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review for improved crop yield 
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Abstract 
In the present scenario with changing climatic patterns, there is a need to boost crop yield while reducing 
environmental impact. Traditional breeding methods face limitations in achieving the 2050 target, and 
new methods are required to facilitate efficient breeding. This review discusses the challenge of feeding 
the world's growing population, which is expected to reach 9.5 billion by 2050. Plant phenomics is a 
relatively new interdisciplinary topic that has emerged in this context, aimed at facilitating breeding and 
enhancing agriculture. Phenotyping, the assessment of attributes significant to commercial plant 
breeding, is laborious and time-consuming. New approaches, such as speed breeding and precision 
farming, are being developed to increase the efficiency, precision, and reliability of phenotyping. Plant 
phenomics involves the collection of complex phenotypic data at an organismal level, and the research 
and application of tools and techniques to analyse, organize, and store resulting datasets. The article 
highlights the need for a system that integrates biological functions across genotypes and environments 
from cellular to the field scale and discusses how high-throughput phenotyping and vegetation indices 
have been used in agricultural research. 
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Introduction 
As stated in the Food and Agriculture Organization's (FAO) Future of Food and Agriculture: 
Alternative Pathways to 2050 report, the world's population is expected to reach 9.5 billion 
individuals by 2050 and to feed them, grain sector will need to double, or at the very least, 
increase by 25% to 70% from current levels [1, 3]. In light of changing climatic patterns, the 
threat posed by several environmental and biotic elements related to global agricultural 
production has lately grown increasingly critical [4]. Considering food output must advance by 
2.4% annually but the actual growth is limited at 1.3% and yields are stagnating in up to 40 
percent, traditional breeding will have difficulty achieving the 2050 target [5]. Anthropogenic 
changes in climate have resulted in higher Carbon dioxide levels, while temperature stress and 
erratic rains inevitably lead to severe flooding, droughts, and soil salinity [6]. Despite 
challenging environmental factors and a small cultivable region, higher output is necessary to 
provide food security [7]. Utilizing contemporary methods, sustainable development in 
agriculture must be created to boost crop yield while lowering its environmental [8]. Increased 
crop breeding is one of the simplest strategies to increase the productivity of the primary food 
and animal feed crops grown worldwide. The stable potential output of a genotype continues 
to be crucial for boosting crop yields. Tolerance towards stresses is a crucial feature in the 
stability of grain yields. Crop scientists will need to efficiently link phenotype to genotype in 
order for agricultural improvement activities to fulfil the anticipated demand for higher crop 
production potential in the next decades [9]. Molecular breeding and the expanding availability 
of affordable Genomic data is a significant technological development that have helped to 
facilitate this interaction [10]. High-throughput "-omics" have been produced during the past 
two decades, allowing for the thorough dissection of the genetic component of important traits 
[11]. However, the lengthy delays in gathering and interpreting multi-dimensional phenotypic 
data are substantially impeding high-throughput breeding procedures [12]. A recent 
interdisciplinary topic called plant phenomics (PP) is well known for expediting breeding and 
enhancing agriculture [13]. To explain the relationship between genes and desirable 
characteristics, geneticists have proposed the concepts of phenotype and phenomics. The 
collection of extragenic, non-auto reproductive cell components that made up the set of 
phenotypes were first referred to as "phenomes" in 1949 [14]. "Crop phenotyping" refers to the 
approaches and procedures utilized in the conversion of plant phenotype to PP. 
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A considerably larger concept known as "phenomics" refers 
to the collection of complex phenotypic data at an organismal 
level [15]. In a larger sense, phenotyping involves the 
acquisition and assessment of complex plant features 
including yield, biotic and abiotic stress tolerance, geometric 
structure, and other biochemical and physiological aspects. 
Plant breeding requires the assessment of attributes that are 
significant commercially [16]. The basic method of manual 
measuring or scoring used in traditional phenotyping is 
laborious, time-consuming, and tiresome [17]. Speed breeding 
and precise farming have raised the bar for phenotyping's 
efficiency, precision, reliability, and innovation. First, the 
cornerstone is increased precision and reliable phenotyping. 
Second, non-destructive, fast and reproducible phenotyping, 
like senescence dynamics, are becoming more and more in 
demand [18]. Third, it is hard to assess novel, high-dimensional 
and hidden phenotypes using conventional techniques [19, 20]. 
Very detailed and thorough grasp of phenotypic assaying is 
important in order to correctly describe the adaptation 
strategies of field crops. Sophisticated techniques use non-
destructive remotely sensed data and image processing to 
provide visual information of an individual’s phenotype [21]. 
Collecting salient information regarding the features of a large 
population of plants, as well as their micro and macro 
environment, is one of the primary objectives of plant 
phenomics that we define as the research and application of 

