www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(5): 4101-4105 © 2023 TPI

www.thepharmajournal.com Received: 09-02-2023 Accepted: 19-04-2023

Isha Ahlawat

Department of Agronomy, CCS Haryana Agricultural University, Hisar, Haryana, India

BR Kamboj

Department of Agronomy, CCS Haryana Agricultural University, Hisar, Haryana, India

Dharam Bir Yadav

Department of Agronomy, CCS Haryana Agricultural University, Hisar, Haryana, India

Garima Dahiya

Department of Soil Science, CCS Haryana Agricultural University, Hisar, Haryana, India

Corresponding Author: Isha Ahlawat Department of Agronomy, CCS Haryana Agricultural University, Hisar, Haryana, India

Effect of different doses and method of application of Metribuzin on wheat crop under rice residue cover situations

Isha Ahlawat, BR Kamboj, Dharam Bir Yadav and Garima Dahiya

Abstract

The escalating demands of a growing population necessitate not only the sustenance of wheat production but also its further augmentation through high-yielding approaches mainly effective weed management. Two field experiments to evaluate different doses and method of application of Metribuzin on growth and yield of wheat crop under zero and conventional tillage systems was conducted at Agronomy Research Farm of CCS Haryana Agricultural University, RRS, Kaul, during *rabi* season of 2021-22 and 2022-23. POE metribuzin 350 g ha⁻¹ urea-mix broadcast at 35 DAS with PDN enhanced the growth and productivity of wheat and registered significantly taller height of plants, no. of tillers mrl⁻¹ and grain yield (57.35 and 54.10 q ha⁻¹ in zero tillage; 61.40 and 58.04 q ha⁻¹ in conventional tillage system during 2021-22 and 2022-23, respectively) and lowest grain yield was observed with pre-emergence application of Metribuzin at a dose of 210 g ha⁻¹. Additionally, the application of pinoxaden, a post-emergence herbicide, along with different metribuzin treatments led to an increase in wheat grain yield under both tillage systems (51.37 and 48.12 q ha⁻¹ in zero tillage; 53.62 and 50.26 q ha⁻¹ in conventional tillage system during 2021-22 and 2022-23, respectively) as compared to no PDN (48.42 and 45.17 q ha⁻¹ in zero tillage; 50.13 and 46.77 q ha⁻¹ in conventional tillage during 2021-22 and 2022-23, respectively).

Keywords: Metribuzin, pinoxaden, productivity, tillage

Introduction

Wheat (*Triticum aestivum* L.), which serves as the primary staple food crop in North-Western India, frequently encounters weed infestation, posing a significant challenge to its cultivation. The escalating demands of a growing population necessitate not only the sustenance of wheat production but also its further augmentation through high-yielding approaches. To achieve this, it is imperative to mitigate agricultural losses while increasing overall production. Weeds, in particular, emerge as a major obstacle, inflicting the highest magnitude of damage among all pests. Weed competition constitutes a critical constraint in crop production, as these invasive plants vie with cultivated crops for essential resources such as moisture, nutrients, light, and space, thereby depriving the crops of crucial inputs. A comprehensive investigation by Chhokar *et al.* (2012) ^[2] emphasized the substantial impact of weeds on wheat cultivation, reporting a remarkable 51% reduction in grain yield observed in weedy check plots compared to treated plots (Singh *et al.*, 2015) ^[12].

Phalaris minor (*P. minor*), a troublesome grass weed, has been found to cause significant reductions in crop yields on a large scale (Chhokar *et al.*, 2012) ^[2]. Resistance in *Phalaris minor* against the herbicide isoproturon first emerged in 1992-93, likely due to its prolonged and continuous use for more than 10-15 years, coupled with the practice of monocropping rice-wheat rotations. This resistance led to complete crop failure or immature crop harvest for fodder (Malik and Singh, 1995) ^[7]. Consequently, isoproturon was replaced with alternative herbicides in 1997-98 and onwards. However, several of these alternate herbicides, including clodinafop-propargyl, fenoxaprop-ethyl, sulfosulfuron, and pinoxaden, which were recommended for controlling *Phalaris minor*, have also become ineffective due to the evolution of resistance (Brar *et al.*, 2002; Dhawan *et al.*, 2012; Kaur *et al.*, 2016) ^[1,3,5]. Therefore, it is necessary to screen and evaluate new herbicides, either alone or in combination, as they remain crucial tools in managing resistant *Phalaris minor*. However, the availability of novel herbicides with different modes of action and comparable efficacy against *Phalaris minor* is currently limited. *Phalaris minor* emergence is influenced by factors such as wheat planting time, weather conditions, moisture availability, and field preparations.

