www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(5): 1471-1478 © 2023 TPI

www.thepharmajournal.com Received: 19-04-2023 Accepted: 15-05-2023

GJ Patel

Tribal Research cum Training Center, Anand Agricultural University, Devgadh Baria, Gujarat, India

CJ Patel

Tribal Research cum Training Center, Anand Agricultural University, Devgadh Baria, Gujarat, India

YB Chauhan

Tribal Research cum Training Center, Anand Agricultural University, Devgadh Baria, Gujarat, India

AY Makani

Tribal Research cum Training Center, Anand Agricultural University, Devgadh Baria, Gujarat, India

Corresponding Author: GJ Patel Tribal Research cum Training Center, Anand Agricultural University, Devgadh Baria, Gujarat, India

Performance of *rabi* sweet corn (*Zea mays* L. Saccharata. Sturt.) Under different levels of nitrogen, phosphorus and potash applied through drip system

GJ Patel, CJ Patel, YB Chauhan and AY Makani

Abstract

A field experiment was conducted at Tribal Research cum Training Centre, Anand Agricultural University, Devgadh Baria, Dist. Dahod, Gujarat during the rabi season of the year 2019-20, 2020-21 and 2021-22. The experiment was carried out in split plot design with eighteen treatments replicated three times. The treatments details included T1: N1P1K0 (80:20:00 NPK kg/ha), T2: N1P1K1 (80:20:40 NPK kg/ha), T3: N1P2K0 (80:40:00 NPK kg/ha), T4: N1P2K1 (80:40:40 NPK kg/ha), T5: N1P3K0 (80:60:00 NPK kg/ha), T₆: N₁P₃K₁ (80:60:40 NPK kg/ha), T₇: N₂P₁K₀ (100:20:00 NPK kg/ha), T₈: N₂P₁K₁ (100:20:40 NPK kg/ha), T₉: N₂P₂K₀ (100:40:00 NPK kg/ha), T₁₀: N₂P₂K₁ (100:40:40 NPK kg/ha), T₁₁: $N_2P_3K_0 \ (100:60:00 \ \text{NPK} \ \text{kg/ha}), \ T_{12}: \ N_2P_3K_1 \ (100:60:40 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_{13}: \ N_3P_1K_0 \ (120:20:00 \ \text{NPK} \ \text{Kg/ha}), \ T_$ kg/ha), T14: N3P1K1 (100:20:40 NPK kg/ha), T15: N3P2K0 (120:40:00 NPK kg/ha), T16: N3P2K1 (120:40:40 NPK kg/ha), T₁₇: N₃P₃K₀ (120:60:00 NPK kg/ha) and T₁₈: N₃P₃K₁ (120:60:40 NPK kg/ha). Sugar 75 variety of sweet corn was used as a test crop. The results revealed that due to different levels of nitrogen, the highest Green cob yield (17053, 18253, 19153 and 18152 kg/ha) were found with treatment N_3 : (120 kg N/ ha) in first year, second year, third year and in pooled basis, respectively. While in case of phosphorus, the highest Green cob yield (16893, 18093, 18993 and 17993 kg/ha) were found with treatment $P_3 - (60 \text{ kg } P_2O_5/ha)$ in first year, second year, third year and in pooled basis, respectively. Same trend was found in case of green fodder yield (kg/ha). From the present investigation, it could be concluded that growing rabi hybrid sweet corn through drip irrigation system (0.8 PEF) are recommended to fertilize the crop with 120 kg N/ha {(105 kg N through Urea & 15 kg N through Urea phosphate) (24 kg as basal and remaining 96 kg in four equal splits at 20, 30, 40 and 50 DAS)} and 40 kg P2O5/ha through urea phosphate (08 kg as basal and remaining 32 kg in four equal splits at 20, 30, 40 and 50 DAS) through fertigation to get higher green cob yield and net return.

Keywords: Sweet corn, Zea mays L. Saccharata. Sturt.

Introduction

Sweet corn (Zea mays L. Saccharata Sturt.) also known as sugar corn, is a hybrid of maize (Zea mays L.) specifically bred to increase the sugar content. Sweet corn is introduced from the USA. The fruit of the sweet corn plant is the corn kernel. It has a sugary rather than a starchy endosperm and a creamy texture. The low starch level makes the kernel wrinkled rather than plumpy Chaturvedi and Chandel (2005) ^[3]. Sweet corn cannot be regarded as a staple food, but it is consumed fresh as a confection. Sweet corn is a variety of maize with high sugar content. Sweet corn is the result of a naturally occurring recessive mutation in the genes which control the conversion of sugar to starch inside the endosperm of the corn kernel. Unlike field corn varieties, which are harvested when the kernels are dry and mature (dent stage), sweet corn must be picked when immature (milk stage) and prepared and eaten as a vegetable, rather than a grain Anonymous, (2021)^[1]. Among all types of maize, Sweet corn (Zea mays saccharine) has commercial importance. Many experimental findings revealed that higher crop yield of maize grown for grain could obtain only when the plant get sufficient quantities of nutrients during there lifespan. Hence, the balanced fertilization is very important to get the maximum yield, so it was felt necessary to study the effect of fertilizer levels on growth and yield of sweet corn. Fertilized the crop through fertigation or artificial are substances containing chemical elements that improve growth and productiveness of plants. Maize crop responds very well to water and nutrient application. To achieve higher water use efficiency, traditional irrigation methods should be replaced with micro irrigation systems. Drip irrigation is one of the best alternate in delivering water to the plant. Maize is one of the amenable crops for drip irrigation system, which is an efficient method of irrigation

