www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(5): 2747-2750 © 2023 TPI

www.thepharmajournal.com Received: 12-02-2023 Accepted: 22-04-2023

A.S. Chincholkar

M.Sc. Scholar Department of Entomology, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj, Uttar Pradesh, India

Usha Yadav

Assistant Professor, Department of Entomology, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj, Uttar Pradesh, India

P.N. Magar

Subject Matter Specialist, Department of Entomology, Krishi Vighyan Kendra, Yavatmal. Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India

A.S. Chincholkar M.Sc. Scholar Department of Entomology, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj, Uttar Pradesh, India

Corresponding Author:

Comparative field efficacy of biorationals and chemical insecticides against shoot and fruit borer, *Earias vittella* in okra

A.S. Chincholkar, Usha Yadav and P.N. Magar

Abstract

An investigation was conducted to evaluate comparative field efficacy of biorantionals and chemical insecticides against shoot and fruit borer in Okra during Kharif 2022-23. All the biorationals and chemical insecticides tested were significantly reduced the infestation of okra shoot and fruit borer (OSFB) compared to control. The lowest 9.22% shoot and 8.66% fruit infestation of OSFB was observed in treatment Chlorantraniliprole 18.5% SC and found to be the best superior treatment followed by Emamectin benzoate 5% SC recorded 10.20% and 13.46% shoot and fruit damage. The next effective treatment was Imidacloprid 17.8% SL recorded 11.09% shoot and 14.97% fruit damage. Among the biorationals, NSKE 5% found to be most effective treatment recorded 12.25% shoot and 15.81% fruit damage followed by Azadirachtin 1500 ppm 13.84% and 16.64%, shoot and fruit damage respectively. Among the myco-insecticides Metarhizium anisopliae 1x108 CFU/gm was found to be most effective treatment and recorded 14.46% shoot and 17.59% fruit damage and least effective treatment was *Verticillium lecanii* 1x10⁸ CFU/gm recorded highest (15.28%) shoot and (18.19%) fruit damage in okra. However, when cost benefit ratio was worked out, the highest yield (154.28q/ha) with C:B ratio of 1:7.21 was recorded in T₆ Chlorantraniliprole 18.5% SC and found to be best superior treatment followed by T₅ Emamectin benzoate 5% SG recorded 135.15 q/ha yield with 1:6.95 C: B ratio followed by T7 Imidacloprid 17.8 SL recorded (129.51 q/ha and 1:6.67), T₃ NSKE 5% (97.69 q/ha and 1:4.83), T₄ Azadiractin 1500 ppm (91.71 q/ha and 1:4.58), T_1 Metarhizium anisopliae 1x10⁸ CFU/gm (75.64 q/ha and 1:3.89), T_2 Verticillium lecanii 1x10⁸ CFU/gm (64.87 q/ha and 1:3.34) and recorded lowest yield 50.14 q/ha and C:B ratio 1:2.68 in T₈ control.

Keywords: Biorational, Chemical, Insecticide, Earias vittella, okra, fruit, shoot. Borer

Introduction

Okra [*Abelmoschus esculentus* (L.) Moench] is an annual vegetable belonging to Malvaceae family; it is also known by different names *viz.*, ladies' finger, bhindi, bamia, okro or gumbo in different parts of the world. Okra is known as "Queen of vegetables". Okra is valued for its tender green fruits. It is cooked in variety of ways and used as an ingredient in a wide variety of dishes. Its medicinal value has also been reported in curing ulcers and relief from haemorrhoids. Okra is a very useful plant. It is mainly cultivated for edible fruits but its other parts like leaves, flower petals, stems and roots are also being used as a food, biofuel and as a medicine in different parts of the world (Janu and Kumar 2022)^[3].