the packages of tools and techniques being used. The other 
two goals are to analyze, organize and store the resulting 
datasets and to perform simulations that can unravel and 
imitate the response of plant ideotypes [22]. Morphological and 
physiological traits may now be frequently and non-
destructively measured across entire populations all through 
the growing period because of advancements in technologies 
including sensors, information technology (IT) and data 
extraction. Unmanned aerial vehicles (UAVs) have grown in 
popularity over the last decade due to their low cost and 
flexibility in acquiring high-resolution (cm-scale) 
photographs [23]. These technologies, nonetheless, are still 
actively being developed. This review provides an overview 
on plant phenomics, which is the study of plants' 
morphology, physiology and behavior which are strongly 
influenced by their environment. Using a variety of 
techniques, researchers argue for the necessity of a system 
that integrates biological functions across genotypes and 
environments from cellular to the field scale. We give an 
overview of "high-throughput phenotyping (HTP)" and 
"vegetation indices (VIs)" and discuss how VIs have been 
used in agricultural research. We review and discuss the most 
current multi-omics studies that integrate HTP with genetic 
research in order to guide breeders and scientists in designing 
a hardy cultivar that can endure climate change and 
multiple stresses. 

 

 
 

Fig 1: Keywords frequency clustering of research and review papers in the past two decades. Here, bigger font size implies frequent usage, 
recent keywords trend show higher use of high throughput phenotyping and phenomics 
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Fig 2: Visualization of reviewed literature based on the publication year and the number of citations 
 

Strategies for plant’s phenotypic assessment 
Recognizing phenotypic features and their interactions with 
one another and (or) the surroundings necessitate an accurate 
and in-depth comprehension of phenotypic plasticity, in both 
regulated and field setting. Utilizing a powerful software 
system, various sensors can generate distinctive, multilayer 
phenotyping datasets [24]. The modern tools for plant biology 
include image-based plant phenotyping technologies that are 
coupled with cutting-edge software [25]. Utilizing high-
dimensional phenotyping assays calls for standard 
experimental procedures, calibrated image sensors, and exact 
evaluations of raw data-processing techniques. The following 
is a list of the tools that are being utilized for phenotypic 
assessment of field crops. 
 
Visible Light Imaging (300-700nm) 
Plant breeding routinely involves visual examination of 
characteristics and related phenotypes. Due to its 
affordability, simplicity of operation and ease of maintenance, 
visible light-based imaging systems have recently come under 
more attention. Two-dimensional (2D) digital pictures 
captured using visible light have been used to quantify shoot-
related attributes, leaf architecture, shoot elongation, seed and 
root morphological characters [26]. Many software provides 
features like "magic wand" or colour threshold that can easily 
estimate canopy cover estimates from nadir-view photos. 
These techniques are employed to assess leaf area index 
(LAI) and light interception [27]. Images obtained at an angle 
of 57.5 can provide accurate estimates of LAI [28]. Shape, 
compactness, solidity and other attributes of an image can be 
utilised to extract more complex information, such as data on 
moisture stress [29]. Critical variables for phenotyping, 
including LAI or panicle length, may be obtained through the 
examination of the precise reconstruction of the canopy 
architecture using a stereo camera setup or photos from 

