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Evaluation of chickpea drought tolerance by 

photosynthetic efficiency under soil moisture depletion 

 
Dnyaneshwar A Raut, Sharad R Gadakh and A Blesseena  

 
Abstract 
Numerous metabolic functions, including photosynthesis, endure detrimental consequences under 

drought-stress conditions. As a fact, water scarcity harms the plants' fundamental components, which 

prevents carbon assimilation and harms the photosynthetic machinery. In this regard, the present research 

was conducted to study chickpeas' photosynthetic efficiency (PSII efficiency) under restricted moisture 

levels. We found that six chickpea genotypes differing in their behavior towards depleting soil moisture 

levels viz., 60, 50, 40, 30, and 20% FC evaluated for PSII efficiency. Water stress substantially decreased 

the leaf PSII efficiency in all the genotypes under soil moisture depletions. The G1 had more PSII 

efficiency than the other genotypes under severe soil moisture depletion. However, at the same moisture 

level, the G4 genotype had lower PSII efficiency than the rest of the genotypes. 

 

Keywords: PSII efficiency, chickpea, soil moisture depletion, plant phenomics facility 

 

Introduction 

Chickpea is an excellent season crop (Cerna et al., 2022) [1] and is widely cultivated in India 

(Halder et al., 2022) [5]. India is the world's largest consumer of chickpeas, accounting for 76% 

of total production (Mathew et al., 2022) [11]. It is the world's second most extensively 

cultivated pulse crop and India is the world's leading producer, accounting for 75% of global 

production (Rani et al., 2020) [20]. Chickpeas protein has a higher bioavailability in the human 

body than other pulses (Kaur and Prasad, 2021) [7]. Considering the significance of chickpeas 

as a protein source and in addition to the irrevocable damage caused by drought stress to 

chickpea production, it is critical to implement approaches that can increase tolerance in plants 

to drought stress (Zamani et al., 2022) [24].  

The impacts of drought frequently affect the agriculture and water resource industries. They 

may significantly reduce agricultural production and completely ruin crops in developed 

countries, resulting in significant economic losses (Sweet et al., 2017; Tian et al., 2018) [22, 23]. 

Insufficient soil moisture at sowing leads to poor germination rate, germination speed, 

potential and seedling growth in chickpeas (Chauhan et al., 2022) [2]. There have been 

numerous investigations into how different chickpea traits are impacted by drought, including 

shoot biomass (Purushothaman et al., 2016; Istanbul et al., 2022) [18, 6], and morphological 

(Kobru et al., 2022; Sachdeva et al., 2022) [8, 21], physiological (Rahbarian et al., 2012) [14], 

biochemical (Mafakheri et al., 2010) [10] and molecular traits (Garg et al., 2016) [4]. Critical 

physiological and biochemical processes in chickpeas, such as photosynthesis, CO2 

availability, respiration, cell growth and other crucial cellular metabolisms, are all negatively 

impacted by drought stress (Chaves et al., 2009; Pinheiro and Chaves, 2011) [3, 17]. Drought 

stress decreases nodules' quantity, size, and vigor, leading to less effective nitrogen fixation in 

chickpeas (Muruiki et al., 2018) [13].  

The major focus of the present investigation was on the PSII sensitivity of six chickpea 

genotypes under depleting soil moisture stress. It was our goal to determine which chickpea 

candidates were stress-tolerant or stress-sensitive to based on the PSII efficiency performance 

at the flowering stage. 

 

Materials and Methods 

During the Rabi season of 2021–2022, the experiment was conducted at the National Institute 

of Abiotic Stress Management (NIASM), Baramati (MS), India. The following six chickpea 

genotypes were used in the pot experiment, G1: BDNG-2018-15, G2: PG-1201-20, G3: Vijay, 

C-19159, C-19294, and G6: Vishal, which was run in a controlled environment. Twelve-inch-

diameter plastic pots containing 13 kg of clay loam soil in which seven seeds each were  
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planted. Six genotypes were grown for 24 days in an open 

environment before being moved to the National Plant 

Phenomics Facility to monitor the loss of soil moisture every 

day. Inside the phenomics, there was an automated provision 

employed to maintain the required soil moisture levels in the 

respective pots. In the present investigation, 24 days old 

seedlings of all the genotypes were subjected to 60% (well 

watered), 50%, 40%, 30%, and 20% (severe water stress) 

field capacity (FC). Four pots each for well-watered and 

water-stressed treatment were maintained (as replicates) for 

each genotype throughout the experiment. 

The statistical analysis of data was carried out by the standard 

method and critical differences were calculated. Whenever the 

results were significant, critical differences (C.D.) at 5% 

significance were worked out. The data were analyzed in 

Factorial Randomized Block Design (FRBD). 

 

Results  

The result revealed that depleting soil moisture levels could 

markedly affect the PSII efficiency in all the genotypes. There 

was a great genotypic variation for PSII efficiency found 

under the depleting soil moisture levels. Irrespective of the 

soil moisture depletion, G2 had the highest (0.694) and G4 

had the lowest (0.533) PSII efficiency compared to rest of the 

genotypes (Table-1).  