The total area and production under okra in the world is reported to be 1.26 million ha and 22.29 million tonnes, respectively. It is mainly grown in India, Nigeria, Sudan, Pakistan, Ghana, Egypt, Saudi Arabia, Mexico and Cameroon. India ranks first in okra production 5784.0 thousand tonnes (72% of total world production) having area of 1148.0 thousand hectares with an annual production of 6346 million tonnes and productivity of 11.9 million tonnes/ha. The major okra growing states in India includes Andhra Pradesh (20%), West Bengal (15%), Bihar (14%), Orissa (11%), Gujarat (10%), Jharkhand (7%), Maharashtra (4%), Assam (3%) and Haryana (3%) (Madhuri and Kumar, 2022)^[7].

In India, more than 13 species of insect pests have been reported to infest okra crop reported 15 arthropod species in okra ecosystem. Among all, shoot and fruit borer (*Earias spp.*) is considered as the most important pest in okra which causes both quantitative and qualitative losses of the crop. Okra Shoot and fruit borer (OSFB) is active throughout the year and prefers high temperature. During the rainy season borer damage is relatively less. Several overlapping generations are completed in a year (Vastav *et al.*, 2019)^[18].

The larvae bore into the terminal growing shoots, floral buds, flowers and fruits of okra, resulting in cessation, withering and drying of infested shoots, tender leaves and heavy shedding of floral buds and flowers. The infested fruits become malformed and are rendered unfit for human consumption as well as for procurement of the seeds. Grown up larva damages many fruits results in 54.04% yield loss and reduces the vitality of the plant. The borer has been reported to cause 24.6 to 26.0 percent damage to okra shoots and 40 to 100% loss to fruits (Akolkar et al., 2021)^[1]. Chemicals belonging to various groups are recommended for the management of okra shoot and fruit borer Earias vittella (Fabricius). Due to continuous and indiscriminate use of chemicals pesticides leads to problems in the natural ecosystem, environmental pollution, pest resistance and health hazards and suppress the population of natural enemies, etc. Hence, an investigation was planned to evaluate the comparative field efficacy of biorationals and chemical insecticides against shoot and fruit borer, Earias vittella in okra.

Material and Methods

The experiment was conducted on comparative filed efficacy of biorationals and chemical insecticides against shoot and fruit borer, *Earias vittella* in okra at the research plot of the Department of Agricultural Entomology at Central Research Field, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj during the *Kharif* season of 2022. Research field situated at 25°27' North latitude 80°50' East longitudes and at an altitude of 98 meter above sea level. The climate is typically semi-arid and sub-tropical. The maximum temperature reaches up to 47 °C in summer and drops down to 2.5 °C in winter.

The experiment was conducted in randomized block design with three replications. Sowing was done by dibbling following similar recommended agronomic practices to all the treatments from sowing to the harvesting.

Experimental Details

Design	Random Block Design	Gross cultivated area	105.6m ²
Replication	3	Net cultivated area	48 m²
Treatment	8	Crop	Okra
Plot size	2mx 1m	Variety	"Arka Anamika"
Total no of plots	24	Seed rate	7 kg ha ⁻¹
Total length of area	12m	Row to row distance	45 cm
Total width of area	8.8m	Plant to plant distance	30 cm

Table 1: Details of experiment

Treatments Selected Insecticides		Formula-tions	Trade name	Dosages Gm\ml\lit	Group	
T_1	Metarhizium anisopliae	1×10 ⁸ CFU/gm	Metarhoz- P	5gm/lit	Biopesticide	
T_2	Verticillium lecanii	1×10 ⁸ CFU/gm	Verticoz- P	5gm/lit	Biopesticide	
T ₃	NSKE	5%		50g/lit	Botanicals	
T_4	Azadirachtin	1500 ppm	Neem Aura	5ml/lit	Botanicals	
T 5	Emmamectin benzoate	5% SG	Proclaim	0.3gm/lit	Diamide	
T ₆	Chlorantraniliprole	18.5% SC	Coragen	0.5ml/lit	Anthranilic Diamide	
T ₇	Imidacloprid	17.8% SL	Confidence 555	0.4ml/lit	Neonicotinoids	
T ₈	Control	-	-	-	-	

Table 2: Particulars of Treatments

Method of recording observation and filed efficacy of treatments

The spraying was done after the population level reaches ETL. The observations was recorded one day before spraying, 3rd, 7th and 14th days after spraying. The assessment of the shoot damage was done by calculating the number of damaged shoots and total numbers of healthy shoots observed from five randomly selected plants per plot and was expressed in percentage. The percentage of fruit damage was assessed at each picking by counting the total number of affected fruits from each plot.