numerous places [25, 30, 31] used a Lemna Tec 3D Scanalyzer to 
precisely quantify shoot dry weight in order to test wheat 
seedlings for salinity stress. From two-dimensional to three-
dimensional pictures can be created allowing for the 
monitoring of root development, morphology and growth by 
the use of software [32]. Numerous crops have been subjected 
to various stresses and phenotypes using RGB light utilising 
PHENOPSIS [33] for drought in Arabidopsis, Lemna Tec [34] 
for drought stress in barley and salinity stress in maize and 
rice [35, 36]. During the vegetative phase, when plants might be 
subjected to environmental stresses such as drought, salt, and 
high temperatures, phenotypic alterations occur in 
transpiration rate and plant growth. The ability to quantify 
traits in both small and large populations using image analysis 
is an important capability. This makes it possible for us to 
identify and describe genes that control these desired plant 
features. 
 
Fluorescence imaging (600-750nm) 
Fluorescence is the process through which a substance 
absorbs light at a specific wavelength and then emits 
additional low-wavelength light. Fluorescence imaging 
throws blue light at 500 nm on the plants, and those same 
plants release red fluorescence light at 600-750 nm. Software 
is used to picture and analyze the variations in fluorescence, 
turning them into false-color signals [37]. In phenomics, 
chlorophyll fluorescence is typically employed to measure a 
plant's capacity to continue photosynthesis under a variety of 
environmental situations [37]. Fluorescence imaging may also 
be used to examine plant metabolite concentration [27], 
association between photosynthesis and growth stomatal 
mobility [38], phloem transport [39] while plants are under stress 
[40, 41]. Blue (440 nm), green (520 nm), red (690 nm) and far-
red (740 nm) spectral bands are captured by a single 
excitation wavelength to create two forms of fluorescence 
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under ultraviolet illumination i.e., red to far-red region and 
blue to the green region [21]. Its various applications of include 
resolving variability in photosynthetic rate [42]. The majority 
of these fluorescence imaging applications are only applicable 
to model crop seedlings or their single leaves. It necessitates 
the creation of reliable software for phenotyping and standard 
operating procedures. In order to assess growth, morphology, 
colour, and photosynthetic efficiency in rice [35] and 
Arabidopsis thaliana [43] under salt stress as well as to 
distinguish between cold tolerant variants of A. thaliana [44]. 
 
Thermal and Infrared Imaging 
By using Stefan-Boltzmann equation, infrared thermal 
imaging enables the viewing of infrared radiation emitted 
from the object. For imaging, this method takes advantage of 
the interior molecular motions of infrared-emitting materials 
[45]. The two primary wavelengths used by infrared imaging 
systems are near-infrared and far-infrared. Although, the 
thermal sensitive cameras’ have spectral range of 3-14 m [27]. 
Modern cameras have high thermal sensitivity to 
measure traits such as canopy temperature depression with 
greater resolution thanks to advancements in infrared thermal 
technology. NIR spectroscopy has previously employed in 
several research to infer crop growth and yield performances 
of genotypes. This infrared imaging systems offer 
simultaneous high spatial resolution observations and pictures 
across broad fields under various environmental 
circumstances [27]. Additionally, it can assess the canopy 
temperature, leaf colour and relative chlorophyll content [46-

48]. Stomatal behavior under various stress situations has been 
measured using infrared thermal imaging devices, for instance 
to track salinity tolerance among wheat varieties [49]. Thermal 
imaging can monitor the temperature of leaves and canopies 
to assess the water condition of leaves. Stomatal movement is 
used to quantify gas exchange since plants often lose heat 
through transpiration, which causes the plant temperature to 
rise. In dry conditions, the canopy temperature differential 
from the ambient air can be utilized as a proxy for the ability 
to withstand drought. 
 
Spectroscopy imaging 
The result of sun light interacting with plants using spectral 
cameras (Multi or Hyper) is spectral imaging. Hyperspectral 
imaging separates pictures into bands, resulting in images that 
contain a considerable portion of the EM spectrum [50]. Plant 
research has designated distinct spectral zones, such as 
1. NDVI (normalized difference vegetation index). 
2. CRI (carotenoid reflectance index). 
3. PRI (photochemical reflectance index) [22]. 
 