Under zero tillage conditions, the initial emergence of P. minor is lower compared to conventional tillage methods for sowing wheat. In India, herbicides are typically applied once during the wheat crop season, making the timing of herbicide application crucial to minimize crop-weed competition and maximize the effectiveness of the herbicide.

Metribuzin, a herbicide that inhibits Photosystem II (PS II), has been proven effective in controlling P. minor as well as other grassy and broadleaf weeds (Malik et al., 2005; Punia et al., 2005)^[8, 10]. Research has shown that compared to sulfosulfuron and tralkoxydim, metribuzin outperforms in suppressing weed growth and increasing wheat yield (Pandey and Verma, 2002)^[9]. Metribuzin applied 40 DAS provided good control of P. minor resulting in similar yield to manual weeding. Other studies indicated that application of metribuzin at the 2-leaf stage of grass weeds was more effective. Fedoruk and Shirtliffe (2011) [4] found that metribuzin was more effective against weeds in lentil when applied early at four node stage to avoid crop injury. Similarly, its application at the 2-leaf stage of winter wheat and 4-tiller stage of spring wheat was found better for crop safety. Stage of weed at herbicide application is important for weed control efficiency as 2-leaf stage of P. minor and A. ludoviciana proved more appropriate to achieve better control with isoproturon compared to 6-leaf weed stage (Singh and Malik, 1993; Singh et al., 1999)^[14, 16]. Similar results on stage of P. minor were observed for other graminicides (Singh et al., 2010)^[15]. The current study aims to assess the efficacy of metribuzin in managing P. minor in wheat and its impact on wheat growth and productivity. This evaluation will involve testing different application timings, varying dosages, and different methods of application, both with and without the presence of rice crop residue.

Materials and methods

Studies to observe the growth and yield of wheat crop as affected by weed management practices under zero and conventional tillage system began in November 2022 and 2023 at Agronomy Research Farm of CCS Haryana Agricultural University, RRS, Kaul. Soil of experimental field was clay loam in texture, low in available N (106 kg ha⁻¹), medium in available P (21 kg ha⁻¹) and high in available K (360 kg ha⁻¹) with alkaline in reaction (pH 8.65). The size of each plot was 7.0 m \times 2.2 m. The wheat variety used for sowing in the experiment was WH 1184 during 2021-22 and 2022-23. The seeding rate was 100 kg ha⁻¹ and row spacing was 20 cm. Recommended dose of fertilizers (20 kg N and 40 kg P ha⁻¹ through DAP) was applied as basal dose at sowing and need based irrigation was given to the crop through flooding. Pre-emergent herbicides were applied just after sowing in moist soil, early post-emergence (EPOE) herbicides and post-emergence (POE) herbicides were applied at 21 and 35 DAS with a knapsack sprayer fitted with a flat fan nozzle using a spray volume of 500 L ha⁻¹ and broadcasting treatments with different media viz. sand and urea. The crop was managed according to the standard agronomic practices of the state university. The experiment was laid out in factorial randomised block design with three replications. The treatments consisted of total sixteen metribuzin (MTZ) treatments with and without pinoxaden (PDN) viz. PRE MTZ @ 210 and 350 g ha-1 spray; EPOE (21 DAS) MTZ @ 105 spray and MTZ @ 210, 280 and 350 g ha-1 sand and urea-mix broadcast; POE (35 DAS) MTZ @ 105 spray and MTZ @

210, 280 and 350 g ha⁻¹ sand and urea-mix broadcast. For recording the plant height, ten plants were selected randomly and height was measured from the ground level to the top of the plant. The number of tillers per meter row length (mrl⁻¹) was counted in each plot at 120 DAS, and the average value was calculated. After threshing, grain yields from each plot were weighed separately. The weight of the bundle was recorded before threshing, and the weight of the straw was measured and expressed in kg ha⁻¹.

Before statistical analysis, the data on density of weeds were subjected to square root to improve the homogeneity of the variance. All the data were subjected to the analysis of variance (ANOVA) separately for each year for better understanding of the results. The significant treatment effect was judged with the help of 'F' test at the 5% level of significance. The 'OPSTAT' software of CCS Haryana Agricultural University, Hisar was used for statistical analysis (Sheoran *et al.* 1998) ^[11].