(Zhu et al., 2007)^[11].

The introduction of simultaneous micro-irrigation and fertilizer application (fertigation) opens new possibilities for controlling water and nutrient supplies to crops, besides maintaining the desired concentration and distribution of nutrients and water into the soil (Bar-Yosef, 1999)^[12]. Hence Adoption of micro irrigation, may help in saving significant amount of water and increase the quality and quantity of produce.

In view of paucity of appropriate research, "Performance of *rabi* sweet corn (*Zea mays* L. Saccharata. Sturt.) under different levels of nitrogen, phosphorus and potash applied through drip system" experiment was conducted at Tribal Research cum Training Centre (TRTC), Anand Agricultural University, Devgadh Baria, during *rabi* season of 2019-20, 2020-21 and 2021-22.

Materials and Methods

A field experiment was conducted at Tribal Research cum Training Centre, Anand Agricultural University, Devgadh Baria, Dist. Dahod, Gujarat during the rabi season of the year 2019-20, 2020-21 and 2021-22. The experimental soil was sandy loam with good drainage and fair moisture retention capacity. The experimental soil was low in available nitrogen (228 kg/ha), medium in available phosphorous (35 kg/ha) and fairly medium in available potash (145 kg/ha). The soil was free from acidity and salinity. The experiment was carried out in split plot design with eighteen treatments replicated three times. The treatments details included T₁: N₁P₁K₀ (80:20:00 NPK kg/ha), T₂: N₁P₁K1 (80:20:40 NPK kg/ha), T₃: N₁P₂K₀ (80:40:00 NPK kg/ha), T₄: N₁P₂K₁ (80:40:40 NPK kg/ha), T₅: N1P3K0 (80:60:00 NPK kg/ha), T6: N1P3K1 (80:60:40 NPK kg/ha), T₇: N₂P₁K₀ (100:20:00 NPK kg/ha), T₈: N₂P₁K₁ (100:20:40 NPK kg/ha), T₉: N₂P₂K₀ (100:40:00 NPK kg/ha), T₁₀: N₂P₂K₁ (100:40:40 NPK kg/ha), T₁₁: N₂P₃K₀ (100:60:00 NPK kg/ha), T₁₂: N₂P₃K₁ (100:60:40 NPK kg/ha), T₁₃: N₃P₁K₀ (120:20:00 NPK kg/ha), T₁₄: N₃P₁K₁ (100:20:40 NPK kg/ha), T₁₅: N₃P₂K₀ (120:40:00 NPK kg/ha), T₁₆: N₃P₂K₁ (120:40:40 NPK kg/ha), T₁₇: N₃P₃K₀ (120:60:00 NPK kg/ha) and T₁₈: N₃P₃K₁ (120:60:40 NPK kg/ha). Sugar 75 variety of sweet corn was used as a test crop.

Soil analysis was made after taking a composite common soil sample from the entire experimental area initially and after harvest, the samples were drawn separately from each net plot and subjected to chemical analysis. The conventional procedures were used to determine the major soil physicochemical parameters such as soil texture, organic carbon, EC, pH and available soil nutrients such as N, P₂O₅, K₂O, S and Fe. The statistical analysis of the various growth, yield and quality characters studied during the course of investigation was carried out by using statistical method appropriate to Randomized Block Design by computer system at the computer center, Department of the Agricultural Statistics, BACA, AAU, Anand, Gujarat as per the procedure described by Cochran and Cox (1967)^[4]. The variances of different sources of variation in ANOVA were tested by "F-test" and compared with the value of Table-F at 5% level of significance. To elucidate the treatment effect, summary tables along with S.Em. \pm and CD at 5% are given in chapter "experimental results" and their analysis of variance are given in the Appendices at the end.