Furthermore, when wavelength rises, reflectance falls and 
absorption increases. This happens as a result of leaf water 
content, which explains its water condition and aids in 
estimating canopy water content. This type of spectral 
reflectance data is used to evaluate vegetation indicators, such 
as ratios and changes at a certain wavelength and to identify 
NDVI. Water availability, pigment content and 
photosynthetically active radiation (PAR) biomass are 
connected with vegetation indicators, which are used to 
compute the biomass, chlorophyll content and grain yield in 
diverse crops [51, 52]. Multispectral and hyper spectral data are 
commonly utilized to estimate canopy moisture content. 
These employ infrared water absorption bands to explain 

different water indices [47, 53]. A double frequency laser, in 
contrast hand, may be range-resolved to ignore surrounding 
soil, which would impede spectral EWT measurement. This 
allows for the estimation of "Equivalent Water Thickness" 
(EWT) [54]. Aside from basic water indices, high-resolution 
spectroscopy and wavelet analysis [55-57] can provide a high 
specificity to canopy moisture content. Moisture contents 
assessments using reflectance data have indeed been fruitfully 
linked to water potential on situation [58, 59], but the prediction 
of water potential under a spectrum of circumstances or plant 
age group is likely to constantly be somewhat limited, as with 
any indirect proxy marker [60]. The application of 
spectroscopic imaging for field phenotyping is well known, 
however spectral cameras and their associated infrastructure 
are costly. Because of its higher resolution, hyperspectral 
imaging is useful in rice for monitoring growth and panicle 
emergence [61]. 
 
Advanced Imaging Technologies 
Technological advances, like 3D structural tomography has 
turned the focus of crop imaging to in vivo live imaging. 
Another technology known as functional imaging focuses on 
changes in the physiology of a plant to measure performance 
under stress, such as ChlF imaging and “Positron Emission 
Tomography” (PET) [42]. “PET” is a non-destructive 
technique image distribution method that employs positron-
emitting radionuclides such as C11, N13 or Fe52 tagged 
metabolite molecules to transport them [62]. “Magnetic 
resonance imaging” or “MRI” is a sophisticated imaging 
method that uses magnetics to create pictures. It may be used 
to photograph the roots in pots as well as interior 
physiological activities in living plants [63, 64] used [C11]-
labeled CO2 to demonstrate shoot-to-root carbon fluxes in 
taproot of sugar beet. MRI may easily detect water dispersion 
and movement through the conductive tissues in crops 
including tobacco and castor [65]. By combining MRI and PET 
technologies, a unique imaging approach for monitoring 
dynamic shifts in plant functionality and structure is created. 
The PlantEye (3D laser scanner) was employed for wheat 
phenotyping in a confined space under control and salt stress 
conditions. The PlantEye scans plants from above, generating 
a data cloud from which the system calculates attributes like 
leaf number and 3D leaf area. Correlations were found 
between the inspected attributes and conventionally observed 
leaf characteristics such as area and biomass in wheat under 
salinity stress [66]. “Forster resonance energy transfer (FRET)” 
is yet another sophisticated method for capturing images of 
tiny molecules in live tissue, simply understood as 
phenotyping at molecular level. This method relies on 
radiometric fluorescence sensors that are genetically 
programmed that bind to and measure quantities of the target 
chemical [67]. A single FRET sensor may be used to identify 
various routes and complex interactions of the sensor target 
molecules. A FRET sensor characterizes and expresses the 
target sensor's cellular/subcellular location and gives data 
with great precision [68]. FRET has been employed in roots 
during sugar transport to detect calcium variations with 
microscopic and real-time spatiotemporal resolution [67]. 
FRET is an excellent method to answer various fundamental 
issues about plant development and evolution. 
 