 
Table 1: PS II efficiency as indicated by Fv/Fm under depleting soil moisture levels in chickpea genotypes. 

 

Genotypes 
Depleting soil moisture levels in% field capacity 

60 50 40 30 20 Mean 

G1 0.780 0.705 0.538 0.434 0.373 0.566 

G2 0.864 0.807 0.722 0.597 0.479 0.694 

G3 0.809 0.778 0.66 0.55 0.357 0.631 

G4 0.735 0.672 0.525 0.377 0.357 0.533 

G5 0.801 0.733 0.652 0.488 0.391 0.613 

G6 0.844 0.753 0.687 0.341 0.326 0.590 

Mean 0.806 0.741 0.631 0.464 0.381 0.604 

Main factor- Depleting soil moisture levels Subfactor – Genotypic variation Interaction effect 

SE (m) ± 0.013 SE (m) ± 0.014 SE (m) ± 0.031 

CD at 5% 0.036 CD at 5% 0.040 CD at 5% 0.089 

 

All the genotypes at 60% FC (well-watered) had a 

significantly maximum PSII efficiency. When these 

genotypes gradually submitted to moisture depletions (50, 40, 

30 and 20% FC), the PSII efficiency substantially declined. 

There was a progressive decrement in PSII efficiency by up to 

40% FC. However, thereafter at severe stress, PSII efficiency 

significantly declined in all the genotypes (Table-1, Fig-1).  

 

 
 

Fig 1: Response of PSII efficiency of chickpea genotypes to depleting soil moisture levels 

 

Among the genotypes, G2 had the higher PSII efficiency 

under both well-watered and severe water-stress conditions. 

After the imposition of the water stress, the PSII efficiency of 

G2 gradually declined toward severe water stress condition. 

The intensity of declination was lower during the earlier 

period of the water stress; however, in later stages, it was 

drastically higher. In between, G2 maintained a significant 

difference over all the genotypes from 50% FC to 20% FC. At 

severe water stress, PSII efficiency in all the genotypes were 

not significantly distinguished. However, G2 was the only 

genotype that maintained significantly higher PSII efficiency 

than the rest of the genotypes (0.479) (Table-1, Fig-2).  
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Fig 2: Response of PSII efficiency of G2 and G6 genotypes to depleting soil moisture levels 

 

The G4 had significantly lower PSII efficiency than the rest of 

the genotypes under well-watered condition. Whereas, at 

severe water stress G6 exhibited a lower PSII efficiency than 

the rest of the genotypes. The PSII efficiency of G6 gradually 

decreased from well-watered to 40% FC; however, it 

drastically dropped between 40 - 30% FC. In the end, between 

30- 20% FC, the PSII efficiency of G6 was almost the same. 

(Fig-2). 

 

 
 

Fig 3: Response of PSII efficiency of chickpea genotypes to well watered (60%) and water severe water stressed (20%) FC conditions 

 

The G2, G5, G4, G1, G3 and G6 had 1.80, 2.0, 2.1, 2.1, 2.3 

and 2.6 folds lower PSII efficiency under severe water stress 

than well-watered conditions (Fig-3). However, G2 

outperformed the other genotypes under severe water stress 

conditions in response to PSII efficiency. 

 

Discussion 

In the present investigation, the PSII efficiency of all the 

genotypes was markedly decreased by water stress impact. 

Seifikalhor et al. (2022) [25] revealed a similar result, noting 

that all chickpea plants PSII efficiency dropped as moisture 

levels declined (100, 60, 40, and 20% FC). There was a 

substantial genetic variation existed between the genotypes 

for PSII efficiency in the current study. In the severe water 

stress, G2 had the higher and G6 had the lower PSII 

efficiency. This might be that’s not that G2 is drought tolerant 

and G6 is a drought intolerance genotype as drought tolerant 

plants can function better under water-stressed conditions 

than that drought intolerant plants (Meshram et al., 2022) [12]. 

A similar finding was obtained by Rahbarian et al. (2012) [19], 

who found that under drought stress conditions (25% FC), 

PSII efficiency (Fv/Fm ratio) was higher in all the drought 

tolerant genotypes (MCC392, MCC877) than in drought-

sensitive genotypes (MCC68, MCC448) at the seedling and 

pod initiation stages of chickpea. It has been demonstrated 

that drought stress inhibits PSII activity and has a detrimental 

effect on energy transfer pathways in mungbean (Batra et al., 

2014) [15]. Drought sensitive variety of chickpeas experienced 

a greater reduction (64%) than the tolerant variety (26%) 

(Khan et al., 2019) [16]. 

 

Conclusion 

Under both well-watered and severe water stress conditions, 

there was a substantial genetic variation in PSII efficiency. 

Under severe water stress conditions, the G2 genotype 

performed better. This can be explored for drought-tolerant 

identification. Genotypes with high PSII efficiency can lead 

to drought tolerance.  
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