Shoot and fruit Infestation

The total number of shoots and fruits, as well as the number of infested shoots and fruits, were visually observed and recorded at weekly intervals from five selected plants in each plot. Shoot and fruit infestation was determined by percent using the following formula given by (Choudhury *et al.*, 2021)^[2].

% Shoot infestation =
$$\frac{\text{Number of infested shoots}}{\text{Number of total shoots}} \times 100$$

% Fruit infestation = $\frac{\text{Number of infested fruits}}{\text{Number of total fruits}} \times 100$

Statistical Analysis

The observations and data obtained were subjected to Randomized Block Design for their significance and were statistically analyzed.

Results and Discussion

Comparative field efficacy of biorationals and chemical insecticides on shoot infestation against Okra Shoot and fruit borer

From data presented in Table 3, it was revealed that after First Spray, lowest percent shoot infestation was recorded in T_6 Chlorantraniliprole 18.5% SC (9.22) and was most effective in shoot borer management, followed by T_5 Emamectin benzoate 5% SC (10.20), T_7 Imidacloprid 17.8 SL (11.09), T_3 NSKE 5% (12.25), T_4 Azadirachtin 1500 ppm (13.84) and T_1 *Metarhizium anisopliae* 1x10⁸ CFU/gm (14.46). However, T_2 *Verticillium lecanii* 1x10⁸ CFU/gm (15.28), is found to be least effective than all the treatments and is significantly superior over the Untreated control T_8 (24.40).

Comparative field efficacy of biorationals and chemical insecticides on fruit infestation against Okra Shoot and fruit borer

From data depicted in Table 4 revealed that after Second

spraying, lowest percent of fruit infestation was recorded in T₆ Chlorantraniliprole 18.5% SC (8.66) was most effective, followed by T₅ Emamectin benzoate 5% SC (13.46), T₇ Imidacloprid 17.8 SL (14.97), T₃ NSKE 5% (15.81), T₄ Azadirachtin 1500ppm (16.64) and T₁ *Metarhizium anisopliae* 1x10⁸ CFU/gm (17.59). However, T₂ *Verticillium lecanii* 1x10⁸ CFU/gm (18.19), is found to be least effective than all the treatments and is significantly superior over the untreated control T₈ (25.71).

Shrivastava *et al.*, (2017) and Patil *et al.*, (2022) ^[15] reported similar results pertaining to Chlorantraniliprole 18.5% SC and was found to be most effective in managing the shoot and fruit borer infestation on okra. Manikanta and Kumar (2022) and Madhuri and Kumar (2022) ^[7], Janu and Kumar (2022) ^[3] and Kulkarni and Kumar (2022) ^[5] reported similar findings Yadav *et al.*, (2017) ^[19] and Rakshith and Kumar (2017) ^[16], Mulani *et al.*, (2022) ^[9] and Kumar *et al.*, (2017) ^[16] Kaveri and Kumar (2020) ^[4] and Panbude *et al.*, (2019) ^[13] reported similar results pertaining to the biorationals and other chemical insecticides.