Vegetation indices and high-throughput phenotyping 
Most objects, including plants, have 3 reactions to 
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electromagnetic radiation (such as light) that are reflected, 
transmitted, or absorbed. To put it another way, each 
substance or plant has a unique spectral signature that can be 
quantified in three major wavelength regions. VIs is the 
statistical transformation of the initial spectrum reflectance, 
and it is derived by measuring and interpreting the incidence 
and condition of vegetation, such as biomass and canopy 
characteristics, using two or more wavebands [69]. These 
indicators enable consistent comparisons of photosynthetic 
rate and canopy architectural alterations. For the statistical 
assessment of vegetation cover, stability, and growth pattern, 
the VIs produced from canopies are an easy and effective 
technique. They are directly determined with no bias or 
preconceptions about land cover classification, soil type, or 
climatic circumstances because they are simple 
transformations of wavelength bands. VIs aids scientists in 
tracking seasonal, inter-annual, and long-term structural 
fluctuations, as well as photoperiodic and biophysical 
vegetation cover factors [70]. As stated earlier, VIs can 
anticipate plant development circumstances utilizing a variety 
of spectrum reflectance bands that are easily captured by 
spectral cameras, making them particularly useful in HTP. 
Nevertheless, there is little data on the application of VIs in 
the farming sector for multi-trait assessment (physiological, 
biotic, and abiotic), repeated multi-environment evaluation, 
and massive population assessment. As a result, it is critical to 
comprehend various VI and HTP applications for crop 

development. Plants are distinguished from other natural 
materials by their unique interaction with sun radiation. Plants 
create energy through photosynthesis and, as a consequence, 
absorb a lot greater blue and red light. They do, however, 
powerfully reflect green and near-infrared (NIR) light [71]. 
Plants are made up of numerous components, such as water, 
nutrients and pigments, and as a result, they exhibit variances 
across the spectrum, providing crucial information about the 
water, nutrient, and pigment levels. For forecasting of plant 
development conditions, the spectral variation is sometimes 
referred to as VIs [72]. Several new VIs has been created to 
analyze the aerial images featured in the literature over the 
years [73-75]. Most of the vegetative indices produced and 
published by researchers are widely used in plant science 
because they are extremely effective in determining different 
characteristics such as leaf greenness, light usage efficiency, 
leaf colour, and moisture content [75]. Most vegetative indices 
is estimated using two or more reflectance wavelengths, 
which are generally involved in photosynthesis pigment 
concentration [71]. However, only few of these VIs has been 
critically compared or evaluated. As a consequence, many 
selected indicators that are often used in vegetative evaluation 
and have an association with yield, fitness and moisture 
content. These are also widely applied in yield prediction. 
Numerous researchers have published data in various crops 
using various sensors for multiple studies, which are 
described in table 1. 

 
Table 1: Achievements of crop studies using remote sensing-based phenotyping techniques 

 

S. No. Crop Type of Study Conducted Type of Sensor References 
1. Maize Nitrogen stress Multispectral [112] 

2. Maize Nitrogen stress Hyperspectral [113] 

3. Mungbean Nitrogen concentrations Hyperspectral [114] 

4. Pulses Biophysical trait assessment (biomass, leaf area index) Hyperspectral [115] 

5. Wheat Disease assessment Hyperspectral [116] 

6. Grapevines Disease assessment Thermal imager [117] 

7. Maize Yield prediction RGB sensor [118] 

8. Soybean Yield prediction Multispectral [119] 

9. Wheat Yield prediction RGB sensor [120] 

10. Wheat Protein assessment Hyperspectral [121] 

 
The constant progress of breeding techniques allows for a 
faster rate of genetic improvement [76]. Farmers and breeders 
have been selecting desirable plants based on phenotypes 
even before DNA and biomarkers were found. In plant 
breeding the more crossings and environments utilized for 
selection; the more likely superior varieties will be 
discovered. Breeder has to be able to simply and precisely 
pick the best offspring by phenotyping a large number of 
lines. To meet anticipated future requirements, the breeding 
output must be increased. Improvements in high-throughput 
genotyping have resulted in quick and low-cost genetic 
knowledge, paving the path for the development of many of 
recombinant inbred lines for phenotyping large mapping 
populations and diversity arrays [77]. Although molecular 
breeding procedures focus primarily on genotypic data, 
nevertheless, phenotypic data is still required [78]. Likewise, 
phenotyping is required to categorize promising occurrences 
in transgenic research [79, 80]. Effective phenotyping is 
anticipated to be required to capitalize on developments in 
conventional, molecular and transgenic breeding and assure 
agricultural genetic enhancement. The need for effective 
phenotyping approaches has been introduced in a variety of 