Results and Discussion

Effect of treatments on growth attributes

Performance of rabi Sweet corn under different levels of nitrogen, phosphorus and potash applied through drip system were found non-significant influence on the plant population recorded at 30 DAS and at harvest in pooled. The interaction effect between nitrogen, phosphorus and potash of plant height at 30 DAS and at harvest was also found nonsignificant. Performance of rabi Sweet corn under different levels of nitrogen, phosphorus and potash applied through drip system were found non-significant influence on the plant height recorded during the year at 30 DAS. While in case of plant height at harvest, the result of the pooled analysis revealed that the tallest plant were found with treatment N₃-(120 kg N/ha) and treatment P₃-(60 kg P₂O₅/ha) in pooled basis. The different levels of potash applied through drip system were found non-significant influence on the plant height recorded at harvest. The interaction effect between nitrogen, phosphorus and potash on plant height was absent in pooled basis. Pasuquin *et al.* (2013)^[7] and Fuller and Harvey (2006)^[5] discovered a similar finding. More cell division and elongation which are favoured by high metabolic activity as a result of adequate nutrient availability may be the cause of increased plant height under high fertilizer application (Pal and Bhatnagar, 2012)^[6].

Effect of treatments on yield attributes and yield

The result of the pooled analysis results revealed that due to different levels of nitrogen, the highest cob length (20.76 cm) were found with treatment N₃-(120 kg N/ha) in pooled basis, respectively. While, in case of phosphorus the results revealed that due to different levels of phosphorus, the highest cob length (20.37 cm) were found with treatment P₃-(60 kg P₂O₅/ha) in pooled basis, respectively. Cob length might be due to favorable conditions during the crop growth stage, increasing the nutrient use efficiency of applied through drip and supplying it continuously to the plant during the crop growth period and incentivizing various physiological activities in the plant that are thought to be essential for proper plant growth and development. These results was also reported by Vyas and Kushwah (2015)^[8] and Billore and Srivastava (2015)^[2]. The different levels of potash applied through drip system were found non-significant influence on the cob length recorded at harvest. The interaction effect between nitrogen, phosphorus and potash on cob length was found non-significant in pooled basis. Performance of rabi Sweet corn under different levels of nitrogen, phosphorus and potash applied through drip system were found significant influence on the Cob girth (cm) recorded at harvest in all the three years as well as in pooled. The interaction effect of cob girth was also found non-significant.

The results revealed that due to different levels of nitrogen, the highest Green cob yield (17053, 18253, 19153 and 18152 kg/ha) were found with treatment N₃-(120 kg N/ha) in first year, second year, third year and in pooled basis, respectively. A perusal of data given in (Table 1) results revealed that due to different levels of phosphorus, the highest Green cob yield (16893, 18093, 18993 and 17993 kg/ha) were found with treatment P₂-(60 kg P₂O₅/ha) in first year, second year, third year and in pooled basis, respectively. Performance of *rabi* Sweet corn under different levels of potash applied through drip system were found non-significant influence on the Green cob yield recorded at harvest Vavilov (1951)^[9]. The

https://www.thepharmajournal.com

interaction effect between nitrogen and phosphorus was found significant in second year and third year on Green cob yield.

Among different interactions, N×P interaction was found significant in second and third year. A perusal of data (Table 2) showed that treatment combination N_3P_2 (120 kg N/ha and 40 kg P_2O_5/ha) gave significantly the highest Green cob yield (20262) which was remained at par with treatment combination N_2P_3 (100 kg N/ha and 60 kg P_2O_5/ha).

The results revealed that due to different levels of nitrogen, the highest Green fodder yield (25314, 29239, 27856 and 27470 kg/ha) were found with treatment N_3 -(120 kg N/ha) in first year, second year, third year and in pooled basis, respectively. A perusal of data given in (Table 1) results revealed that due to different levels of phosphorus, the highest

Green fodder yield (24890, 28311, 27039 and 26747 kg/ha) were found with treatment P_3 -(60 kg P_2O_5 /ha) in first year, second year, third year and in pooled basis, respectively. Performance of *rabi* Sweet corn under different levels of potash applied through drip system were found non-significant influence on the Green fodder yield recorded at harvest.

Among different interactions, N×P interaction was found significant in second and third year. A perusal of data (Table 2) showed that treatment combination N_3P_2 (120 kg N/ha and 40 kg P_2O_5 /ha) gave significantly the highest Green fodder yield (29179 kg/ha,) which was remained at par with treatment combination N_3P_3 (120 kg N/ha and 60 kg P_2O_5 /ha).

