-0.0006	0.0007	0.0009	-0.0023	-0.0017
Length expansion Ratio=L cooke	-0.0003	-0.0002	0.0003	-0.0016	0.0004	-0.0013	-0.0001	-0.0014	-0.0011	0.0004	0.0004
Width expansion ratio=W cooked	0.0219	0.0435	0.0662	0.0035	-0.2441	0.0142	0.0498	0.1448	-0.021	-0.0301	-0.0434
Volume Expansion ratio	0.0002	0.0001	0.0003	0.0002	-0.0001	0.0006	0.0006	0.0002	0.0002	-0.0001	-0.0004
Zinc content (PPM)	-0.0017	-0.0025	-0.0012	-0.0002	0.0007	-0.0007	-0.0003	-0.0005	-0.0005	0.0001	-0.0003
Iron content (PPM)	-0.0014	0.0023	-0.0038	0.0014	0.0001	0.0027	-0.0014	0.0011	0.0032	0.0007	-0.0008

Conclusion

Estimation of genetic parameters of variability, correlation analysis and path coefficient analysis revealed that the numbers of tillers per hill, leaf length of blade, leaf width of blade, panicle length of main axis, panicle number per plant, total number of spikelets per panicle, number of fertile grain per panicle, 1000 seed weight, biological yield, harvest index %, grain length and width expansion ratio, cooked rice width and cooked rice length/width ratio, were the most reliable traits for yield improvement in aromatic rice. So the utmost importance should be given to these characters during the selection for yield improvement in aromatic rice.

References

- 1. Abdala AJ, Bokosi JM, Mwangwela AM, Mzengeza TR. Correlation and path co-efficient analysis for grain quality traits in F1 generation of rice (*Oryza sativa* L.). J Plant Breed. Crop Sci. 2016;8(7):109-116.
- 2. Abebe T, Alamerew S, Tulu L. Genetic variability, heritability and genetic advance for yield and its related traits in rainfed lowland rice (*Oryza sativa* L.) genotypes at Fogera and Pawe, Ethiopia. Advances in Crop Science and Technology. 2017;5:272.
- 3. Khakwani AZ, Zubir M, Mansoor M, Naveed K, Shah IH, Wahab A, *et al.* Agronomic and morphological parameter of rice crop as affected by date of transplanting, Journal of Agronomy. 2006;5(2):248-250.
- 4. Ajmera S, Sudheer Kumar S, Ravindra V. Character Association analysis for grain Iron and Zinc concentrations and grain yield components in rice genotypes, Bulletin of Environmental Pharmacology and Life Science. 2017;6(1):177-181.
- 5. Ambili SN, Radhakrishnan VV. Correlation and path analysis of grain yield in rice. Gregor Mendel Foundation

Proceedings; c2011. p. 1-6.

- 6. Bitew JM. Estimation of genetic parameters, heritability and genetic advance for yield related traits in upland rice (*Oryza sativa* L. and *Oryza glaberrima* Steud) genotypes in Northwestern Ethiopia. World Scientific News. 2016;47(2):340-350.
- Burton GW. Quantitative inheritance in grasses. In: Proceedings of 6th International Grassland Congress, Pennsylvania State College, USA; c1952. p. 277-283.
- 8. Burton GW, Devane EH. Estimating heritability in tall fescue (*Festuca arundinacacea*) from replicated clonal material. Agron. J. 1953;45:478-481.
- 9. Babu VR, Shreya K, Dangi KS, Usharani G, Shankar AS. Correlation and Path Analysis Studies in Popular Rice Hybrids of India. Int. J Sci. &Res. Publ. 2012;2(3):1-9.
- Bhati M, Suresh G, Rajput S. A Genetic variability, correlation and path coefficient for grain yield and quantitative traits of elite rice (*Oryza sativa* L.) genotypes at Uttar Pradesh. Electronic Journal of Plant Breeding. 2015;6(2):586-591.
- 11. Chouhan JS, Chouhan VS, Lodh SB. Cooking quality components and their interrelationship with some physic-chemical characters of rainfed upland rice grain, Oryza. 1995;32:79-82.
- 12. Chakraborty D, Deb D. An analysis of variation of the aroma gene in rice (*Oryza sativa* L. subsp. *indica* Kato) landraces. Genetic Resources and Crop Evolution.2016;63(6):953-959.
- 13. Chakravorty A, Ghosh PD, Sahu PK. Multivariate analysis of lanraces of rice of West Bengal. American J Exp. Agri. 2013;3(1):110-123.
- 14. Chaudhary M, Sarawgi AK, Motiramani NK. Genetic variability of quality, yield and yield attributing traits in aromatic rice (*Oryza sativa* L.). Adv. Pl. Sci.

The Pharma Innovation Journal

2004;17(2):484-490.