Result and Discussion

The dominant weed species found in the experimental fields were primarily Phalaris minor, accompanied by other broadleaf weeds such as Melilotus indica, Rumex dentatus, and Medicago denticulata, although their densities were relatively low. Plant height is a crucial parameter that signifies the growth and development of crops, reflecting their strength, vigour, and adaptability to the surrounding environmental conditions. At 120 days after sowing (DAS), the recorded plant heights are presented in Table 1. Significantly taller plants were observed when metribuzin at a rate of 350 g ha⁻¹, combined with a urea-mix broadcast application at 35 DAS, was used alongside post-emergence PDN (113.1 and 106.9 cm in zero tillage; 117.2 and 112.3 cm in conventional tillage system during the years 2021-22 and 2022-23, respectively). This result was statistically comparable to the use of POE metribuzin at rates of 210, 280, and 350 g ha⁻¹, applied as sand and urea-mix broadcast at 35 DAS. The number of tillers per meter row length (mrl⁻¹) at 120 DAS is presented in Table 2. The data demonstrates that the highest number of tillers mrl⁻¹ was achieved with the application of metribuzin at a rate of 350 g ha⁻¹, combined with a urea-mix broadcast and postemergence PDN (131 and 124 in zero tillage; 134 and 130 in conventional tillage system recorded in the years 2021-22 and 2022-23, respectively). When PDN was applied postemergence with metribuzin, an increase in the number of tillers mrl-1 was observed compared to treatments without PDN. Additionally, a greater number of tillers mrl⁻¹ was obtained when metribuzin application was performed at 35 DAS compared to the same treatment applied at an earlier post-emergence stage (21 DAS). Better weed management resulted in to greater number of effective tillers and consequently higher yields. These results are in conformity with earlier findings (Singh et al. 2015, Kaur et al. 2017)^[13,6]. The analysis of data presented in Table 3 indicated that the treatments had a significant effect. The grain yield of wheat showed a consistent increase with higher doses of metribuzin ranging from 210 to 350 g ha⁻¹ in both years. The application of metribuzin as a post-emergence treatment at 35 days after sowing (DAS) resulted in higher grain yield compared to the same treatment applied at 21 DAS. The lowest grain yield was observed with pre-emergence application of metribuzin at a dose of 210 g ha⁻¹ (42.09 and 38.84 q ha⁻¹ in zero tillage; 43.60 and 40.24 q ha⁻¹ in conventional tillage system during

https://www.thepharmajournal.com

2021-22 and 2022-23, respectively), but it increased as the dose was increased to 350 g ha-1. When comparing the application of metribuzin as a urea-mix versus a sand-mix at both 21 and 35 DAS, the urea-mix resulted in higher grain yield. Additionally, the application of pinoxaden, a postemergence herbicide, along with different metribuzin treatments led to an increase in wheat grain yield (51.37 and 48.12 q ha⁻¹ in zero tillage; 53.62 and 50.26 q ha⁻¹ in conventional tillage system during 2021-22 and 2022-23, respectively) compared to when pinoxaden was not applied $(48.42 \text{ and } 45.17 \text{ q } \text{ha}^{-1} \text{ in zero tillage; } 50.13 \text{ and } 46.77 \text{ q } \text{ha}^{-1}$ in conventional tillage system during 2021-22 and 2022-23, respectively). The average straw yield data recorded at harvest (Table 4) was significantly affected by the different treatments. Among the various treatments, the highest straw vield was obtained with metribuzin at a dose of 350 g ha⁻¹ as a urea-mix broadcast at 35 DAS with the addition of PDN. This treatment resulted in significantly higher straw yield

compared to the other treatments (78.54 and 76.08 g ha⁻¹ in zero tillage; 82.09 and 79.56 q ha⁻¹ in conventional tillage system during 2021-22 and 2022-23, respectively). The application of PDN in combination with metribuzin significantly increased the straw yield in both years. The postemergence application of metribuzin at 35 DAS with both urea and sand-mix broadcast showed better grain yield compared to the post-emergence application at 21 DAS. The pre-emergence application of metribuzin at a dose of 210 g ha⁻¹ without PDN resulted in the lowest straw yield, *i.e.* 71.23 and 67.17 q ha⁻¹ in zero tillage; 72.43 and 69.53 q ha⁻¹ in conventional tillage system during 2021-22 and 2022-23, respectively. Significant effect of stage of weed on herbicide efficacy has been well documented for several herbicides (Singh et al., 1999) ^[12]. Other studies indicated that application of metribuzin at the 2-leaf stage of grass weeds was more effective.