Fable 1: Green cob yield (kg/ha) and Gr	een fodder yield (kg/ha) of Sweet co	orn as influenced by different treatments
---	--------------------------------------	---

Treatments		Green cob yi	ield (kg/ha)		Green fodder yield (kg/ha)					
1 reatments	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled		
			Nitrogen le	evels						
N1-(80 kg N/ha)	13858	15058	15958	14958	22184	25880	24280	24114		
N2-(100 kg N/ha)	16431	17631	18531	17531	24170	27617	25760	25848		
N ₃ - (120 kg N/ha)	17053	18253	19153	18152	25314	29239	27856	27470		
SEm <u>+</u>	516.23	536.53	467.50	293.05	599.11	636.93	662.86	365.74		
C.D. at 5%	2027	2107	1836	903	2352	2501	2603	1127		
C.V. %	13.88	13.41	11.09	12.75	10.64	9.80	10.83	10.41		
			Phosphorus	levels						
P1-(20 kg P2O5/ha)	14443	15643	16543	15543	22772	26519	24697	24663		
P2-(40 kg P2O5/ha)	16006	17206	18106	17105	24006	27906	26160	26024		
P ₃ -(60 kg P ₂ O ₅ /ha)	16893	18093	18993	17993	24890	28311	27039	26747		
SEm <u>+</u>	482.09	501.74	455.47	277.21	498.83	493.95	490.56	285.47		
C.D. at 5%	1392	1449	1316	780	1441	1427	1417	803		
			Potash lev	vels						
K0-(00 kg K2O/ha)	15610	16810	17710	16709	23792	27492	26074	25786		
K1-(40 kg K2O/ha)	15952	17152	18052	17051	23986	27666	25857	25836		
SEm <u>+</u>	393.63	409.67	371.89	226.34	407.29	403.31	400.54	233.09		
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS		
$\mathbf{N} imes \mathbf{P}$	Sig	Sig	Sig	Sig	NS	Sig	Sig	Sig		
N imes K	NS	NS	NS	NS	NS	NS	NS	NS		
$P \times K$	NS	NS	NS	Sig	NS	NS	NS	NS		
$N\times P\times K$	NS	NS	NS	NS	NS	NS	NS	NS		
			Year (Y	<u>(</u>)						
SEm <u>+</u>	-	-	-	293.06	-	-	-	365.74		
C.D. at 5%	-	-	-	Sig	-	-	-	Sig		
$\mathbf{Y} \times \mathbf{T}$	-	-	-	NS	-	-	-	NS		
C.V. %	12.96	12.54	10.81	12.06	8.86	7.60	8.02	8.13		

 Table 2: Interaction effect of nitrogen and phosphorus on Green cob yield (kg/ha) and Green fodder yield (kg/ha) of Sweet corn as influenced by different treatments on pooled

	Gre	en cob yield (k	g/ha)	Green fodder yield (kg/ha)				
Treatment combination		Pooled		Pooled				
	P 1	P2	P3	P 1	P2	P3		
N1	14502	14884	15488	24282	23784	24276		
N2	16282	16170	20137	25186	25106	27253		
N_3	15842	20262	18353	24519	29179	28710		
SEm <u>+</u>		480.14			494.46			
C.D. at 5%		1352			1392			
C.V. %		12.06			8.13			

The Pharma Innovation Journal

https://www.thepharmajournal.com

Table 3: Interaction effect of phosphorus and potash on Green cob yield (kg/ha) of Sweet corn as influenced by different treatments on pooled

Treatment combination	Green cob yield (kg/ha) Pooled						
1 reatment combination	K ₀	\mathbf{K}_1					
P1	14723	16363					
P2	17284	16927					
P3	18122	17864					
SEm <u>+</u>	39	2.03					
C.D. at 5%	11	103					
C.V. %	12	2.06					

Table 4: Plant population of Sweet corn as influenced by different treat	tments
--	--------

Treatments	Plant population											
Treatments		At 30	DAS			At Ha	rvest					
	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled				
Nitrogen levels												
N1-(80 kg N/ha)	153.70	157.24	151.60	154.18	153.43	156.98	151.33	154.00				
N ₂ -(100 kg N/ha)	157.36	155.41	153.31	155.36	157.09	155.14	153.04	155.08				
N ₃ -(120 kg N/ha)	156.30	155.31	155.44	155.69	156.03	155.04	155.17	155.41				
SEm <u>+</u>	2.21	0.96	3.34	1.37	1.08	1.10	3.60	1.30				
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS				
C.V. %	6.03	2.62	9.23	6.51	2.95	3.00	9.98	6.20				
Phosphorus levels												
P1-(20 kg P2O5/ha)	155.54	159.26	153.54	156.12	155.28	158.99	153.27	155.84				
P2-(40 kg P2O5/ha)	154.15	153.00	151.99	153.04	153.88	152.73	151.72	152.77				
P ₃ -(60 kg P ₂ O ₅ /ha)	157.68	155.71	154.82	156.07	157.41	155.44	154.55	155.79				
SEm <u>+</u>	2.09	1.90	1.94	1.14	2.50	2.01	2.03	1.26				
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS				
			Potash lev	vels								
K0-(00 kg K2O/ha)	155.78	156.03	153.72	155.18	155.51	155.76	153.45	154.90				
K1-(40 kg K2O/ha)	155.80	155.95	153.18	154.97	155.53	155.68	152.91	154.70				
SEm <u>+</u>	1.71	1.55	1.59	0.93	2.04	1.64	1.66	1.03				
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS				
$\mathbf{N} imes \mathbf{P}$	NS	NS	NS	NS	NS	NS	NS	NS				
N imes K	NS	NS	NS	NS	NS	NS	NS	NS				
$P \times K$	NS	NS	NS	NS	NS	NS	NS	NS				
$N \times P \times K$	NS	NS	NS	NS	NS	NS	NS	NS				
			Year (Y	<i>(</i>)								
SEm <u>+</u>	-	-	-	1.37	-	-	-	1.31				
C.D. at 5%	-	-	-	NS	-	-	-	NS				
Y×T	-	-	-	NS	-	-	-	NS				
C.V. %	5.70	5.16	5.37	5.42	6.82	5.47	5.62	6.00				