- 15. Dixit P, Dubey DK. Path analysis in Lentil (Lens culinaris Medic.). Lens Newsletter. 1984;11(2):15-17.
- Dewey DR, Lu HH. A correlation and path coefficient analysis in deep water rice. Ann. Agric. Res. 1959;19:120-124.
- 17. Dhurai SY, Reddy D, Mohan Ravi S. Correlation and path analysis for yield and quality characters in rice (*Oryza sativa* L.). Rice Genomics Genet. 2016;7(4):1-6.
- Johnson HW, Robinson HF, Comstock RE. Estimate of genetic and environmental variability in soybean. Agron. J. 1955;47:314-318.
- Kamana B, Poudel A, Sharma S. Genetic variability, correlation and path analysis of rice genotypes in rainfed condition at Lamjung, Nepal. RJOAS.2019;8(92):274-280.
- Kalyan B, Radha Krishna KV, Subba Rao LV. Correlation coefficient analysis for yield and its components in rice (*Oryza sativa* L.) genotypes. Int. J Curr. Microbiol. App. Sci. 2017;6(7):2425-2430.
- 21. Kumar S, Joseph J, Francies RM. Variability assessment of Navara (*Oryza sativa* L.) germplasm, the traditional medicinal rice of Kerela for quantitative traits. Oryza. 2007;44(3):223-226.
- 22. Limbani PL, Gangani MK, Pandya MM. Genetic variability, heritability and genetic advance in rice (*Oryza sativa* L.).Int. J. Pure App. Biosci. 2017;5(6):1364-1371.
- 23. Lalitha V, SatyaPriya, Sredhan. Estimation of genetic parameters for quality traits in rice. Ann. Agric. Res. 1999;20(1):18-22.
- Meena AK, Suresh J, RajuSurendar CH, Meena HP. Correlation and path analysis studies in rice (*Oryza sativa* L.) genotypes of India. Green Farming. 2016;7(4):770-773.
- 25. Nayak R, Singh VK, Singh AK, Singh PK. Genetic variability, character association and path analysis of rice genotypes. Annals of Plant and Soil Research. 2016;18(2):161-164.
- 26. Nagaraju C, ReddiSekhar M, Reddy KH, Sudhakar P. Correlation between traits and path analysis coefficient for grain yield and other components in rice (*Oryza sativa* L.). Int. J Appl. Biol. Pharm. 2013;4(3):137-142.
- 27. Nandan R, Sweta, Singh SK. Character association and path analysis in rice (*Oryza sativa* L.) genotypes. World J of Agri. Sci. 2010;6(2):201-206.
- Naseem I, Khan AS, Akhter M. Correlation and path coefficient studies of some yield related traits in rice (*Oryza sativa* L.). Int. J Sci. & Res. Publ. 2014;4(4):1-5.
- 29. Panse VG, Sukhatme PV. Stastical methods for agricultural workers. Second Edition. Pp. 381. Indian Council of Agricultural Research, New Delhi; c1967.
- 30. PremKumarR, Gnanamalar RP, Anandakumar CR. Correlation and path coefficient analysis of grain quality traits in rice. Indian J Agric. Res. 2016;50(1):27-32.
- Perween S, Kumar A, Prasad BD, Choudhary M. Assessment of Genetic Diversity in Rice (*Oryza sativa* L.) under Irrigated and Drought Stress Condition. CJAST. 2020;39(1):112-125.
- RavindraBabu V, Shreya K, Dangi KS, Usharani G, Siva Shankar A. Correlation and Path Analysis Studies in popular Rice Hybrids of India. Int. J Sci. & Res. Publ. 2012;2(3):1-5.
- 33. Sharma Shishir, PokhrelAmrit, DhakalAnup,

PaudelAnkur.Agro-morphological characterization of rice (*Oryza sativa* L.) landraces of Lamjung and Tanahun District, Nepal', Annals of plant science. 2020;9(2):3731-3741.

- 34. Singh RK, Chaudhary BD. Biometrical Methods in quantitative genetic analysis. Kalyani publisher, New Delhi; c1985.
- 35. Singh B, Mishra MK, Naik RK. Genetic diversity among some traditional aromatic rice (*Oryza sativa* L.) varieties of Orissa. Ind. J Agric. Res. 2010;44(2):141-145.
- Solomon H, Wegary D. Phenotypic Correlation and Path Coefficient Analysis of Yield and Yield Component in Rice (*Oryza Sativa*). International Journal of Research &Sci. 1969;49:803-804.
- 37. Selvaraj CI, Nagarajan P, Thiyagarajan K, Bharathi M, Rabindran R. Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistant genotypes of rice (*Oryza sativa* L.). Afr. J Biotechnol. 2011;10(17):3322-3334.
- 38. Sarawgi AK, Parikh M, Sharma B, Sharma D. Phenotypic divergence for agro-morphological traits among dwarf and medium duration rice germplasms and interrelationships between their quantitative traits. The Bioscan. 2014;9(4):1677-1681.
- 39. Shrestha N, Poude A, Acharya SS, Parajuli A, Budhathoki S, Shrestha K. Correlation coefficient and path analysis of advance rice genotypes in central midhills of Nepal. International Journal of Research in Agricultural Sciences. 2018;5(3):2348-3997.
- 40. Verma OP, Singh Santoshi U, Dwivedi JL, Singh PP. Genetic variability, heritability and genetic advance for quantitative traits in rice. Oryza. 2000;37(2):38-40.