 Table 1: Effect of metribuzin (MTZ) and pinoxaden (PDN) on plant height (cm) at 120 DAS of wheat in both zero and conventional tillage during 2021-22 and 2022-23.

				Zero ti	llage		Conventional tillage						
Turaturat	Time of	2021-22			Ŭ	2022-23			2021-22		2022-23		
I reatment	application	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean
MTZ-210 spray	DDE	101.1	100.4	100.8	94.9	94.2	94.6	105.2	104.5	104.9	100.3	99.6	100.0
MTZ-350 spray	FKE	101.6	100.8	101.2	95.4	94.6	95.0	105.7	104.9	105.3	100.8	100.0	100.4
MTZ-105 spray		105	102	103.5	98.8	95.8	97.3	109.1	106.1	107.6	104.2	101.2	102.7
MTZ-210 sand-mix		105.4	102.5	104.0	99.2	96.3	97.8	109.5	106.6	108.1	104.6	101.7	103.2
MTZ-280 sand-mix		105.8	102.8	104.3	99.6	96.6	98.1	109.9	106.9	108.4	105.0	102.0	103.5
MTZ-350 sand-mix	21 DAS	106.2	103.2	104.7	100.0	97.0	98.5	110.3	107.3	108.8	105.4	102.4	103.9
MTZ-210 urea-mix		106.7	103.9	105.3	100.5	97.7	99.1	110.8	108	109.4	105.9	103.1	104.5
MTZ-280 urea-mix		107.1	104.4	105.8	100.9	98.2	99.6	111.2	108.5	109.9	106.3	103.6	105.0
MTZ-350 urea-mix		107.5	104.8	106.2	101.3	98.6	100.0	111.6	108.9	110.3	106.7	104.0	105.4
MTZ-105 spray		108.2	107.9	108.1	102.0	101.7	101.9	112.3	112	112.2	107.4	107.1	107.3
MTZ-210 sand-mix		111.1	108.6	109.9	104.9	102.4	103.7	115.2	112.7	114.0	110.3	107.8	109.1
MTZ-280 sand-mix		111.6	109.1	110.4	105.4	102.9	104.2	115.7	113.2	114.5	110.8	108.3	109.6
MTZ-350 sand-mix	35 DAS	112	109.5	110.8	105.8	103.3	104.6	116.1	113.6	114.9	111.2	108.7	110.0
MTZ-210 urea-mix		112.4	109.8	111.1	106.2	103.6	104.9	116.5	113.9	115.2	111.7	109.0	110.4
MTZ-280 urea-mix		112.7	110.2	111.5	106.5	104.0	105.3	116.8	114.3	115.6	111.9	109.4	110.7
MTZ-350 urea-mix		113.1	110.7	111.9	106.9	104.5	105.7	117.2	114.8	116.0	112.3	109.9	111.1
Mean		108.0	105.7		101.8	99.5		112.1	109.8		107.2	104.9	
	PDN treatments $= 0.7$					PDN treatments =0.6			reatments	= 0.8	PDN treatments = 0.7		
CD (p=0.05)	MTZ treatments = 2.0 PDN × MTZ = NS					treatments V × MTZ =	s = 1.8 = NS	MTZ (PDN	reatments	= 2.2 NS	$\begin{array}{l} \text{MTZ treatments =} 2.1 \\ \text{PDN} \times \text{MTZ} = \text{NS} \end{array}$		

 Table 2: Effect of metribuzin (MTZ) and pinoxaden (PDN) on no. of tillers mrl⁻¹ of wheat at 120 DAS in zero and conventional tillage conditions