Table 5: Plant height (cm) of Sweet corn as influenced by different treatments

Treatments	Plant height (cm)										
Treatments		At 30	DAS			At Ha	rvest				
	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled			
Nitrogen levels											
N1-(80 kg N/ha)	35.62	35.84	35.74	35.73	176.69	161.69	187.25	175.21			
N2-(100 kg N/ha)	35.67	36.98	37.26	36.63	179.31	165.09	190.74	178.38			
N ₃ -(120 kg N/ha)	35.77	37.23	37.43	36.81	184.12	167.91	194.16	182.06			
SEm <u>+</u>	0.21	0.75	0.54	0.31	0.43	0.79	1.00	0.45			
C.D. at 5%	NS	NS	NS	NS	1.69	3.12	3.92	1.38			
C.V. %	2.48	8.62	6.20	6.34	1.02	2.04	2.22	1.84			
Phosphorus levels											
P ₁ -(20 kg P ₂ O ₅ /ha)	35.17	36.71	35.68	35.85	176.36	160.14	186.30	174.26			
P ₂ -(40 kg P ₂ O ₅ /ha)	35.66	36.67	37.42	36.58	178.52	164.30	190.51	177.77			
P ₃ -(60 kg P ₂ O ₅ /ha)	36.22	36.68	37.32	36.74	185.25	170.25	195.34	183.61			
SEm <u>+</u>	0.35	0.44	0.55	0.26	2.28	2.38	2.43	1.37			
C.D. at 5%	NS	NS	NS	0.74	6.58	6.86	7.01	3.84			
			Potash lev	vels							
K0-(00 kg K2O/ha)	35.43	36.33	36.44	36.07	181.68	166.37	192.83	180.29			
K1-(40 kg K2O/ha)	35.94	37.04	37.17	36.72	178.40	163.42	188.60	176.80			
SEm <u>+</u>	0.29	0.36	0.45	0.22	1.86	1.94	1.98	1.11			
C.D. at 5%	NS	NS	NS	0.60	NS	NS	NS	3.13			
N×P	NS	NS	NS	Sig	NS	NS	NS	Sig			

The Pharma Innovation Journal

https://www.thepharmajournal.com

N imes K	NS										
$P \times K$	NS										
$N \times P \times K$	NS										
Year (Y)											
SEm <u>+</u>	-	-	-	0.31	-	-	-	0.44			
C.D. at 5%	-	-	-	NS	-	-	-	Sig			
$\mathbf{Y} imes \mathbf{T}$	-	-	-	NS	-	-	-	NS			
C.V. %	4.18	5.10	6.36	5.31	5.37	6.11	5.40	5.61			

 Table 6: Plant dry matter (g) of Sweet corn as influenced by different treatments

Traction	Plant dry matter (g)											
1 reatments		At 30	DAS			At Ha	rvest					
	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled				
Nitrogen levels												
N1-(80 kg N/ha)	7.19	7.35	8.39	7.64	160.72	175.99	185.99	174.23				
N2-(100 kg N/ha)	7.54	7.49	8.54	7.85	160.77	175.77	185.76	174.09				
N ₃ -(120 kg N/ha)	7.55	7.51	9.07	8.04	165.21	180.21	190.21	178.54				
SEm <u>+</u>	0.12	0.08	0.35	0.13	2.31	2.96	4.05	1.84				
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS				
C.V. %	6.97	4.74	17.07	11.82	6.04	7.08	9.18	7.70				
Phosphorus levels												
P1-(20 kg P2O5/ha)	7.23	7.41	8.47	7.70	161.95	177.10	187.10	175.38				
P ₂ -(40 kg P ₂ O ₅ /ha)	7.43	7.43	8.76	7.87	162.10	177.22	187.21	175.51				
P ₃ -(60 kg P ₂ O ₅ /ha)	7.62	7.52	8.78	7.97	162.64	177.64	187.64	175.97				
SEm <u>+</u>	0.12	0.12	0.14	0.07	2.10	2.71	2.88	1.49				
C.D. at 5%	NS	NS	NS	0.20	NS	NS	NS	NS				
			Potash lev	vels								
K0-(00 kg K2O/ha)	7.37	7.39	8.59	7.78	160.76	175.76	185.76	174.09				
K1-(40 kg K2O/ha)	7.48	7.51	8.74	7.91	163.70	178.88	188.87	177.15				
SEm <u>+</u>	0.10	0.10	0.12	0.06	1.71	2.21	2.35	1.22				
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS				
$\mathbf{N} imes \mathbf{P}$	NS	NS	NS	NS	NS	NS	NS	NS				
N imes K	NS	NS	NS	NS	NS	NS	NS	NS				
$P \times K$	NS	NS	NS	NS	NS	NS	NS	NS				
$N \times P \times K$	NS	NS	NS	NS	NS	NS	NS	NS				
			Year (Y	<u>()</u>								
SEm <u>+</u>	-	-	-	0.22	-	-	-	1.84				
C.D. at 5%	-	-	-	NS	-	-	-	Sig				
Y×T	-	-	-	NS	-	-	-	NS				
C.V. %	6.72	6.91	7.04	6.92	5.48	6.49	6.52	6.24				