sectors. Phenotypes are often strong indicators of significant 
biological features such as illness and death [81]. Breeders and 
molecular biologists feel that improved molecular approaches 
can only be beneficial in breeding if quantitative 
characteristics are collected using trustworthy phenotyping 
techniques [82]. High-performance phenotyping approaches 
have the potential to change plant breeding by speeding up the 
generation advancement process [83]. The primary goal is to 
combine several phenotypic techniques for assessing 
agronomic characteristics, stress, and aspects that influence 
crop yield potential to maximize potential and utilize it in 
development of crop varieties. In general, phenotyping in the 
plant remains a challenge since the use of methodologies for 
reliable recording of crucial agronomic features, and crop 
monitoring have not been fully pushed. The HTP faces 
various obstacles in this context, including 
complex/quantitative characteristics, root phenotypic 
plasticity, environmental influence, multi-location, and 
replicated trials field plot measurements. It is especially 
difficult to use the HTP at spatiotemporal resolutions of organ 
or cellular level and root phenotypes [84]. The discovery of 
nondestructive, simple, operational, highly reproducible, 

https://www.thepharmajournal.com/


 
 

~ 2437 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 
sturdy, effective, low-cost, and rapid phenotypic instruments 
is one of HTP's primary difficulties. Furthermore, because 
HTP generates a large amount of data, storing, maintaining, 
and analyzing this data, as well as producing useful biological 
information, are all difficult tasks [85]. To address the 
aforementioned issues, the use of Vis and Hyperspectral 
imaging, and their application in plant HTP is recommended 
by scientists. UAVs have the ability to detect phenotypic trait 
variations across crops while also allowing for the quick and 
cost-effective collecting of various information about 
vegetation across large areas without hurting plants. Vis 
combined with UAVs is gaining popularity, and interest in 
adopting these tools for the HTP of various plant species in on 
a rise among researchers. To archive, manage, and retrieve 
data there are massive open-source online databases available 
(PHENOPSIS DB and PhenoFront) [84]. In addition, unique 
2D (RootScan) and 3D (RootSlice) tools as well as 
computational software (RootReader2D and RootAnalyzer) 
have been created to study plant root features. Recent reviews 
[86-89] have outlined the many HTP platforms as well as the 
necessity for a multidomain strategy to overcome the issues 
that HTP faces. With the progress of HTP, there appears to be 
little question that plant phenomics faces several issues that 
must be solved in the near future. 
 
Multi-Omics research using high-throughput phenotyping 
Many phenotyping approaches have been widely explored in 
recent years, including root profiling [90], Deep Learning for 
abiotic stress [91] and remote sensing and hyperspectral 
imaging technologies for biotic stresses [92, 93]. The genetic 
research and plant breeding methods that have previously 
profited, on the other hand, are rarely acknowledged. Genome 
selection (GS) selects complicated features controlled by 
many alleles with tiny effects using DNA markers and 
statistical modeling. It was originally used in cow breeding 
[94], however, the recent decrease in sequencing costs, GS is 
coming forward as a potent tool for evaluating breeding 
values [95]. Its usefulness is that it can forecast how plants will 
perform prior to a field test. Massive data from individuals or 
groups are required to construct a precise and robust 
prediction model [94]. Markers may now be obtained simply 
and precisely thanks to the advancement of next-generation 
sequencing (NGS) technology. However, phenotyping is a 
major hindrance. High-throughput phenotyping systems have 
been shown to improve grain crop GS. For example, a 
UAV remote-sensing unit with an NIR-GB camera has been 
employed in case of sorghum for high throughput 
phenotypic characterization particularly for plant height and 
because of its low expense and ease of operation, it will be a 
vital tool for marker assisted plant breeding [96]. Wheat GS 
might leverage data on attributes like canopy temperature and 
NDVI received by remote sensing to increase the precision of 
grain production predictions [97]. Furthermore, CIMMYT, 
Mexico investigated several methods trying to combine 
dynamic HTP data and 2254 GBS markers of approximately 
1200 advanced lines of wheat and discovered that genomic 
selection techniques are a feasible way to enhance the genetic 
advance and choose higher-yielding cultivars effectively [98]. 
Investigating biologically relevant phenotypic information 
from multidimensional phenotypes. For modest preliminary 
studies, basic predictive methods are mostly sufficient [99]. On 
the other hand, pointed out that phenotypic tasks like yield 
prediction benefit from high-dimensional and nonlinear 