				Zero	tillage		Conventional tillage							
Treatment	Time of	2021-22			2	2022-23		2021-22		2022-23				
	application	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean	With PDN	Without PDN	Mean	
MTZ-210 spray	DDE	87	84	86	80	77	79	90	87	89	87	84	86	
MTZ-350 spray	FKE	87	86	87	83	81	82	90	89	90	89	86	88	
MTZ-105 spray	-	98	89	94	91	82	86	101	92	97	98	89	94	
MTZ-210 sand-mix		100	90	95	93	82	88	103	93	98	100	90	95	
MTZ-280 sand-mix		102	91	97	95	84	90	105	94	100	102	91	97	
MTZ-350 sand-mix	21 DAS	103	93	98	96	86	91	106	96	101	103	93	98	
MTZ-210 urea-mix		105	95	100	98	88	93	108	98	103	105	94	100	
MTZ-280 urea-mix		106	95	101	101	90	95	109	98	104	106	95	101	
MTZ-350 urea-mix		108	97	103	101	90	96	111	100	106	108	97	103	
MTZ-105 spray		111	109	110	104	102	103	114	112	113	111	109	110	
MTZ-210 sand-mix	25 D 4 6	121	111	116	114	104	109	124	114	119	121	111	116	
MTZ-280 sand-mix	33 DAS	122	113	118	115	105	110	125	116	121	122	113	118	
MTZ-350 sand-mix		125	114	120	118	107	113	128	117	123	125	114	120	

The Pharma Innovation Journal

https://www.thepharmajournal.com

MT7 210		107	117	100	120	110	115	120	120	105	107	117	100
M1Z-210 urea-mix		127	11/	122	120	110	115	130	120	125	127	11/	122
MTZ-280 urea-mix		128	119	124	123	112	118	131	122	127	128	118	123
MTZ-350 urea-mix		131	120	126	124	113	119	134	123	129	130	120	125
Mean		110	101		104	95		113	104		110	101	
	PD	PDN treatments $= 2$			PDN	treatment	s = 2	PDN treatments $= 1$					
CD (p=0.05)	МТ	Z treatm	MTZ treatments $= 4$			MTZ treatments $= 5$			MTZ treatments $= 4$				
	PE	$\mathbf{N} \times \mathbf{MT}$	Z = NS		PDN	\times MTZ =	NS	$PDN \times MTZ = NS$			$PDN \times MTZ = NS$		

Table 3: Effect of metribuzin (MTZ) and pinoxaden (PDN) on grain yield (q ha-1) of wheat in zero and conventional tillage conditions

		Zero tillage							Conventional tillage					
Treatment	Time of		2021-22			2022-23	3		2021-22			2022-23		
Treatment	application	With	Without	Mean	With	Without	Mean	With	Without	Mean	With	Without	Mean	
		PDN	PDN	10.11	PDN	PDN		PDN	PDN	10 -	PDN	PDN	10.10	
MTZ-210 spray	PRE	42.78	42.09	42.44	39.53	38.84	39.19	43.96	43.60	43.78	40.60	40.24	40.42	
MTZ-350 spray	THE	43.10	42.67	42.89	39.85	39.42	39.64	44.21	43.88	44.05	40.85	40.52	40.69	
MTZ-105 spray		47.72	43.78	45.75	44.47	40.50	42.49	49.45	44.64	47.05	46.09	41.28	43.69	
MTZ-210 sand-mix		48.98	44.22	46.60	45.73	40.97	43.35	49.91	45.63	47.77	46.55	42.27	44.41	
MTZ-280 sand-mix		49.09	44.95	47.02	45.84	41.70	43.77	50.73	45.96	48.35	47.37	42.60	44.99	
MTZ-350 sand-mix	21 DAS	49.88	45.60	47.74	46.63	42.35	44.49	51.25	46.54	48.90	47.89	43.18	45.54	
MTZ-210 urea-mix	1	50.27	45.74	48.01	47.02	42.49	44.76	51.72	47.06	49.39	48.36	43.70	46.03	
MTZ-280 urea-mix		50.59	46.25	48.42	47.34	43.07	45.21	52.35	47.34	49.85	48.99	43.98	46.49	
MTZ-350 urea-mix		51.00	47.12	49.06	47.75	43.87	45.81	52.83	48.75	50.79	49.47	45.39	47.43	
MTZ-105 spray		52.01	51.74	51.88	48.76	48.49	48.63	54.04	53.59	53.82	50.68	50.23	50.46	
MTZ-210 sand-mix		54.87	52.32	53.60	51.62	49.07	50.35	57.87	54.56	56.22	54.51	51.20	52.86	
MTZ-280 sand-mix		55.09	53.01	54.05	51.84	49.76	50.80	58.36	54.95	56.66	55.00	51.59	53.30	
MTZ-350 sand-mix	35 DAS	55.92	53.25	54.59	52.67	50.00	51.34	59.30	55.66	57.48	55.94	52.30	54.12	
MTZ-210 urea-mix		56.36	53.72	55.04	53.11	50.47	51.79	59.90	56.12	58.01	56.54	52.76	54.65	
MTZ-280 urea-mix		56.97	54.01	55.49	53.72	50.76	52.24	60.67	56.74	58.71	57.31	53.38	55.35	
MTZ-350 urea-mix		57.35	54.25	55.80	54.10	51.00	52.55	61.40	57.12	59.26	58.04	53.76	55.90	
Mean		51.37	48.42		48.12	45.17		53.62	50.13		50.26	46.77		
	PDN	PDN treatments $= 0.45$					s = 0.49	PDN t	reatments	= 0.43	PDN treatments = 0.49			
CD (p=0.05)	MTZ	Z treatme	ents = 1.27		MTZ treatments $= 1.39$			MTZ treatments $= 1.21$			MTZ treatments = 1.38			
	PD	$N \times MT$	Z = 1.79		PD	$N \times MTZ$	= 1.97	PDN	$I \times MTZ =$	= 1.71	$PDN \times MTZ = 1.95$			