Table 7: Cob length (cm), Cob girth (cm) and No. of cobs/plant of Sweet corn as influenced by different treatments

Tucotmonto		Cob length (cm)				Cob girth (cm)				No. of Cobs/plot			
Treatments	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled	2019-20	2020-21	2021-22	Pooled	
					Nitrogen	levels							
N1-(80 kg N/ha)	17.72	18.87	19.87	18.81	15.46	14.76	16.06	15.43	185.22	189.22	194.67	189.70	
N2-(100 kg N/ha)	18.18	19.09	20.09	19.12	15.84	15.09	16.44	15.79	189.06	192.78	198.78	193.54	
N ₃ -(120 kg N/ha)	19.62	20.83	21.83	20.76	16.59	15.94	17.19	16.57	193.17	197.44	203.78	198.13	
SEm+	0.32	0.36	0.38	0.21	0.42	0.33	0.35	0.22	1.39	1.54	1.29	0.82	
C.D. at 5%	1.27	1.40	1.50	0.63	NS	NS	NS	0.66	5.47	6.06	5.05	2.51	
C.V. %	7.40	7.72	7.90	7.70	11.29	9.12	9.06	9.88	3.12	3.39	2.74	3.08	
Phosphorus levels													
P1-(20 kg P2O5/ha)	17.98	19.13	20.13	19.08	15.53	14.77	16.13	15.47	184.56	188.83	194.28	189.22	
P ₂ -(40 kg P ₂ O ₅ /ha)	18.31	19.21	20.21	19.24	16.08	15.43	16.68	16.06	189.33	193.06	199.06	193.81	
P ₃ -(60 kg P ₂ O ₅ /ha)	19.23	20.44	21.44	20.37	16.29	15.59	16.89	16.25	193.56	197.56	203.89	198.33	
SEm+	0.30	0.31	0.32	0.18	0.25	0.25	0.29	0.15	2.28	2.32	2.29	1.32	
C.D. at 5%	0.87	0.89	0.93	0.50	NS	NS	NS	0.43	6.60	6.71	6.60	3.73	
					Potash l	evels							
K ₀ -(00 kg K ₂ O/ha)	18.48	19.50	20.50	19.49	15.89	15.19	16.49	15.85	189.15	192.96	198.81	193.64	
K1-(40 kg K2O/ha)	18.54	19.69	20.69	19.63	16.04	15.34	16.64	16.01	189.15	193.33	199.33	193.94	
SEm+	0.25	0.25	0.26	0.15	0.21	0.20	0.24	0.12	1.87	1.90	1.87	1.88	
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
$N \times P$	NS	NS	NS	Sig	NS	NS	NS	NS	NS	NS	NS	NS	
$N \times K$	NS	NS	NS	Sig	NS	NS	NS	NS	NS	NS	NS	Sig	
$P \times K$	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Sig	
$N \times P \times K$	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	

Year (Y)												
SEm <u>+</u>	-	-	-	0.20	-	-	-	0.21	-	-	-	0.82
C.D. at 5%	-	-	-	Sig	-	-	-	Sig	-	-	-	Sig
$\mathbf{Y} \times \mathbf{T}$	-	-	-	NS	-	-	-	NS	-	-	-	NS
C.V. %	6.90	6.66	6.61	6.72	6.68	6.93	7.48	7.05	5.12	5.10	4.87	5.03