Comparative field efficacy of biorationals and chemical insecticides on yield of Okra

From table 5 it was revealed that the highest yield of okra fruits

was recorded in T₆ Chlorantraniliprole 18.5% SC (154.28q/ha) followed by T₅ Emamectin benzoate 5% SG (135.15 q/ha), T₇ Imidacloprid 17.8 SL (129.51 q/ha), T₃ NSKE 5% (97.69 q/ha), T₄ Azadiractin 1500 ppm (91.71q/ha), T₁ *Metarhizium anisopliae* 1x10⁸ CFU/gm (75.64 q/ha), T₂ *Verticillium lecanii* 1x10⁸ CFU/gm (64.87 q/ha) and T₈ (50.14 q/ha). However, T₂ *Verticillium lecanii* 1x10⁸ CFU/gm (64.87 q/ha) was found to be least effective among all the treatments over the untreated Control plot T₈ (50.14 q/ha) yield.

When cost benefit ratio worked out, interesting result was revealed in table 5, the most superior and economical treatment was found to be Chlorantraniliprole 18.5% SC having highest Benefit Cost ratio of 1:7.21 followed by T_5 Emamectin benzoate 5% SG (1:6.95), T_7 Imidacloprid 17.8 SL (1:6.67), T_3 NSKE 5% (1:4.83), T_4 Azadiractin 1500 ppm (1:4.58), T_1 *Metarhizium anisopliae* 1x10⁸ CFU/gm (1:3.89), T_2 *Verticillium lecanii* 1x10⁸ CFU/gm (1:3.34) and T_8 untreaed control (1:2.68). Kumar *et al.*, (2017) ^[6], Naidu and Kumar (2017) ^[10], Srivastava *et al.*, (2014) ^[17], Patel *et al.*, (2021) ^[14], Janu and Kumar (2022) ^[3], Pachole *et al.*, (2017) ^[12], Patil *et al* (2021), Nalini and Kumar (2016) ^[11] and Kaveri and Kumar (2020) ^[4] reported the similar findings and are in close conformity with the present investigation.

Table 3:	Comparative	e field efficacy	of biorationals and	l chemical inse	ecticides on shoo	t infestation as	gainst Okra Sho	oot and fruit borer
	1					(

Treatments		Percent Shoot infestation							
	Treatments	1DBS	3DAS	7DAS	14DAS	MEAN			
T ₁	Metarhizium anisopliae (1x10 ⁸ CFU/gm)	16.39	14.01	14.37	15.01	14.46			
T2	<i>Verticillium lecanii</i> (1x10 ⁸ CFU/gm)	16.73	14.39	15.55	15.89	15.28			
T3	NSKE 5%	16.53	13.07	11.30	12.37	12.25			
T ₄	Azadirachtin 1500 ppm	15.64	13.66	13.85	14.00	13.84			
T ₅	T ₅ Emamectin benzoate 5% SG		10.75	8.92	10.94	10.20			
T ₆	T ₆ Chlorantraniliprole 18.5% SC		9.88	8.07	9.73	9.22			
T7	T ₇ Imidacloprid 17.8 SL		11.54	9.59	12.12	11.09			
T8	Untreated Control	16.76	21.15	24.58	27.47	24.40			
	Overall mean	16.61	13.55	13.27	14.69	13.84			
F - test		NS	S	S	S	S			
C.D.at 0.05%		-	0.58	0.65	0.45	0.44			
	S.Ed A (+)	0.47207	3.469631	5.31905	5.554899	4.760795			

*DBS- Days before spraying #DAS- Days after spraying

Table 4: Comparative filed efficacy of biorationals and chemical insecticides on fruit infestation against Okra Shoot and fruit borer

Treatments		Percent Fruit infestation							
	Treatments	1DBS	3DAS	7DAS	14DAS	MEAN			
T_1	Metarhizium anisopliae (1x10 ⁸ CFU/gm)	18.61	17.14	17.78	17.86	17.59			
T ₂	Verticillium lecanii (1x10 ⁸ CFU/gm)	18.50	17.85	18.33	18.39	18.19			
T3	NSKE 5%	18.94	16.49	15.53	15.42	15.81			
T 4	Azadirachtin 1500 ppm	18.15	16.95	16.51	16.46	16.64			
T ₅	T ₅ Emamectin benzoate 5% SG		14.28	12.13	13.96	13.46			
T ₆	Γ ₆ Chlorantraniliprole 18.5% SC		10.45	7.99	7.56	8.66			
T ₇	Imidacloprid 17.8 SL	19.31	15.96	13.90	15.04	14.97			
T8	Untreated Control	20.95	23.66	25.89	27.58	25.71			
	Overall mean		16.59	16.00	16.53	16.37			
F - test		NS	S	S	S	S			
C.D.at 0.05%		-	0.42	0.46	0.56	0.34			
	S.Ed A (+)	0.845273	3.692594	5.215868	5.578707	4.815073			