Table 4: Effect of metribuzin (MTZ) and pinoxaden (PDN) on straw yield (q ha⁻¹) of wheat in zero and conventional tillage conditions

		Zero tillage							Conventional tillage						
Treatment	Time of		2021-22			2022-23	}		2021-22			2022-23			
Ireatment	application	With	Without	Moon	With	Without	Moon	With	Without	Moon	With	Without	Moon		
		PDN	PDN	wiean	PDN	PDN	witan	PDN	PDN	Wiean	PDN	PDN	Witan		
MTZ-210 spray	DDE	71.34	71.23	71.29	67.94	67.17	67.56	72.68	72.43	72.56	69.85	69.53	69.69		
MTZ-350 spray	FKE	71.76	71.31	71.54	68.30	67.85	68.08	72.74	72.53	72.63	69.96	69.73	69.84		
MTZ-105 spray		73.85	7184	72.85	71.39	69.38	70.39	76.40	73.01	74.71	73.87	70.48	72.18		
MTZ-210 sand-mix		73.91	71.92	72.91	71.45	69.46	70.45	76.47	73.92	75.20	73.94	71.39	72.67		
MTZ-280 sand-mix		73.94	72.04	72.99	71.48	69.58	70.53	77.18	74.05	75.62	74.65	71.52	73.09		
MTZ-350 sand-mix	21 DAS	74.35	72.08	73.22	71.89	69.62	70.76	77.60	74.45	76.02	75.07	71.92	73.49		
MTZ-210 urea-mix		74.80	72.27	73.54	72.34	69.81	71.08	77.87	74.69	76.28	75.34	72.16	73.75		
MTZ-280 urea-mix		74.94	72.50	73.72	72.48	70.04	71.26	78.57	75.01	76.79	76.04	72.48	74.26		
MTZ-350 urea-mix		74.98	72.76	73.87	72.52	70.30	71.41	79.03	76.21	77.62	76.50	73.68	75.09		
MTZ-105 spray		76.24	76.21	76.23	73.78	73.75	73.77	79.93	79.36	79.64	77.40	76.83	77.11		
MTZ-210 sand-mix		78.15	76.80	77.48	75.69	74.34	75.02	81.11	80.00	80.56	78.58	77.47	78.03		
MTZ-280 sand-mix		78.43	77.00	77.72	75.97	74.54	75.26	81.16	80.07	80.62	78.63	77.54	78.09		
MTZ-350 sand-mix	35 DAS	78.20	77.10	77.65	75.74	74.64	75.19	81.43	80.26	80.84	78.90	77.73	78.31		
MTZ-210 urea-mix		78.48	77.26	77.87	76.02	74.80	75.41	81.55	80.67	81.11	79.02	78.14	78.58		
MTZ-280 urea-mix		78.28	77.34	77.81	75.82	74.88	75.35	81.57	80.72	81.15	79.04	78.19	78.62		
MTZ-350 urea-mix		78.54	77.72	78.13	76.08	75.26	75.67	82.09	80.89	81.49	79.56	78.36	78.96		
Mean		75.64	74.21		73.06	71.59		78.59	76.77		76.02	74.20			
	PD	N treatme	ents = NS		PDN treatments = NS			PDN	treatment	s = NS	PDN treatments = NS				
CD (p=0.05)	MTZ	Z treatme	ents = 1.12		MTZ	MTZ treatments $= 1.20$			treatments	= 1.83	MTZ treatments $= 2.10$				
	PI	$DN \times MT$	TZ = NS		$PDN \times MTZ = NS$			PDI	$N \times MTZ$	= NS	$PDN \times MTZ = NS$				