Treatments	Protein (%)	Total soluble sugar (%)	Total soluble solid (Brix)			
Nitrogen levels						
N1-(80 kg N/ha)	3.62	7.06	15.56			
N ₂ -(100 kg N/ha)	3.74	7.75	16.37			
N ₃ -(120 kg N/ha)	3.70	7.67	16.00			
SEm <u>+</u>	0.07	0.18	0.23			
C.D. at 5%	NS	NS	NS			
C.V. %	7.51	10.44	6.06			
		Phosphorus levels				
P ₁ -(20 kg P ₂ O ₅ /ha)	3.62	7.26	15.76			
P2-(40 kg P2O5/ha)	3.69	7.50	16.00			
P ₃ -(60 kg P ₂ O ₅ /ha)	3.75	7.72	16.18			
SEm <u>+</u>	0.09	0.15	0.18			
C.D. at 5%	NS	NS	NS			
		Potash levels				
K ₀ -(00 kg K ₂ O/ha)	3.72	7.54	16.01			
K1-(40 kg K2O/ha)	3.65	7.45	15.95			
SEm <u>+</u>	0.07	0.13	0.15			
C.D. at 5%	NS	NS	NS			
$N \times P$	NS	NS	NS			
N imes K	NS	NS	NS			
$P \times K$	NS	NS	NS			
$N \times P \times K$	NS	NS	NS			
Year (Y)						
SEm <u>+</u>		-				
C.D. at 5%	-	-	-			
$Y \times T$	-	-	-			
C.V. %	10.51	8.69	4.91			

Table 9: Soil status after harvest of Sweet corn as influenced by different treatments (Third Year)

Treatments	pН	EC (dS/m)	OC (%)	P2O5 (kg/ha)	K ₂ O (kg/ha)	
Initial Soil status	7.82	0.14	0.79	55.00	201.0	
Nitrogen levels						
N1-(80 kg N/ha)	7.58	0.13	0.75	62.06	204.57	
N ₂ -(100 kg N/ha)	7.65	0.14	0.74	61.74	203.28	
N ₃ -(120 kg N/ha)	7.67	0.14	0.73	65.14	199.78	
Phosphorus levels						
P ₁ -(20 kg P ₂ O ₅ /ha)	7.61	0.13	0.74	62.10	207.94	
P ₂ -(40 kg P ₂ O ₅ /ha)	7.62	0.14	0.73	62.62	199.57	
P ₃ -(60 kg P ₂ O ₅ /ha)	7.66	0.14	0.75	64.22	200.11	
Potash levels						
K ₀ -(00 kg K ₂ O/ha)	7.68	0.14	0.74	62.48	202.51	
K1-(40 kg K2O/ha)	7.59	0.13	0.73	63.48	202.57	

Table 10: Economics of Sweet corn as influenced by different treatments

Treatments	Green cob yield	Green fodder yield	Gross Realization	Cost of cultivation	Net Realization	BCR	
	(kg/ha)	(kg/ha)	(Rs.)	(Rs.)	(Rs.)	DON	
Nitrogen level							
N1-(80 kg N/ha)	14958	24115	323275	48138	275137	5.72	
N ₂ -(100 kg N/ha)	17531	25849	376469	48410	328059	6.78	
N ₃ -(120 kg N/ha)	18153	27470	390530	48688	341841	7.02	
Phosphorus level							
P1-(20 kg P2O5/ha)	15543	24663	335523	48150	287372	5.97	
P2-(40 kg P2O5/ha)	17106	26024	368144	49239	318905	6.48	
P3-(60 kg P2O5/ha)	17993	26747	386607	50328	336279	6.68	
Potash level							
K0-(00 kg K2O/ha)	16710	25786	359986	47036	312950	6.65	
K1-(40 kg K2O/ha)	17052	25836	366876	49511	317365	6.41	

Green cob price: 20.0 Rs/kg.

Treatment combinations	Green cob yield (kg/ha)	Green fodder yield (kg/ha)	Gross Realization (Rs.)	Cost of cultivation (Rs.)	Net Realization (Rs.)	BCR
$N_1P_1K_0$	15737	24854	339594	49252	290343	5.90
$N_1P_1K_1$	15851	24871	341891	51727	290165	5.61
$N_1P_2K_0$	16258	25308	350468	50340	300128	5.96
$N_1P_2K_1$	16372	25325	352765	52815	299950	5.68
$N_1P_3K_0$	16554	25549	356622	51429	305193	5.93
$N_1P_3K_1$	16668	25549	358902	53904	304998	5.66
$N_2P_1K_0$	16595	25433	357326	52161	305165	5.85
$N_2P_1K_1$	16709	25449	359623	51999	307624	5.92
$N_2P_2K_0$	17116	25886	368200	50613	317587	6.27
$N_2P_2K_1$	17230	25903	370496	55725	314771	5.65
$N_2P_3K_0$	17411	26127	374354	51701	322653	6.24
$N_2P_3K_1$	17525	26144	376651	54176	322474	5.95
$N_3P_1K_0$	16802	25973	362013	52440	309573	5.90
$N_3P_1K_1$	16916	25990	364310	52277	312032	5.97
$N_3P_2K_0$	17323	26427	372887	50891	321995	6.33
$N_3 P_2 K_1$	17437	26443	375183	53366	321817	6.03
$N_3P_3K_0$	17619	26667	379041	51980	327061	6.29
N ₃ P ₃ K ₁	17733	26684	381338	54455	326883	6.00

Table 11: Economics of Sweet corn as influenced by different treatment combinations

Green cob price: 20.0 Rs/kg.