*DBS- Days before spraying #DAS- Days after spraying

Sr. No:	Treatment	Yield	Price (Rs/q)	Gross return	Common cost	Treatment cost	Total cost	B:C
110:	/ā			(K 5/II <i>a</i>)	(K 5/IIa)	(K 5/IIA)	(K 5/Hā)	Tatio
T_1	Metarhizium anisopliae 1x10 ⁸ CFU/gm	75.64	2500	189100	46746	1796	48542	1:3.89
T_2	<i>Verticillium lecanii</i> 1x10 ⁸ CFU/gm	64.87	2500	162175	46746	1796	48542	1:3.34
T ₃	NSKE 5%	97.69	2500	244225	46746	3800	50546	1:4.83
T_4	Azadirachtin 1500 ppm	91.71	2500	229275	46746	3260	50006	1:4.58
T 5	Emamectin benzoate 5% SG	135.15	2500	337875	46746	1815	48561	1:6.95
T_6	Chlorantraniliprole 18.5% SC	154.28	2500	385700	46746	6710	53456	1:7.21
T_7	Imidacloprid 17.8 SL	129.51	2500	323775	46746	1760	48506	1:6.67
T_8	Control	50.14	2500	125350	46746	-	46746	1:2.68

Table 5: Economics of Okra Cultivation and production

Conclusion

From the present study, the results showed that Chlorantraniliprole 18.5% SC (T6), is the most effective treatment against Shoot and Fruit borer (*Earias vittella*) and produces maximum yield and recorded highest Cost-Benefit ratio compared to other treatments. While Emamectin benzoate 5% SG (T5), Imidacloprid 17.8% SL (T7) and NSKE 5% (T₃) has shown average results. Azadirachtin 1500ppm (T4), *Metarrhizium anisopliae* 1x10⁸ CFU/gm (T1) and *Verticillium lecanii* 1x10⁸ CFU/gm found to be least effective in managing *Earias vittella*. Hence, it is suggested that the effective insecticides may be alternated in harmony with the existing Integrated pest management programs to avoid the problems associated with insecticidal resistance, pest resurgence etc.

References

- 1. Akolkar PK, Deore BV, Patil CS, Saindane YS. Bioefficacy of newer insecticides against okra shoot and fruit borer, *Earias vittella* fabricius. International Journal of Chemical Studies. 2021;9(1):3220-3223.
- 2. Choudhury MAR, Mondal MF, Khan AU, Hossain M S, Azad MOK, Prodhan MDH *et al.* Evaluation of biological approaches for controlling shoot and fruit borer (*Earias vittella* F.) of okra grown in peri-urban area in Bangladesh. Horticulturae. 2021;7(1):7.
- 3. Janu R, Kumar A. Field efficacy of selected insecticides against okra shoot and fruit borer [*Earias vittella* (Fabricius)]. The Pharma Innovation Journal. 2022;11(4):1549-1551.
- Kaveri G, Kumar A. Field efficacy of certain biopesticides against okra shoot and fruit borer, *Earias vittella* (Fabricius) on okra, *Abelmoschus esculentus* (Linn.) Moench. Journal of Entomology and Zoology Studies. 2020;8(6):1279-1281.
- Kulkarni S, Kumar A. Efficacy and economics of some selected insecticides against shoot and fruit borer (*Earias vittella*) of okra [*Abelmoschus esculentus* (L.) Moench]. The Pharma Innovation Journal. 2022;11(5):982-985.
- Kumar S, Singh VK, Kumar A, Chandra N. Bioefficacy of Coragen against Shoot and Fruit Borer, *Earias vittella* (Fab.) in Okra. International Journal of Current Microbiology and Applied Sciences. 2017;6(10):1021-1027.
- 7. Madhuri K, Kumar A. To study the field efficacy of certain chemicals and neem oil against shoot and fruit borer *Earias vittella* (Fabricius) on okra. The Pharma Innovation Journal. 2022;11(4):1575-1578.
- 8. Manikanta SEN, Kumar A. Efficacy of certain chemicals and essential oils against okra shoot and fruit borer [*Earias vittella* (Fabricius)]. The Pharma Innovation Journal. 2022;11(4):1385-1389.