Conclusion

Based on present investigation, it may be concluded that POE metribuzin 350 g ha⁻¹ urea-mix broadcast at 35 DAS with PDN enhanced the growth and productivity of wheat. The grain yield of wheat showed a consistent increase with higher doses of metribuzin ranging from 210 to 350 g ha⁻¹ during

both years. Timely application, however, is crucial for the control of grassy and broadleaf weeds to realize full potential of herbicide and increased productivity at farmers' field.

References

1. Brar LS, Walia US, Jand S, et al. Characterization of

isoproturon resistant *Phalaris minor* biotypes exposed to alternate herbicides under cropped and uncropped situations. Indian Journal of Weed Science. 2002;34:161-164.

- 2. Chhokar RS, Sharma RK, Sharma I, *et al.* Weed management strategies in wheat-A review. Journal of Wheat Research. 2012;4:1-21.
- 3. Dhawan RS, Singh N, Singh S, *et al.* Littleseed canary grass resistance to sulfonylurea herbicides and its possible management with pendimethalin. Indian Journal of Weed Science. 2012;44(4):218-224.
- 4. Fedoruk LK, Shirtliffe SJ *et al.* Herbicide choice and timing for weed control in imidazolinoneresistant lentil. Weed Technology. 2011;25:620-625.
- Kaur N, Kaur T, Kaur S, Bhullar MS, *et al.* Development of cross resistance in isoproturon resistant Phalaris minor Retz. in Punjab. Agricultural Research Journal. 2016;53:69-72.
- Kaur T, Kaur S, Bhullar MS *et al.* Control of canarygrass in wheat with pre-mixture of pinoxaden plus clodinafoppropargyl. Indian Journal of Weed Science. 2017;49(3):223-225.
- Malik RK, Singh S *et al. Littleseed canarygrass* (Phalaris minor) resistance to isoproturon in India. Weed Technology. 1995;9:419-425.
- Malik RS, Yadav A, Malik RK, Punia SS, *et al.* Efficacy of flufenacet and metribuzin against weeds in wheat. Indian Journal of Weed Science. 2005;37(3&4):171-174.
- 9. Pandey J, Verma AK, *et al.* Effect of atrazine, metribuzin, sulfosulfuron and tralkoxydim on weeds and yield of wheat (*Triticum aestivum* L.). Indian Journal of Agronomy. 2002;47(1):72-76.
- 10. Punia SS, Sharma SD, Dahiya SS, Malik RK *et al.* Evaluation of prometryn and metribuzin against weeds in wheat (*Triticum aestivum* L.). Indian Journal of Weed Science. 2005;37(1&2):26-28.
- 11. Sheoran OP, Tonk DS, Kaushik LS, Hasija RC, Pannu RS. *et al.* Statistical Software Package for Agricultural Research Workers. In: Recent Advances in information theory, Statistics & Computer Applications (Eds. DS Hooda and RC Hasija). CCS HAU, Hisar; c1998. p. 139-143.
- Singh Samunder, Kirkwood RC, Marshall G, *et al.* A review of the biology and control of Phalaris minor Retz. (*Littleseed canary* grass) in cereals. Crop Protection. 1999;18:1-16.
- 13. Singh S, Dhaka AK, Hooda VS, *et al.* Evaluation of Traxos 5% EC (Pinoxaden + Clodinofop propargyl) against Phalaris minor and other grassy weeds in Wheat. Haryana Journal of Agronomy. 2015;31(1&2):1-8.
- Singh Samunder, Malik RK, *et al.* Effect of time of application of isoproturon on the control of weeds in late sown wheat. Indian Journal of Weed Science. 1993;25:66-69.
- 15. Singh Samunder, Ashok Yadav, Punia SS, Malik RS, Balyan RS, *et al.* Interaction of stage of application and herbicides on some Phalaris minor populations. Indian Journal of Weed Science. 2010;42:144-154.