Green fodder price: 1.0 Rs/kg.

Effect of treatments on quality parameters

Performance of *rabi* Sweet corn under different levels of nitrogen, phosphorus and potash applied through drip system were found non-significant influence on the protein content (%), total soluble sugar (%) and total soluble solid (Brix) recorded after harvest of the crop as in the method described by Yoshida *et al.*, (1972) ^[10].

Economics

The regional adaptability of any agronomic practices in the yield of any crop is completely based on the highest economic return of a treatment. Therefore, it is necessary to work out economics of different treatments for valid comparison of agronomic practices and sound recommendation. Among the different treatments, clearly revealed that the sweet corn crop was fetched the highest net realization (341841 Rs/ha) with maximum BCR value of 1:7.02 in the treatment N₃ 120 kg N/ha which was remained at par with N₂: 100 kg N/ha. While in case of phosphorus, the highest net realization (336279 Rs/ha) with maximum BCR value of 1:6.68 in the treatment P₃ 60 kg P₂O₅/ha which was remained at par with P₂ 40 kg P₂O₅.

Economics of different treatment combinations the data revealed that the highest net return worth 327061 Rs./ha was secured under treatment combination $N_3P_3K_0$ followed by $N_2P_3K_0$ (322653 Rs/ha) with regard to cost: benefit ratio, treatment combination $N_3P_3K_0$ recorded the maximum value (1:6.29) followed by treatment combinations $N_2P_3K_0$ (1.6.27). The lowest CBR value of 1:5.61 was recorded under treatment combination $N_1P_1K_1$.

Conclusion

On the basis of results obtained from the present investigation, it could be concluded that growing *rabi* hybrid Sweet corn through drip irrigation system (0.8 PEF) are recommended to fertilize the crop with 120 kg N/ha {(105 kg N through Urea & 15 kg N through Urea phosphate) (24 kg as basal and remaining 96 kg in four equal splits at 20, 30, 40 and 50 DAS)} and 40 kg P₂O₅/ha through urea phosphate (08 kg as basal and remaining 32 kg in four equal splits at 20, 30,

40 and 50 DAS) through fertigation to get higher green cob yield and net return.

System details

- Lateral spacing-90 cm.
- Dripper spacing-45 cm.
- Dripper discharge-4 liter Per Hour (lph).
- Operating pressure-1.2 kg cm².
- Operating frequency-Alternate day.
- Operating time-55 Minutes.

References

- 1. Anonymous. Groundnut outlook report, Agricultural Market Intelligence Centre, ANGR Agricultural University, Lam, Guntur; c2021.
- 2. Billore SD, Srivastava SK. Integrated nutrient management in soybean varieties grown under different agroclimatic conditions of India. Soybean Research. 2015;13(2):26-42.
- Chaturvedi S, Chandel AS. Influence of organic and inorganic fertilization on soil fertility and productivity of soybean. Indian Journal of Agronomy. 2005;50(4):311-313.
- 4. Cochran WG, Cox GM. Experimental Design; c1967. p. 593.
- Fuller DQ, Harvey EL. The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environmental Archaeology. 2006;11(2):219-246.
- 6. Pal MS, Bhatnagar A. Productivity and profitability of pop-corn, composites and hybrid maize (*Zea mays* L.) under low nitrogen stress in Mollisols of Uttarakhand. Madras Agricultural Journal. 2012;99(4-6):259-262.
- Pasuquin JM, Pampolino MF, Witt C, Dobermann A, Oberthür T, Fisher MJ, *et al.* Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management. Field Crops Research. 2013;156:219-230.
- 8. Vyas MD, Kushwah SS. Response of soybean varieties to fertility levels in Vertisols of Vindhyan Plateau of

Madhya Pradesh. Soybean Research. 2015;13(2):09-18.

- 9. Vavilov NI. The origin, variation, immunity and breeding of cultivated plants: selected writings of NI Vavilov. Chronica Botanica. 1951;72(6):482.
- 10. Yoshida DA, Forno JH, Gomej KA. Laboratory manual for physiological studies of rice (2nd ed). IRRI, Los Banos, Philippines; c1972.
- Zhu Y, Zhang L, Fan J, Han S. Neural basis of cultural influence on self-representation. Neuroimage. 2007 Feb 1;34(3):1310-1316.
- 12. Stiner MC, Munro ND, Surovell TA, Tchernov E, Bar-Yosef O. Paleolithic population growth pulses evidenced by small animal exploitation. Science. 1999 Jan 8;283(5399):190-194.