modelling techniques. However, ML (Machine Learning) 
techniques typically require manually created features, and 
despite the emergence of huge data, their performance has not 
considerably improved [100]. A new paradigm in phenomics 
analysis has been introduced by “Deep Learning” (DL), a sub-
branch of machine learning (ML) that can tackle increasingly 
difficult phenotypic tasks by automatically extracting features 
from large datasets. For instance, hundreds of photos of the 
wheat plants may be used to recognize and count number of 
ears [101, 102]. The requirements for the quality and volume of 
data are frequently stricter for deep learning-based methods. 
Crop development simulations can simulate the interactions 
between crop genetic background, variations in macro-micro 
environments, and package and practices through which they 
can accurately predict plant stress reactions [103], predict the 
impacts of climatic stresses on grain production [104], assess 
the behavior of varieties in a particular environment [105] and 
explain how the interaction of Genotype x Environment 
affects crop yield [106]. Crop Growth Models might therefore 
offer assistance for high-tech farming, variety identification, 
and optimizations of agricultural resources [107].  
The two main categories of multi-omics analytic pipelines are 
phenomics to genomics and genomics to phenomics. 
Quantitative trait loci (QTLs) may be found and potential 
genes or networks identified by combining the “-omics” 
techniques and employing GWAS for various periods and 
settings [7]. Following that, ideal traits (ideotypes) can be 
generated by genetic modification. Rapid and precise analysis 
of phenomics data has the potential to significantly advance 
the integration of multi-dimensional molecular mechanisms 
from plant genes to phenotypes, thereby enhancing our 
comprehension of the plants processes. Multi-omics includes 
genomic, transcriptomic, proteomic, epigenomic and 
metabolomics studies [13]. Multi-omics investigations have 
been accelerated using PRS-based phenomics for finding new 
genetic markers, screening superior varieties and speeding up 
breeding. The dynamic, and non-destructive phenotyping 
offers phenomics data for GWAS studies, enabling quick 
discovery of the genes linked to significant agronomic 
characteristics [108]. For instance, 739 attributes from 235 
germplasm accessions were collected using a micro-CT-RGB 
imaging technology. Two of the 402 substantially related loci, 
each associated with yield and vigour, helped in the selection 
of cultivars with high grain yield [109, 110] evaluated phenotypic 
traits of maize using an autonomous HTP technique and 
found 1000 QTLs and three hotspots. They developed a novel 
method for choosing superior maize varieties and highlighted 
the genetic structure of maize development. This phenotyping 
platform has shown that high-quality genetic selection is 
feasible. A collection of several thousand tobacco mutants 
was successfully evaluated for 18 stable genetic mutations 
using phenomics data [111]. It has been demonstrated that the 
pairing genomic and phenomic data can aid breeders in 
identifying and choosing high-quality wheat genotypes by 
utilizing dynamic phenotyping data for genetic analysis to 
evaluate ideal wheat cultivars under heat and drought 
environments. In conclusion, PRS provides phenotyping 
methods and phenomics expertise to pave the way for multi-
omics investigations. Data processing and modelling 
techniques may be used to extract morphological, 
physiological, and productivity-related attributes from multi-
spatial, multi-temporal, and multi-spectral data. Multifaceted 
phenotypes may be integrated using data which can also 
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convert data into phenomics knowledge. Although there are 
still numerous difficulties, “Proximal Remote Sensing based 
Plant Phenomics” offers unmatched prospects as a gateway 
for multi-omics research. 
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