- 9. Mulani HB, Bantewad SD, Jayewar NE. Biointensive management of Okra shoot and fruit borer *Earias vittella*. The Pharma Innovation Journal. 2021;10(8):681-690.
- 10. Naidu G, Kumar A. Field efficacy of certain insecticides against shoot and fruit borer (*Earias vittella* Fab.) on rainy season okra in Prayagraj (UP). Journal of Entomology and Zoology Studies. 2019;7(6):1211-1213.
- 11. Nalini C, Kumar A. Population dynamics and comparative efficacy of certain chemicals and biopesticides against okra shoot and fruit borer (shoot and fruit borer (*Earias vitella*) The Bioscan. 2016;11(3):1589-1592.
- Pachole SH, Thakur S, Simon S. Comparative bioefficacy of selected chemical insecticides and bio-rationals against shoot and fruit borer [*Earias vittella* (Fabricius)] on okra [*Abelmoschus esculentus* (L.) Moench]. Journal of Pharmacognosy and Phytochemistry. 2017;6(5):1493-1495.
- 13. Panbude CU, Neharkar PS, Hemant P, Raut AR. Seasonal incidence and biorational management of fruit and shoot borer (*Earias vitella* (Fab.)) on okra. Journal of Pharmacognosy and Phytochemistry. 2019;8(5):1574-1576.
- 14. Patel N, Raghu Nandan B, Patel N, Sivakumar G. Bioefficacy of different biocontrol agents against shoot and fruit borer, *Earias vittella* (Fabricius) (Lepidoptera: Noctuidae) in okra. Journal of Biological Control. 2021;35(3):196-204.
- 15. Patil HN, Tayde AR, Sakharam CA. Comparative efficacy of botanicals against shoot and fruit borers, (*Earias vittella* Fabricius) on okra. The Pharma Innovation Journal. 2022;11(2):222-224.
- Rakshith KA, Kumar A. Field Efficacy of Selected Insecticides and Neem Products against Shoot and Fruit Borer [*Earias vittella* (Fabricius)] on Okra [*Abelmoschus esculentus* (L.) Moench]. International Journal of Current Microbiology and Applied Sciences. 2017;6(8):122-128.
- Srivastava N, Srivastava AK, Mukerjee A, Gupta P, Singh SK. Efficacy of selected insecticides and neem oil against shoot and fruit borer (*Earias vittella* Fab.) on okra (*Abelmoschus esculentus* L.). International Journal of Pharmacy and Life Sciences. 2014;5(12):4096-4099.
- Vastav ASS, Yadav P, Kumar A. Economics of various insecticides against shoot and fruit borer [(*Earias vittella*) Fab.] of Okra [*Abelmoschus esculentus* (L.) Moench] under field conditions. Journal of Pharmacognosy and Phytochemistry. 2019;8(5):1469-1471.
- 19. Yadav SK, Kumawat KC, Deshwal HL, Kumar S, Manohar SVS. Bioefficacy of newer and biorational insecticides against shoot and fruit borer, *Earias spp.* on okra. International Journal of Current Microbiology and Applied Sciences. 2017;6(7):1035-1044.